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Resumen

La optimizacion del limite final del tajo (UPL) es una etapa desisiva al momento de planficar la explotacion de minas a
tajo abierto, debido a que afecta directamente la rentabilidad del proyecto. Este estudio busca determinar el UPL usando
el algoritmo de Lerchs y Grossmann (LG). Se maximiza el Valor Actual Neto (VAN) a través de una implementacion
computacional reproducible en Python. La metodologia se basa en un modelo de bloques sintético que incluye 151,898
bloquesde 5 x5 x 5 m. Este modelo tiene informacién espacial (X,Y,Z), leyes de cobrevariables,unadensidad constante
y parametros econdmicos definidos. El analisis se realizo en Google Colab con Python 3.12.12. Se consider6 un precio
del cobrede 2.26 USD/Ib, un costo de ventade 0.12 USD/Ib, un costo de minado de 6.15 USD/t y supuestos econdmicos
constantes, sin descuento temporal, para un escenario de planificacion de tajo final. Los resultados indican que la
optimizacion mediante LG crea un tajo final con 18,393 bloques, un tonelaje de mineral de 6,295,982.75t,106,322.86 t
de material estéril, una profundidad maximade 110 m y un volumen total de 3,523,275 m?. Esto resulta en un VAN de
239.92 millones de USD. El algoritmo de LG es un método sdlido y eficiente para optimizar el UPL. Ofrece soluciones
econdémicamente 6ptimas y técnicamente consistentes para estudios de planificacion minera estratégica.

Palabras claves: Lerchs & Grossmann, modelo de bloques, planificacion minera, limite final de pit

Abstract

The optimization of the ultimate pit limit (UPL) is a critical stage in open-pit mine planning, as it directly affects project
profitability. This study aims to determine the UPL using the Lerchs and Grossmann (LG) algorithm. Net Present Value
(NPV) is maximized through a reproducible computational implementation in Python. The methodology is based on a
synthetic block model composed of 151,898 blocks with dimensions of 5 x 5 x 5 m. The model includes spatial
information (X, Y, Z), variable copper grades, constant density, and defined economic parameters. The analysis was
carried outin Google Colab usingPython 3.12.12. A copperprice of USD 2.26/1b,asellingcostof USD 0.12/1b,a mining
cost of USD 6.15/t, and constant economic assumptions without time discounting were considered for a final pit planning
scenario.

The results indicate that optimization using the LG algorithm generates a final pit containing 18,393 blocks, with an ore
tonnage 0 6,295,982.75t,106,322.86 t of waste material, a maximum depth of 110 m, and a total volume of 3,523,275
m®. This configuration yields a Net Present Value of USD 239.92 million. The LG algorithm proves to be a robust and
efficient method for UPL optimization, providing economically optimal and technically consistent solutions for strategic
mine planning studies.

Keywords: Lerchs & Grossmann, block model, mine planning, ultimate pit limit

1. Introduccion

La planificacion minera es el proceso fundamental donde se disefian y organizan las operaciones de extraccion
de un yacimiento minera [1, 2], con el objetivo de maximizar los beneficios economicos [3, 4], mientras se
minimizan los riesgos geotécnicos y operativos [5, 6]. En la mineriaa cielo abierto, unade las decisiones mas
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criticas en la fase de planificacion es la definicion del UPL [7, 8], que determina la geometria méxima
explotable del yacimiento [9], delimitando el area que debe ser extraida [10], para asegurar la rentabilidad
economica de la operacion [11, 12]. La UPL se optimiza utilizando una variedad de métodos matematicos y
algoritmicos [13, 14], siendo el més destacado el modelo propuesto por Lerchs y Grossmann en 1965 [15, 16].
A partir de ahi, este método representa los bloques geologicos como nodos [17], asi como también las
relaciones de precedencia [18]. De acuerdo con restricciones geomecanicas como los dngulos de talud [19],
arcos dirigidos [20], convirtiendo asi el problema en uno de corte minimo/flujo maximo [21, 22].

El modelo de Lerchs-Grossmann es un algoritmo bien conocido y ampliamente practicado [21], durante mas
de cinco décadas en la industriaminera [23], que es estable a los diferentes escenarios [24], sin embargo, con
algunas desventajas en recursos computacionales [25, 26], especialmente en modelos de bloques grandes [27].
A parte de L&G, existente otros algoritmos como Pseudoflow, introducido por Hochbaum en 1998 [28], es
una extension contemporanea del enfoque clasico de LG (Lerchs-Grossmann) para optimizar el UPL [29]. En
marcado contraste con la solucion tradicional, Pseudoflow aborda el problema del corte minimo utilizando
estructuras de datos avanzadas [30], mejora considerablemente la escalabilidad mediante la reduccion del
tiempo de célculo [31]. Pseudoflow ha demostrado sus propios excelentes resultados similares a los de Lerchs-
Grossmann en varios estudios. Con todas las capacidades de procesamiento de datos de Pseudoflow en
términos de procesamiento rapido de volimenes [32], el sistema es uno de los mas populares en el sector
minero segun la planificacion de minas a gran escala. Ahora, el método de Lerchs-Grossmann sigue siendo
comunmente utilizado y confiable [33].

En la optimizacion de UPL, el andlisis econdmico es uno de los pasos mdas importantes [34], porque la
necesidad de encontrar la manera mas eficiente de extraer recursos [35], no solo es relevante para la
optimizacién de UPL, sino también para su valor neto [36]. En este tipo de anélisis, se evalua el valor
economico de cada bloque en funcion de variables que incluyen el precio del mineral [37], los costos operativos
(incluidos los costos de mineria, procesamiento y transporte) [38], y el factor de recuperacion [39]. En realidad,
esto significa que se debe encontrar el VAN para cada bloque [40], y la extraccion de ese bloque debe
optimizarse para lograr el mayor beneficio econdémico posible [41], considerando los costos asociados con la
extraccion de material de desecho no rentable [42].

En algunos estudios emplean la ayuda de MineSigth, el tajo final fue optimizado utilizando el método de
Lerchs-Grossman [43], y se aseguré tanto la rentabilidad como la seguridad geotécnica para el depdsito VMS
de Bisha. En otro estudio, comparan si el método de LG o la Secuenciaciéon Directa de Bloques (DBS) era
mejor para optimizar el tajo final, encontrando que DBS genera mas rentabilidad (mayor VAN) y LG es mas
efectivo en reducir la relacion estéril/mineral [44]. Y finalmente, el tajo final a menudo se optimiza utilizando
el algoritmo de Lerchs—Grossmann [45], pero los autores sugieren una mejora que permite pendientes variables
y una optimizacion especifica de la geologia. También se propuso una mejora del algoritmo de Lerchs—
Grossmann para pendientes mas complejas (sin reconstruir el modelo de bloques), lo que lleva a una
optimizaciébn mas realista y eficiente en el trabajo [46]. Actualmente, Lerchs—Grossman domina la
optimizacion del tajo final, pero el pseudo-flujo, la inteligencia artificial y las herramientas estocasticas son el
futuro de esta optimizacion [47]. Los estudios de comparacion LG vs DBS [44] pueden ser utiles en el
momento de evaluar la eficiencia entre algoritmos. Todavia existe unas deficiencias en la optimizacion del
UPL para la mineria a cielo abierto, especialmente considerando las restricciones geotécnicas, economicas y
operativas en un contexto de planificacion real. El objetivo del trabajo actual es optimizar la delimitacion del
tajo final utilizando el algoritmo de LG en Python, con el propésito de maximizar el VAN y optimizar la
eficiencia computacional, considerando las limitaciones geotécnicas del campo.

En general, este documento se llevo a cabo para analizar como el algoritmo LG maximiza eficientemente el
UPL en unaminaa cielo abierto y también para evaluar otros valores técnicos (geometria del tajo y tonelajes)
y econdmicos (valor total del tajoy VAN). Esta investigacion est4 organizada en cuatro secciones. La primera
seccion se centra en aspectos tedricos para la optimizacion del tajo, incluyendo el enfoque algoritmico LG,
mientras que la segunda parte describe la metodologia utilizada y sus criterios de evaluacion; la tercera parte
describe los resultados y la discusion; y la cuarta parte concluye con conclusiones, limitaciones y direcciones
futuras.
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2. Metodologia (Material y métodos)

2.1. Procedimiento de la investigacion

El diagrama de flujo mostrado en la figura 1 organiza sistematicamente el disefio metodoldgico para la
optimizacion del UPL basado en el algoritmo de LG. El procedimiento consiste en la recopilacion y limpieza
de los datos necesarios, la construccion del problema UPL mediante la generacion de precedencias y la
construccion del grafo aciclico dirigido (DAG), y la ejecucién del algoritmo LG bajo una funciéon econémica
comun. Los resultados obtenidos se miden mediante métricas técnicas como la geometria del tajo y las
toneladas, y métricas economicas, como el valor total del tajoy el VAN. Este método permite una evaluacion
objetiva del rendimiento del algoritmo LG en la optimizacion del tajo final y su aplicabilidad en condiciones
reales de mineria.
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Figura 1 Flujograma de procedimiento
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2.2. Datos y fuentes para la investigacion

2.2.1. Origen de los datos

Los datos fueron generados a partir del modelo de bloques sintético preparado para estudios de investigacion
en la planificacion y optimizacion del tajo final. Como paso preliminar, esto es ampliamente adoptado hoy en
dia y en textos de modelado de recursos [48, 49]. Los datos de investigacion incluyen modelos de bloques,
valor economico de los bloques y parametros geotécnicos [50]. La geometria espacial del depdsito en un
sistema tridimensional regular con coordenadas (X, Y, Z), volumen de bloque, leyes y densidad de masa rocosa
[51], se modelada y definida por el modelo de bloques. El valor econémico por bloque se determina a partir
de la siguiente funcion [52, 53].

Valor = (Cu;,y, X Recup X Precio)

—(c.. (0
m
(C ina + Cplanta)

El Cu;,, es la cantidad de Cu contenida en el bloque, Recup es el porcentaje de recuperacion metalurgica, el
precio de venta del metal, C (mina) y los costos operativos de C planta, que incluyen extraccion y
procesamiento. Los parametros geotécnicos nos permiten definir dominios geoldgicos/geotécnicos tipicos
(litologia, roca, parametros mecanicos como densidad, resistencia, etc.) [54], necesarios para modelar
precedencias, estabilidad de taludesy disefio seguro del tajo final, un requisito fundamental en la planificacién
de minas a cielo abierto [55].

2.2.2. Dimensiones del dataset

Existen 151,898 bloques, cada uno de 5x5x5 metros, las coordenadas espaciales Este, Norte y Elevacion de
los bloques que permiten ubicar cada bloque en un espacio tridimensional, con grados variables de Cu de
0.001% a 14.126% (densidad de roca de 2.7 g/cm? a 2.77 g/cm?), otros parametros implicitos de volumen de
bloque y tonelajes que son dados por el tamafioy la densidad del bloque, parametros geotécnicos que dividen
el tajo en cuatro dominios geotécnicos principales en N, E, O y S, y el valor econémico del bloque, derivado
de la ecuacion anterior. Esta estructura de datos (bloques discretos con atributos metalurgicos, geologicos,
espaciales y economicos) corresponde con las directrices de modelado de recursos minerales [56].

2.2.3. Tipos de datos y preprocesamiento

Tenemos valores numéricos continuos basados en los datos que utilizamos, como la ley, la densidad, los
valores econdmicos. Es categérico y conocemos los dominios, el tipo de roca o material, el espacio 3D donde
se encuentran las coordenadas X, Y, Z [57]. Estos procesos incluyen:

¢ Eliminacion de duplicados para evitar repeticiones o bloques vagos, asegurando la calidad del conjunto
de datos y su consideracion.

e Deteccion de discrepancias y correccion de valores atipicos y falsos en variables como la ley, la
densidad y el tonelaje, para evitar que datos aberrantes contribuyan a la distorsiéon de los célculos
posteriores.

e Homologacion de unidades (densidad en t/m3, volumen en m?, toneladas, ley en %, valores en USD),
para asegurar la consistencia entre todos los datos.

2.3. Procesamiento de datos

Una vez que el conjunto de datos se ha recopilado, limpiado y validado, se puede realizar el siguiente
procesamiento para un caso de uso futuro

2.3.1. Determinacion de tonelaje por bloque

Se utilizan procedimientos estandar de estimacion de recursos [58], se determina:

| Tonypgue = Densidad X Volumen | 2) |
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Donde el volumen del bloque tendra los incrementos espaciales fijos (Ax * Ay * Az) que se ajustan aun modelo
de bloque ctibico uniforme [59].

2.3.2. Determinacion del contenido metalico por bloque

Si el porcentaje % de Cu, el contenido en toneladas se calcula como:

Cu

XTo0 3)

Cuton = Tonbloque

Este método de multiplicar el tonelaje por el grado es el proceso aceptado en modelos de bloques como el paso
de estimacion para el metal contenido [60].

2.3.3. Integracion de valor econémico

El valor econdémico por bloque calculado externamente se fusiona con el modelo principal tomando las
coordenadas espaciales en las columnas X, Y, Z como claves [61]. Esto resulta en un modelo consolidado con
informacion espacial + geo-metalurgica+ econdmica, que se introduce en algoritmos de optimizacion [62, 63].

2.3.4. Asignacion de dominios geotécnicos

Esta asignacion crea espacio para la inclusion de restricciones geotécnicas en un modelo y especifica
precedencias/inclinaciones coherentes [64]. Estudios en planificacién de minas a cielo abierto sugieren que los
dominios geologicos/geotécnicos se incluyen en un modelo de bloques [65, 66, 67].

2.3.5. Generacion de precedencias

Una vez que tanto el modelo de bloques como el dominio geotécnico estan especificados, la creacion de
precedencias es una preocupacion importante. Es unasituacion en la que solo se va a trabajar en un bloque si
ya se ha extraido con el otro, unalogica de estabilidad/inclinacion [68, 69]. Como se demuestraen la figura 2.

BL 1 BL2 BL 3
(-1) (-1) (-1

T A A

BL 4
()

Figura 2 Precedencias entre bloques de minado

Tal precedencia es necesaria en la formulacion de restricciones geotécnicas para un problema de UPL [70].
Los estudios de planificacion clasicos adoptaron enfoques de precedencia similares para generar pozos finales
[71, 72].

2.3.6. Construccion del grafo UPL

Con bloques como nodos y precedencias como aristas dirigidas, se forma un DAG [73]. Como se muestraen
la figura 3.
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Figura 3 Grafo dirigido aciclico

Este grafico representa la estructura jerdrquica de los bloques/minas a extraer y es una entrada crucial para los
algoritmos de optimizacion (corte maximo / flujo minimo) [74, 75]. El soporte para este esquema de grafico
para modelar los pozos finales esta cubierto en la literatura de optimizacion minera [76].

2.4. Modelo utilizado

En el estudio, se optimizara el pit final con el algoritmo de Lerchs & Grossmann (1965).

2.4.1. Algoritmo Lerchs & Grossmann (1965)

El método de LG es la base teorica del disefio de pozos finales en mineria a cielo abierto y ha sido el estandar
de la industria durante mas de cinco décadas [77, 78]. Finalmente, se propusieron demostrar que el problema
del limite eventual del pozo puede formularse matematicamente como un problema de cierre maximo en un
grafico dirigido, equivalente, a través de una red de flujo, a un problema de corte minimo [79, 80]. Aqui,
modelamos cada bloque como un nodo con un peso econoémico w; calculado a partir del valor neto del mineral
menos el costo de extraccion. Las precedencias geotécnicas se dan como aristas dirigidas, es decir, si un bloque
i depende de otro bloque j, entonces

| (ieS) = (eI | @ |

Donde S son los bloques elegidos en la solucion.
El objetivo se expresa como:

max
sc Vzwi (5)

ieS

Sujeto a que S sea un conjunto cerrado, con respecto a las precedencias. LG propusieron que se puede emplear
un grafico de flujo con capacidad positiva y negativa en el que el valor econémico de cada bloque se afiade
como un arco a la fuente o al sumidero. El corte minimo obtenido muestra con precision el pozo 6ptimo [81,
82].

2.5. Justificacion técnica de modelo

Segun los requisitos técnicos, el algoritmo de LG se esta utilizando como referencia para la optimizacion del
limite UPL, ya que ha demostrado su estabilidad historica y cuenta con amplia evidencia experimental en
entornos industriales. E1 método propuesto para la aplicacion en mineria a cielo abierto también ha sido
probado en diferentes contextos y los resultados indican que se destaca sobre otros en la optimizacion de los
tajos ideales bajo escenarios realistas de planificacion minera. El algoritmo LG es especialmente adecuado
para problemas de optimizacion basados en la optimizacion geotécnica y econdmica, es decir, teniendo en
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cuenta las consideraciones operativas y geomecanicas para la demarcacion del tajo, con el fin de proporcionar
resultados so6lidos. El método LG ejecutaun algoritmo definido para la estructura de entrada, a saber, modelo
de bloques, precedencias, DAG, ya que las entradas son conocidas y el proceso se ejecuta.

2.6. Métricas de evaluacion

Los puntos donde se comparar se mostrara, entre ambos algoritmos se muestra en la sigue tabla 1.

Tabla 1 Métricas empleadas para la evaluacion UPL

Dimensién Métricas Propésito / Qué evalia
Econémica Valor total del pit (VT), Ley media, Rentabilidad econémica de la
VAN solucidn, eficacia en maximizar el
valor.
Operacional Tonelaje mineral, Tonelaje estéril Eficiencia y factibilidad de

extraccion, balance entre material
mineralizado y estéril.

Geométrica Profundidad, Volumen, Extension ~ Forma, tamafio y configuracion del
lateral pit final, ajustado a restricciones
geotécnicas.

2.7. Herramientas empleadas

Para este tipo de estudio se empelo el lenguaje de programacion Python, mediante la plataforma Google Colab
con la version 3.12.12. Esto se hizo por su eficiencia en la computacion y su amplia gama de bibliotecas
cientificas para el analisis de datos, la optimizacion y el modelado computacional. Python facilité todo el
proceso del modelo de bloques. Esto incluyo la limpieza y validacion de datos, la generacion y analisis del
DAG para definir las precedencias mineras, la implementacion de algoritmos de optimizacion para evaluar la
economia y determinar el limite final del tajo, y la visualizacion de resultados en un entorno reproducible.

3. Resultados

3.1. Analisis estadistico descriptivo de las variables del modelo de bloques

El analisis estadistico descriptivo es fundamental para comprender la estructura general y la distribucion de
los datos de cualquier estudio cuantitativo. Aqui se proporcionan las estadisticas descriptivas para las
principales variables de un modelo de bloques aplicado a la mineria. Este analisis implica calcular la
centralidad, la dispersion y el rango de las variables en estudio. Con este disefio, el objetivo es descubrir
patrones y comportamientos relevantes para afectar la optimizacion de los recursos mineros, con un enfoque
en la delimitacion del UPL en las operaciones mineras. Las estadisticas descriptivas para las variables mas
relevantes del modelo de bloques se resumen en la tabla a continuacion.

Tabla 2 Estadisticos Descriptivos de las Variables del Modelo de Bloques

Indice n X c Min. 25% Me 75% Max.

X 151898 215104.95 7924 214961.13 215041.13 215106.13 215166.13 215251.13
y 151898 8080920.75 14890 8080666.50 8080796.50 8080911.50 8081041.50 8081201.50
z 151898 307.71  39.61 247.50 272.50 302.50 337.50 422.50
Dim x 151898 500  0.00 5.00 5.00 5.00 5.00 5.00
Dim y 151898 500  0.00 5.00 5.00 5.00 5.00 5.00
Dim z 151898 500  0.00 5.00 5.00 5.00 5.00 5.00
volumen 151898 12500  0.00 125.00 125.00 125.00 125.00 125.00
zona 151898 028  0.80 0.00 0.00 0.00 0.00 4.00

au 151898 0.15 0.47 0.00 0.00 0.00 0.00 6.24




Ortiz E. Journal of Advanced Mining Modeling, Publicado en linea

ag 151898 577 19.13 0.00 0.00 0.00 0.00 235.96
cu 151898 0.24 0.75 0.00 0.00 0.00 0.00 14.99
densidad 151898 2.80 0.00 2.80 2.80 2.80 2.80 2.80

La tabla?2 resume las estadisticas descriptivas basicas para un conjunto de variables, que son determinantes en
el andlisis de bloques. Se ilustra de la siguiente manera: el nimero de observaciones (conteo), el promedio, la
desviacion estandar, el minimo, el maximo, los percentiles del 25%, 50% (mediana)y 75% para cada variable.
Las variables definidas incluyen coordenadas espaciales (X, y, z), dimensiones del bloque (dim_x, dim vy,
dim_z), volumen del bloque, zonas geoldgicas identificadas (zona) y concentraciones de metales de interés
econdmico, como oro (au), plata (ag) y cobre (cu), asi como la densidad de los bloques. Estas cifras
proporcionan una impresion inicial fundamental de la variabilidad y distribucion en los datos que se analizaran
y optimizaran para la mineria y para validar modelos predictivos.

3.2. Distribuciéon de dominios geotécnicos en zonas

La optimizacion del UPL es un elemento clave para especificar las areas adecuadas, es decir, donde deben
extraerse los recursos minerales, y la caracterizacion del dominio geoldgico es crucial en esto. Los dominios
geologicos, definidos por su cddigo de zona, se presentan en la tabla 3 para reflejar el ntimero de bloques,
tonelaje, ley media de cobre (Cu) y coordenadas geoespaciales en las direcciones z, X ¢ y. Esta informacion es
fundamental para desarrollar un modelo de optimizacién adecuado para la estimacion precisa de los recursos
potenciales de extraccion y para las restricciones geotécnicas y operativas relacionadas con ellos.

Tabla 3 Distribucion de bloques de acuerdo con las zonas litologicas

Zona N°Bloq. Tonelaje XCu z min z_max x_min X_max y_min y_max

0 131704 46062980.11 0.00 247.5 4125 214961.13 215251.13 8080666.5 8081201.5
1 6587 2303778.55 130 2925 3825 215066.13 215206.13 8080741.5 8081106.5
2 6059 211911253 1.65 3325 4025 215056.13 215206.13 8080741.5 8081111.5
3 5888 205930592 233 3375 4175 215051.13 215211.13 8080741.5 8081111.5
4 1660 580578.78 2.80 3525 4225 215061.13 215196.13 8080746.5 8081096.5

Para examinar la robustez del modelo, seleccionamos algunos pardmetros importantes como el tonelaje total
(por ejemplo, 46.062 millones toneladas en la zona 0) y la ley media de cobre (Cu) (por ejemplo, 1.298086 en
la zona 1). Estos valores son vitales para evaluar la viabilidad econémica de la extraccion. También probamos
la robustez del modelo observando la sensibilidad de los resultados a las variaciones en estos parametros (para
validar que el modelo de optimizacién tiene sentido bajo diversas condiciones geoldgicas y econdémicas).

3.3. Distribucion de Cobre (Cu) en el Modelo de Bloques

Es un paso necesario analizar la distribucion de la concentracion de cobre (Cu) en la evaluacion y optimizacion
de las operaciones mineras. Decidir sobre la explotacion de recursos solo es factible con una comprension de
la distribucion de los niveles de Cu en el modelo de bloques. Los histogramas a continuacion presentan la
distribucion de las concentraciones de cobre, completas y después de eliminar los valores de 0% de Cu,
mostrando como varia este mineral en los bloques modelados. Comprender esto es esencial para modificar las
estrategias mineras y lograr una extraccion optimizada de recursos minerales valiosos.
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Figura 4 Distribucion de las concentraciones de Cu

La figura 4 muestra dos histogramas de concentraciones de cobre (Cu) en el modelo de bloques. El primer
histograma, a la izquierda, presenta los datos excluyendo bloques con 0% de Cu. La concentracion de Cu en
esta muestra esta principalmente entre 0% y 2%, con un valor maximo cercano al 6%, lo que indica una
mineralizacién moderada en las dreas evaluadas. El segundo histograma, a la derecha, incluye todos los
bloques del modelo y exhibe una acumulacion notable de datos en 0% de Cu, lo que distorsiona la distribucion
general y crea un sesgo hacia valores cercanos a cero. La diferencia en la distribucion resalta la influencia de
los bloques no mineralizados, cuyos valores representan mas del 60% del total de datos. Este analisis demuestra
la necesidad de separar los bloques no mineralizados para obtener una representacion mas precisa de la
mineralizacion real.

3.4. Curva tonelaje vs Ley

El curva tonelaje ley que te refieres, muestra la relacion entre el tonelaje (numero de toneladas de mineral
extraido) y su grado promedio de cobre (Cu) en varios valores de ley de corte. Los graficos de este tipo son
criticos para evaluar como varian estos dos pardmetros a medida que cambia la restriccion minima de ley para
la extraccion. Tonelaje: indica el total de mineral extraido en toneladas, lo cual dependera del valor de la ley
de corte. Grado promedio: muestra el grado promedio de cobre (Cu) asociado con cada valor de tonelaje,
ajustado segun la ley de corte (ver figura 5).
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Figura 5 Curva tonelaje vs ley

Al cambiar el grado de corte, el grafico "Curva de Tonnage vs Grado de Corte" indica que existe unarelacion
inversa entre el tonelaje de mineral y el grado promedio de cobre (Cu). Aumentarel grado de corte hace que
el tonelaje extraido sea menor, optando solo por los bloques que acumulan mayores contenidos de cobre.
Especificamente, con un grado de corte de 0.0 el tonelaje es de 7.06e+06 toneladas con un grado de 1.829201,
mientras que con un grado de corte de 1.0 el tonelaje cae a 5.56e+06 toneladas y el grado de cobre sube a
2.181445. El valor extraido en este diagrama representa un equilibrio entre la cantidad de mineral extraido y
su grado, lo cual es critico en la optimizacion economica y operativa de la planificacion minera.

3.5. Visualizacion 3D de la Distribucion de Cobre (Cu)

La visualizacion tridimensional es un medio importante para interpretar la distribucion espacial de las
concentraciones de cobre (Cu) en el modelo de bloques. A través de esta visualizacion 3D, se pueden
determinar de manera mas eficiente las regiones de alta mineralizacion y analizar su distribucion a lo largo de
las coordenadas espaciales (X, y, z). La siguiente figura muestraunarepresentacion 3D de la concentracion de
cobre en el modelo, proporcionando una percepcion real de la variabilidad espacial en la mina.
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Figura 6 Visualizacion 3D de la distribucion de Cu

La distribucion de las concentraciones de cobre (Cu) en el modelo de bloques se muestraen el grafico 3D de
la figura 6. Las coordenadas espaciales horizontales del modelo estan representadas por los ejes X e Y, y el eje
Z representa la elevacion o profundidad de los bloques en esta visualizacion. Una paleta de colores que
representa la concentracion de Cu muestra los valores mas altos de Cu en rojo y los valores mas bajos en azul.
Algunas regiones con mayores concentraciones de cobre en forma visual también se destacan, indicando
posibles ubicaciones de extraccion. Con esta visualizacion 3D, los patrones geoespaciales pueden reconocerse
mas facilmente; y las decisiones sobre como aprovechar mejor los recursos mineros pueden tomarse con mayor
facilidad.

3.4. Visualizaciéon 3D de la Distribucion de Cobre (Cu) en relacién a cada zona

Los dominios geoldgicos son cruciales para optimizar el UPL al organizarlos en categorias geologicas dentro
del espacio. El grafico tridimensional proporcionado en este documento demuestra la distribucion de zonas de
tipo geoldgico (zona 1, zona 2, zona 3, zona 4, zona 5) en el yacimiento y permite el andlisis de diversas
propiedades geoldgicas (tonelaje, ley de cobre, etc.). Esta informacion es crucial para la planificacion minera
y la toma de decisiones sobre la viabilidad de la extraccion, que puede integrarse con modelos de optimizacion
de tajos.
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Figura 8 Visualizacion de las zonas vista perfil

La figura 7 y 8 es una ilustracion de la organizacion espacial de los dominios geoldgicos dentro del depdsito
y los diferentes colores dados por el tipo de zona. Hay cinco zonas: Zona 1, Zona 2, Zona 3, Zona4y Zona 5,
lo que permite determinar la variabilidad de las caracteristicas geologicas utilizando las coordenadas X, Y y
Z. La visualizacion de la representacion espacial de los bloques es vital para disefiar un disefio de pozo 6ptimo
y tomar una decision minera.

3.4. Descripcion de perfiles geolégicos

Los graficos con "Perfil Z = 422.5" y "Perfil Z = 417.5" muestran la distribucion del grado de cobre (Cu) a
diferentes profundidades, indicado por el eje X para las coordenadas Este y el eje Y para las coordenadas
Norte. A Z = 422.5, los niveles de cobre varian del 1% al 5%, con una concentracién maxima que ocurre en
zonas especificas de la parte oriental del yacimiento, mientras que a Z = 417.5 los grados de cobre se han
distribuido de manera mas uniforme, con un maximo en los sitios mas ricos de hasta el 5% (ver figura 9). Estos
perfiles son importantes para comprender la distribucion lateral del mineral a varias profundidades y facilitar
la planificacion para la extraccion.
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Figura 9 Perfiles geologicos maximos minimos norte - este

En los graficos "Perfil Z = 412.5" y "Perfil Z = 407.5", se observa la variacion del grado de cobre en funcion
de la elevacion (Z) y las coordenadas Norte (Y). A Z =412.5, el grado de cobre varia entre 2% y 4%, con areas
de mayor concentracion ubicadas en la parte superior del perfil. Al descender a Z = 407.5, la distribucion de
Cu se vuelve més homogénea, pero ain hay areas que muestran concentraciones de hasta 5% (ver figura 10).
Estos perfiles ayudan a entender como cambia la calidad del mineral a medida que nos movemos a mayores
profundidades, proporcionando informacion sobre la continuidad del depdsito.
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Figura 10 Perfiles geoldgicos maximos minimos elevacion - norte

Los graficos “Perfil Z =327.5"y “Perfil Z=1322.5” ilustran larelacion entre la elevacion (Z) y las coordenadas
Este (X), mostrando la variacion del grado de cobre en las regiones laterales del yacimiento. A Z = 327.5, el
grado de cobre presentaun rango del 1% al 3%, con la concentracion mas alta en areas dispersas. El grado de
cobre es menora Z = 322.5, variando entre 0.5% y 2.5% (ver figura 11), lo que indica una disminucién en la
calidad del mineral en esta area. Estos perfiles permiten evaluar la variacion lateral y la continuidad del mineral
en el yacimiento.
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3.4. Optimizaciéon UPL con Lerchs & Grossman

El precio del cobre es de 2,26 US$/Ib base, 0,12 US$/1b costo de venta, 6,15 US$/tonelada métrica (t) costo de
mineria. El factor de conversion es de 2204,62 1b/tonelada métrica (t), asi como un pozo de 100 se sigue para
llevar a cabo la evaluacidon economica. Tales parametros son utiles para la optimizacién economica de la
extraccion minera, haciendo posible obtener una evaluacion precisa de la rentabilidad y operacion.

Tabla 4 Parametros de optimizacion de pit

indice n X ¢ Min. 25% Me 75% Mix.

X 151898 2151049 79.2426 214961.1  215041.1 215106.1 215166.1 215251.1
y 151898 8080921 148.8983 8080667 8080797 8080912 8081042 8081202
z 151898 307.713 39.60693  247.5 272.5 302.5 3375 4225
dim_x 151898 5 0 5 5 5 5 5

dim_y 151898 5 0 5 5 5 5 5

dim z 151898 5 0 5 5 5 5 5
volumen 151898 125 0 125 125 125 125 125
zona 151898 0.283144 0.804035 O 0 0 0 4

au 151898 0.147162 0.473707 O 0 0 0 6.237

ag 151898 5.769075 19.13042 O 0 0 0 235.961
cu 151898 0.243182 0.749505 O 0 0 0 14.994
densidad 151898 2.79797 9.69E-12  2.79797 2.79797 2.79797 2.79797 2.79797
Tonelaje 151898 349.7463 1.23E-09  349.7463 349.7463 349.7463 349.7463 349.7463
Fino 151898 0.85052 2.621366 0 0 0 0 52.44095
Recuperacion 151898 0.117165 0.299352 O 0 0 0 0.91
Cost. Proc. 151898 1.619178 4.15679 0 0 0 0 14.63
Cost. Mina 151898 6.15 1.56E-11 6.15 6.15 6.15 6.15 6.15

Valor Planta 151898 828.5567 9734213  -6578.73  -215094 -2150.94 -2150.94 213616.6
Valor Botadero 151898 -2150.94  3.92E-09  -215094  -2150.94 -2150.94 -2150.94 -2150.94
Valor max 151898 847.4433 9725.661  -215094  -215094 -2150.94 -2150.94 213616.6

La tabla 4, presenta las estadisticas descriptivas de las variables clave del modelo de bloque de beneficios,
incluyendo las coordenadas geoespaciales (X, Y y Z), tonelaje, ley de cobre (Cu), costos de procesamiento y
mineria, y niveles de planta y valores maximos. Las coordenadas geograficas (X e Y) tienen un promedio de
2.51e+05, mientras que Z muestra un promedio de 3.37e+01, con valores que van desde 2.15e+05 hasta
2.15e+05 para X e Y, y desde 2.28e+02 hasta4.22e+02 para Z. El tonelaje tiene una media de 3.49¢+06 y una
desviacion estandar de 1.23e+06, mientras que la ley de cobre varia entre 0.00 y 14.99, con un promedio de
0.24. Los costos de procesamiento promedian 16.1, y los costos de mineria son 6.15, mientras que el promedio
del valor de planta y el valor maximo son 288 y 844, respectivamente. Estas son caracteristicas geoldgicas y
econdmicas del depdsito y son valiosas para maximizar la planificacion minera y las decisiones operativas.
Luego, basandose en los parametros econdmicos ya establecidos (precio base del cobre, costos de ventasy
mineria, entre otros) utilizando el algoritmo de LG, se calcul6 el valor total de cada bloque en el modelo. Los
costos de extraccion, recuperacion y procesamiento de cada bloque se ajustaron iterativamente de acuerdo con
las coordenadas geoespaciales de los bloques (X, Y, Z) para esto. Derivamos el “Valor max” (beneficio
maximo) de cada bloque a través de la formula de valor econdémico combinado. Este es un valor que refleja el
beneficio neto maximo que se puede obtener de la extraccion de minerales en cada posicion espacial dentro
del tajo.

Utilizamos el algoritmo LG para visualizar el pozo final optimizado. Este proceso considera las restricciones
geotécnicas, operativas y econdmicas del yacimiento para identificar el area de extraccion mas rentable. El
modelo asi creado visualiza las zonas viables para la mineria (dreas que generan un beneficio neto positivo),
identificando claramente las areas de mayor valor econémico. El pozo final se configura entonces con
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consideraciones geométricas de manera que se enfatizan para la extraccion las zonas con alto valor de cobre y
bajos costos de extraccion.

Figura 12 Vista de la optimizacion de pit final

o

En la figura 12 se muestra la optimizacion del tajo con LG realizd un beneficio total del tajo de
3,984,588,535.5427316 USD que mostrd un valor maximo significativo generado a partir de la extraccion
optimizada basada en costos y rendimientos. La asignacion de bloques de beneficio para maximizar el
potencial de beneficio total mientras se minimizan los costos operativos y geotécnicos también se muestraen
consecuencia. Los principales resultados de la optimizacion del UPL con el algoritmo de LG se pueden
encontrar en la Tabla 10. Precio del cobre: 2.26 USD/lb; VAN: 239.92 millones de dolares (MUSD). Se estima
que se extraeran 18,393 bloques con un tonelaje total de mineral de 6,295,982.75 toneladas y 106,322.86
toneladas de material de desecho. La profundidad del tajo es de 110 unidades, y el volumen del tajo es de
3,523,275 unidades cubicas. Las extensiones laterales en X ¢ Y son 160.00 y 420.00 unidades,
respectivamente, lo que proporciona informacion sobre la operacién minera mostrado en la tabla 5.

Tabla 5 Resultados de la optimizacidn de pit final

Precio VAN Cantida Tonelaje Tonelaje  Profundida Volumen Extensié6  Extensié
[US$/Ib (MUSD d de total total d total del total del n lateral n lateral
] ) bloques mineral estéril pit final pit final en X enY
a minar (toneladas) (tonelada
s)

Lerchs & 2.26 239.92 18,393  6,295,982.7 106,322.8 110.00 3,523,275.0 160.00 420.00
Grossman 5 6 unidades 0 unidades unidades unidades
n cubicas

La comparacion entre el método de LG y el método Pseudoflow (ver tabla 6) muestra que, aunque se utiliza el
mismo precio del cobre en ambos casos (2.26 US$/1b), Pseudoflow obtiene un mayor tonelaje de mineral
(70,345,500 toneladas) y tonelaje de desecho (117,691,000 toneladas) que LG (6,295,982.75 y 106,322.86
toneladas, respectivamente). Sin embargo, Pseudoflow produce un VAN ligeramente inferior (232.95 MUSD)
que LG (239.92 MUSD); Pseudoflow puede optimizar la cantidad de material extraido, pero LG ofrece una
mejor eficiencia econdmica en valor neto.

Tabla 6 Comparativa literaria entre LG vs Pseudoflow

Método Precio VAN (MUSD) Tonelaje Tonelaje total
(US$/1b) total mineral estéril
(toneladas) (toneladas)
Lerchs & 2.26 239.92 6295982.75 106322.86
Grossmann
Pseudoflow 2.26 232.95 70 345 500.0 117691 000.0
[83]

4. Discusion

El algoritmo de LG sigue siendo ampliamente reconocido en la literatura como el estandar para la optimizacién
del UPL. Se destaca por su capacidad para maximizar el VAN al considerar las restricciones geotécnicas y
economicas del yacimiento. Estudios previos, como [84, 85] han confirmado la efectividad de LG en la
determinacion de limites dptimos de extraccion, permitiendo soluciones robustas y rentables en proyectos
mineros. Sin embargo, el desafio del alto computo requerido por LG persiste, especialmente en grandes
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yacimientos o cuando se deben considerar multiples restricciones geotécnicas, lo que limita la velocidad de
toma de decisiones. El estduio realizado por [86] se aplico el algoritmo de LG para identificar el UPL de un
depdsito de cobre en La Libertad, resultando en un tajo final de 62,220 bloques y una ley de cobre de 0% a
1.46%. El valor del tajo calculado basado en los escenarios alternativos logré un VAN de 6.6 mil millones de
USD. En comparacion, nuestros resultados obtenidos usando LG arrojaron un VAN de 239.92 MUSD y un
precio del cobre de 2.26 USD/Ib, que son ligeramente inferiores a los de Castro Solis. En cuanto al volumen
extraido, nuestro tajo final mostrd 18,393 bloques y 6,295,982.75 toneladas de mineral, consistente con el
tonelaje de mineral para el estudio, mientras que el tonelaje de desecho total de la mina fue de 106,322.86
toneladas, comparable con el valor reportado. La profundidad total del tajo final en ambos experimentos es de
110.00, y el volumen total del tajo final es de 3,523,275.00 unidades ctibicas. Abarcando otros putos la
comparar resultados obtenido por [83] sobre el algoritmo Pseudoflow mostrdé un mayor tonelaje de mineral
(70,345,500 toneladas) y desecho (117,691,000 toneladas) en comparacion con LG (6,295,982.75 toneladas
de mineral y 106,322.86 toneladas de desecho), lo que subraya la capacidad del algoritmo para optimizar la
extraccion de material, pero a un costo en términos de VAN (232.95 MUSD frente a 239.92 MUSD con LG).
Desde una perspectiva practica, los resultados obtenidos con LG sugieren que este algoritmo es ideal cuando
la rentabilidad econdémica es la principal prioridad. La capacidad de LG para maximizar el VAN en
comparacion con Pseudoflow es particularmente valiosa en proyectos donde los margenes de ganancia son
ajustados y los costos de remocidén de material de desecho son altos. En este sentido, LG sigue siendo una
herramienta eficiente y confiable para la optimizacion economica, especialmente en yacimientos donde la
prioridad es maximizar el valor neto y controlar los costos operativos. Este enfoque se alinea con estudios
previos, como el de Keshtel et al. (2023), que también destacan la efectividad de LG en maximizar la
rentabilidad en contextos mineros con un enfoque econdémico estricto. Por otro lado, Pseudoflow ha
demostrado ser mas adecuado en operaciones donde la extraccion de grandes volumenes de material es mas
relevante que la optimizacion del valor econdomico. Aunque este algoritmo permite una mayor extraccion de
material, los resultados obtenidos en esta investigacion, asi como los reportados por Sim et al. (2014), indican
que el VAN puede ser menor debido a la mayor cantidad de material de desecho removido. Esto resalta la
necesidad de evaluar cuidadosamente las condiciones especificas de cada proyecto minero. Si el volumen de
material extraido es una prioridad, como en ciertos yacimientos de cobre o minerales industriales, Pseudoflow
podria ser mas adecuado, pero si la rentabilidad economica es el objetivo principal, LG sigue siendo la opcion
preferida.

4. Conflicto de interés
El autor afirma no tener conflicto de interés.

5. Conclusion

El resultado de este estudio mostrd que el algoritmo de LG sigue siendo muy util para el UPL en la mineria a
cielo abierto, y aumenta significativamente la rentabilidad economica de la operacion. Al llevar a cabo el
modelo de bloques sintético con 151,898 bloques y ajustar los factores geotécnicos a la economia, se logré un
VAN de 239.92 millones de USD y se produjo un tonelaje maximo de 6,295,982.75 toneladas de mineral y
106,322.86 toneladas de material de desecho. Los resultados confirman que LG funciona bien como
herramienta de optimizacion del tajo final, enfatizando tanto las consideraciones operativas como econdémicas
sobre otros algoritmos, como Pseudoflow, que pueden lograr la optimizacion del volumen de mineral extraido,
pero resultan en un VAN ligeramente inferior.

El presente trabajo afiade pruebas empiricas a los estudios ya publicados sobre optimizacién minera al
proporcionar evidencia de efectividad para escenarios de planificacion minera realistas del algoritmo LG.
También refleja la necesidad de incorporar perspectivas geotécnicasy econdmicas en la toma de decisiones en
cuanto al disefio del tajo, ayudando asi en el desarrollo de procesos mineros sostenibles y rentables. La
incorporacion de este algoritmo en entornos mineros puede utilizarse para mejorar la productividad operativa
y aumentar la rentabilidad.

No obstante, existen algunas limitaciones (ya que hay un modelo de bloques sintético que no es representativo
de depositos minerales genuinos) en este trabajo. Trabajos futuros pueden involucrar la combinacion de datos
de depdsitos activos mas realistas y la mejora de algoritmos hibridos (el uso de LG mezclado con métodos de
IA) en el proceso de optimizacion. De manera similar, los modelos estocasticos y las simulaciones de Monte
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Carlo podrian proporcionar una descripcion més completa de la incertidumbre en las decisiones de
planificacion minera.
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