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Resumen 

La optimización del límite final del tajo (UPL) es una etapa desisiva al momento de planficar la explotacion de minas a 
tajo abierto, debido a que afecta directamente la rentabilidad del proyecto. Este estudio busca determinar el UPL usando 
el algoritmo de Lerchs y Grossmann (LG). Se maximiza el Valor Actual Neto (VAN) a través de una implementación 
computacional reproducible en Python. La metodología se basa en un modelo de bloques sintético que incluye 151,898 
bloques de 5 × 5 × 5 m. Este modelo tiene información espacial (X, Y, Z), leyes de cobre variables, una densidad constante 
y parámetros económicos definidos. El análisis se realizó en Google Colab con Python 3.12.12. Se consideró un precio 

del cobre de 2.26 USD/lb, un costo de venta de 0.12 USD/lb, un costo de minado de 6.15 USD/t y supuestos económicos 
constantes, sin descuento temporal, para un escenario de planificación de tajo final. Los resultados indican que la 
optimización mediante LG crea un tajo final con 18,393 bloques, un tonelaje de mineral de 6,295,982.75 t, 106,322.86 t 
de material estéril, una profundidad máxima de 110 m y un volumen total de 3,523,275 m³. Esto resulta en un VAN de 
239.92 millones de USD. El algoritmo de LG es un método sólido y eficiente para optimizar el UPL. Ofrece soluciones 
económicamente óptimas y técnicamente consistentes para estudios de planificación minera estratégica.  

Palabras claves: Lerchs & Grossmann, modelo de bloques, planificación minera, limite final de pit 
 

Abstract 

 
The optimization of the ultimate pit limit (UPL) is a critical stage in open-pit mine planning, as it directly affects project 

profitability. This study aims to determine the UPL using the Lerchs and Grossmann (LG) algorithm. Net Present Value 
(NPV) is maximized through a reproducible computational implementation in Python. The methodology is based on a 
synthetic block model composed of 151,898 blocks with dimensions of 5 × 5 × 5 m. The model includes spatial 
information (X, Y, Z), variable copper grades, constant density, and defined economic parameters. The analysis was 
carried out in Google Colab using Python 3.12.12. A copper price of USD 2.26/lb, a selling cost of USD 0.12/lb, a mining 
cost of USD 6.15/t, and constant economic assumptions without time discounting were considered for a final pit planning 

scenario. 
The results indicate that optimization using the LG algorithm generates a final pit containing 18,393 blocks, with an ore 
tonnage of 6,295,982.75 t, 106,322.86 t of waste material, a maximum depth of 110 m, and a total volume of 3,523,275 
m³. This configuration yields a Net Present Value of USD 239.92 million. The LG algorithm proves to be a robust and 
efficient method for UPL optimization, providing economically optimal and technically consistent solutions for strategic 
mine planning studies. 

Keywords: Lerchs & Grossmann, block model, mine planning, ultimate pit limit  

1. Introducción  

La planificación minera es el proceso fundamental donde se diseñan y organizan las operaciones de extracción 

de un yacimiento minera [1, 2], con el objetivo de maximizar los beneficios económicos [3, 4], mientras se 

minimizan los riesgos geotécnicos y operativos [5, 6]. En la minería a cielo abierto, una de las decisiones más 
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críticas en la fase de planificación es la definición del UPL [7, 8], que determina la geometría máxima 

explotable del yacimiento [9], delimitando el área que debe ser extraída [10], para asegurar la rentabilidad 

económica de la operación [11, 12]. La UPL se optimiza utilizando una variedad de métodos matemáticos y 

algorítmicos [13, 14], siendo el más destacado el modelo propuesto por Lerchs y Grossmann en 1965 [15, 16]. 

A partir de ahí, este método representa los bloques geológicos como nodos [17], así como también las 

relaciones de precedencia [18]. De acuerdo con restricciones geomecánicas como los ángulos de talud [19], 

arcos dirigidos [20], convirtiendo así el problema en uno de corte mínimo/flujo máximo [21, 22].  

El modelo de Lerchs-Grossmann es un algoritmo bien conocido y ampliamente practicado [21], durante más 

de cinco décadas en la industria minera [23], que es estable a los diferentes escenarios [24], sin embargo, con 

algunas desventajas en recursos computacionales [25, 26], especialmente en modelos de bloques grandes [27]. 

A parte de L&G, existente otros algoritmos como Pseudoflow, introducido por Hochbaum en 1998 [28], es 

una extensión contemporánea del enfoque clásico de LG (Lerchs-Grossmann) para optimizar el UPL [29]. En 

marcado contraste con la solución tradicional, Pseudoflow aborda el problema del corte mínimo utilizando 

estructuras de datos avanzadas [30],  mejora considerablemente la escalabilidad mediante la reducción del 

tiempo de cálculo [31]. Pseudoflow ha demostrado sus propios excelentes resultados similares a los de Lerchs-

Grossmann en varios estudios. Con todas las capacidades de procesamiento de datos de Pseudoflow en 

términos de procesamiento rápido de volúmenes [32], el sistema es uno de los más populares en el sector 

minero según la planificación de minas a gran escala. Ahora, el método de Lerchs-Grossmann sigue siendo 

comúnmente utilizado y confiable [33]. 

En la optimización de UPL, el análisis económico es uno de los pasos más importantes [34], porque la 

necesidad de encontrar la manera más eficiente de extraer recursos [35], no solo es relevante para la 

optimización de UPL, sino también para su valor neto [36]. En este tipo de análisis, se evalúa el valor 

económico de cada bloque en función de variables que incluyen el precio del mineral [37], los costos operativos 

(incluidos los costos de minería, procesamiento y transporte) [38], y el factor de recuperación [39]. En realidad, 

esto significa que se debe encontrar el VAN para cada bloque [40], y la extracción de ese bloque debe 

optimizarse para lograr el mayor beneficio económico posible [41], considerando los costos asociados con la 

extracción de material de desecho no rentable [42]. 

En algunos estudios emplean la ayuda de MineSigth, el tajo final fue optimizado utilizando el método de 

Lerchs-Grossman [43], y se aseguró tanto la rentabilidad como la seguridad geotécnica para el depósito VMS 

de Bisha. En otro estudio, comparan si el método de LG o la Secuenciación Directa de Bloques (DBS) era 

mejor para optimizar el tajo final, encontrando que DBS genera más rentabilidad (mayor VAN) y LG es más 

efectivo en reducir la relación estéril/mineral [44]. Y finalmente, el tajo final a menudo se optimiza utilizando 

el algoritmo de Lerchs–Grossmann [45], pero los autores sugieren una mejora que permite pendientes variables 

y una optimización específica de la geología. También se propuso una mejora del algoritmo de Lerchs–

Grossmann para pendientes más complejas (sin reconstruir el modelo de bloques), lo que lleva a una 

optimización más realista y eficiente en el trabajo [46]. Actualmente, Lerchs–Grossman domina la 

optimización del tajo final, pero el pseudo-flujo, la inteligencia artificial y las herramientas estocásticas son el 

futuro de esta optimización [47]. Los estudios de comparación LG vs DBS [44] pueden ser útiles en el 

momento de evaluar la eficiencia entre algoritmos. Todavía existe unas deficiencias en la optimización del 

UPL para la minería a cielo abierto, especialmente considerando las restricciones geotécnicas, económicas y 

operativas en un contexto de planificación real. El objetivo del trabajo actual es optimizar la delimitación del 

tajo final utilizando el algoritmo de LG en Python, con el propósito de maximizar el VAN y optimizar la 

eficiencia computacional, considerando las limitaciones geotécnicas del campo.  

En general, este documento se llevó a cabo para analizar cómo el algoritmo LG maximiza eficientemente el 

UPL en una mina a cielo abierto y también para evaluar otros valores técnicos (geometría del tajo y tonelajes) 

y económicos (valor total del tajo y VAN). Esta investigación está organizada en cuatro secciones. La primera 

sección se centra en aspectos teóricos para la optimización del tajo, incluyendo el enfoque algorítmico LG, 

mientras que la segunda parte describe la metodología utilizada y sus criterios de evaluación; la tercera parte 

describe los resultados y la discusión; y la cuarta parte concluye con conclusiones, limitaciones y direcciones 

futuras. 
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2. Metodología (Material y métodos) 

2.1. Procedimiento de la investigación 

El diagrama de flujo mostrado en la figura 1 organiza sistemáticamente el diseño metodológico para la 

optimización del UPL basado en el algoritmo de LG. El procedimiento consiste en la recopilación y limpieza 

de los datos necesarios, la construcción del problema UPL mediante la generación de precedencias y la 

construcción del grafo acíclico dirigido (DAG), y la ejecución del algoritmo LG bajo una función económica 

común. Los resultados obtenidos se miden mediante métricas técnicas como la geometría del tajo y las 

toneladas, y métricas económicas, como el valor total del tajo y el VAN. Este método permite una evaluación 

objetiva del rendimiento del algoritmo LG en la optimización del tajo final y su aplicabilidad en condiciones 

reales de minería. 
 

 
 

Figura 1 Flujograma de procedimiento  
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2.2. Datos y fuentes para la investigación  
 

2.2.1. Origen de los datos 

Los datos fueron generados a partir del modelo de bloques sintético preparado para estudios de investigación 

en la planificación y optimización del tajo final. Como paso preliminar, esto es ampliamente adoptado hoy en 

día y en textos de modelado de recursos [48, 49]. Los datos de investigación incluyen modelos de bloques, 

valor económico de los bloques y parámetros geotécnicos [50]. La geometría espacial del depósito en un 

sistema tridimensional regular con coordenadas (X, Y, Z), volumen de bloque, leyes y densidad de masa rocosa 

[51], se modelada y definida por el modelo de bloques. El valor económico por bloque se determina a partir 

de la siguiente función [52, 53]. 

 

𝑉𝑎𝑙𝑜𝑟 = (𝐶𝑢𝑡𝑜𝑛 × 𝑅𝑒𝑐𝑢𝑝 × 𝑃𝑟𝑒𝑐𝑖𝑜)

− (𝐶𝑚𝑖𝑛𝑎 + 𝐶𝑝𝑙𝑎𝑛𝑡𝑎 ) 
(1) 

 

El 𝐶𝑢𝑡𝑜𝑛  es la cantidad de Cu contenida en el bloque, Recup es el porcentaje de recuperación metalúrgica, el 

precio de venta del metal, C_(mina) y los costos operativos de C_planta, que incluyen extracción y 

procesamiento. Los parámetros geotécnicos nos permiten definir dominios geológicos/geotécnicos típicos 

(litología, roca, parámetros mecánicos como densidad, resistencia, etc.) [54], necesarios para modelar 

precedencias, estabilidad de taludes y diseño seguro del tajo final, un requisito fundamental en la planificación 

de minas a cielo abierto [55]. 

2.2.2. Dimensiones del dataset 

Existen 151,898 bloques, cada uno de 5x5x5 metros, las coordenadas espaciales Este, Norte y Elevación de 

los bloques que permiten ubicar cada bloque en un espacio tridimensional, con grados variables de Cu de 

0.001% a 14.126% (densidad de roca de 2.7 g/cm³ a 2.77 g/cm³), otros parámetros implícitos de volumen de 

bloque y tonelajes que son dados por el tamaño y la densidad del bloque, parámetros geotécnicos que dividen 

el tajo en cuatro dominios geotécnicos principales en N, E, O y S, y el valor económico del bloque, derivado 

de la ecuación anterior. Esta estructura de datos (bloques discretos con atributos metalúrgicos, geológicos, 

espaciales y económicos) corresponde con las directrices de modelado de recursos minerales [56]. 

2.2.3. Tipos de datos y preprocesamiento  

Tenemos valores numéricos continuos basados en los datos que utilizamos, como la ley, la densidad, los 

valores económicos. Es categórico y conocemos los dominios, el tipo de roca o material, el espacio 3D donde 

se encuentran las coordenadas X, Y, Z [57]. Estos procesos incluyen: 

• Eliminación de duplicados para evitar repeticiones o bloques vagos, asegurando la calidad del conjunto 

de datos y su consideración.  

• Detección de discrepancias y corrección de valores atípicos y falsos en variables como la ley, la 

densidad y el tonelaje, para evitar que datos aberrantes contribuyan a la distorsión de los cálculos 

posteriores.  

• Homologación de unidades (densidad en t/m³, volumen en m³, toneladas, ley en %, valores en USD), 

para asegurar la consistencia entre todos los datos. 

2.3. Procesamiento de datos 

Una vez que el conjunto de datos se ha recopilado, limpiado y validado, se puede realizar el siguiente 

procesamiento para un caso de uso futuro 

2.3.1. Determinación de tonelaje por bloque 

Se utilizan procedimientos estándar de estimación de recursos [58], se determina: 

 

𝑇𝑜𝑛𝑏𝑙𝑜𝑞𝑢𝑒 = 𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑 × 𝑉𝑜𝑙𝑢𝑚𝑒𝑛 (2) 
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Donde el volumen del bloque tendrá los incrementos espaciales fijos (Δx * Δy * Δz) que se ajustan a un modelo 

de bloque cúbico uniforme [59]. 

2.3.2. Determinación del contenido metálico por bloque 

Si el porcentaje % de Cu, el contenido en toneladas se calcula como: 

 

𝐶𝑢𝑡𝑜𝑛 = 𝑇𝑜𝑛𝑏𝑙𝑜𝑞𝑢𝑒 ×
𝐶𝑢  

100
 (3) 

 

Este método de multiplicar el tonelaje por el grado es el proceso aceptado en modelos de bloques como el paso 

de estimación para el metal contenido [60].  

2.3.3. Integración de valor económico 

El valor económico por bloque calculado externamente se fusiona con el modelo principal tomando las 

coordenadas espaciales en las columnas X, Y, Z como claves [61]. Esto resulta en un modelo consolidado con 

información espacial + geo-metalúrgica + económica, que se introduce en algoritmos de optimización [62, 63]. 

2.3.4. Asignación de dominios geotécnicos 

Esta asignación crea espacio para la inclusión de restricciones geotécnicas en un modelo y especifica 

precedencias/inclinaciones coherentes [64]. Estudios en planificación de minas a cielo abierto sugieren que los 

dominios geológicos/geotécnicos se incluyen en un modelo de bloques [65, 66, 67]. 

2.3.5. Generación de precedencias 

Una vez que tanto el modelo de bloques como el dominio geotécnico están especificados, la creación de 

precedencias es una preocupación importante. Es una situación en la que solo se va a trabajar en un bloque si 

ya se ha extraído con el otro, una lógica de estabilidad/inclinación [68, 69]. Como se demuestra en la figura 2.   

 
Figura 2 Precedencias entre bloques de minado 

Tal precedencia es necesaria en la formulación de restricciones geotécnicas para un problema de UPL [70]. 

Los estudios de planificación clásicos adoptaron enfoques de precedencia similares para generar pozos finales 

[71, 72].  

2.3.6. Construcción del grafo UPL 

Con bloques como nodos y precedencias como aristas dirigidas, se forma un DAG [73]. Como se muestra en 

la figura 3.  
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Figura 3 Grafo dirigido acíclico 

Este gráfico representa la estructura jerárquica de los bloques/minas a extraer y es una entrada crucial para los 

algoritmos de optimización (corte máximo / flujo mínimo) [74, 75]. El soporte para este esquema de gráfico 

para modelar los pozos finales está cubierto en la literatura de optimización minera [76].  

2.4. Modelo utilizado 

En el estudio, se optimizará el pit final con el algoritmo de Lerchs & Grossmann (1965).   

2.4.1. Algoritmo Lerchs & Grossmann (1965) 

El método de LG es la base teórica del diseño de pozos finales en minería a cielo abierto y ha sido el estándar 

de la industria durante más de cinco décadas [77, 78]. Finalmente, se propusieron demostrar que el problema 

del límite eventual del pozo puede formularse matemáticamente como un problema de cierre máximo en un 

gráfico dirigido, equivalente, a través de una red de flujo, a un problema de corte mínimo [79, 80]. Aquí, 

modelamos cada bloque como un nodo con un peso económico 𝑤𝑖  calculado a partir del valor neto del mineral 

menos el costo de extracción. Las precedencias geotécnicas se dan como aristas dirigidas, es decir, si un bloque 

i depende de otro bloque 𝑗, entonces  

 
(𝑖 𝜖 𝑆)  ⇒  (𝑗  𝜖 𝑆) (4) 

 

Donde S son los bloques elegidos en la solución.  

El objetivo se expresa como:  

 
𝑚𝑎𝑥

𝑆 ⊆ 𝑉
∑ 𝑤𝑖

𝑖𝜖𝑆

 (5) 

 

 

Sujeto a que S sea un conjunto cerrado, con respecto a las precedencias. LG propusieron que se puede emplear 

un gráfico de flujo con capacidad positiva y negativa en el que el valor económico de cada bloque se añade 

como un arco a la fuente o al sumidero. El corte mínimo obtenido muestra con precisión el pozo óptimo [81, 

82].   

2.5. Justificación técnica de modelo 

Según los requisitos técnicos, el algoritmo de LG se está utilizando como referencia para la optimización del 

límite UPL, ya que ha demostrado su estabilidad histórica y cuenta con amplia evidencia experimental en 

entornos industriales. El método propuesto para la aplicación en minería a cielo abierto también ha sido 

probado en diferentes contextos y los resultados indican que se destaca sobre otros en la optimización de los 

tajos ideales bajo escenarios realistas de planificación minera. El algoritmo LG es especialmente adecuado 

para problemas de optimización basados en la optimización geotécnica y económica, es decir, teniendo en 
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cuenta las consideraciones operativas y geomecánicas para la demarcación del tajo, con el fin de proporcionar 

resultados sólidos. El método LG ejecuta un algoritmo definido para la estructura de entrada, a saber, modelo 

de bloques, precedencias, DAG, ya que las entradas son conocidas y el proceso se ejecuta. 

2.6. Métricas de evaluación 

Los puntos donde se comparar se mostrará, entre ambos algoritmos se muestra en la sigue tabla 1.  

 
Tabla 1 Métricas empleadas para la evaluación UPL  

Dimensión Métricas Propósito / Qué evalúa 

Económica Valor total del pit (VT), Ley media, 
VAN 

Rentabilidad económica de la 
solución, eficacia en maximizar el 
valor. 

Operacional Tonelaje mineral, Tonelaje estéril Eficiencia y factibilidad de 

extracción, balance entre material 
mineralizado y estéril. 

Geométrica Profundidad, Volumen, Extensión 

lateral 

Forma, tamaño y configuración del 

pit final, ajustado a restricciones 

geotécnicas. 
 

2.7. Herramientas empleadas 

Para este tipo de estudio se empelo el lenguaje de programación Python, mediante la plataforma Google Colab 

con la versión 3.12.12. Esto se hizo por su eficiencia en la computación y su amplia gama de bibliotecas 

científicas para el análisis de datos, la optimización y el modelado computacional. Python facilitó todo el 

proceso del modelo de bloques. Esto incluyó la limpieza y validación de datos, la generación y análisis del 

DAG para definir las precedencias mineras, la implementación de algoritmos de optimización para evaluar la 

economía y determinar el límite final del tajo, y la visualización de resultados en un entorno reproducible.  

3. Resultados 

3.1. Análisis estadístico descriptivo de las variables del modelo de bloques 

El análisis estadístico descriptivo es fundamental para comprender la estructura general y la distribución de 

los datos de cualquier estudio cuantitativo. Aquí se proporcionan las estadísticas descriptivas para las 

principales variables de un modelo de bloques aplicado a la minería. Este análisis implica calcular la 

centralidad, la dispersión y el rango de las variables en estudio. Con este diseño, el objetivo es descubrir 

patrones y comportamientos relevantes para afectar la optimización de los recursos mineros, con un enfoque 

en la delimitación del UPL en las operaciones mineras. Las estadísticas descriptivas para las variables más 

relevantes del modelo de bloques se resumen en la tabla a continuación. 

 

Tabla 2 Estadísticos Descriptivos de las Variables del Modelo de Bloques  

Índice n X̅ σ  Mín. 25% Me 75% Máx. 

x 151898 215104.95 79.24 214961.13 215041.13 215106.13 215166.13 215251.13 

y 151898 8080920.75 148.90 8080666.50 8080796.50 8080911.50 8081041.50 8081201.50 

z 151898 307.71 39.61 247.50 272.50 302.50 337.50 422.50 

Dim_x 151898 5.00 0.00 5.00 5.00 5.00 5.00 5.00 

Dim_y 151898 5.00 0.00 5.00 5.00 5.00 5.00 5.00 

Dim_z 151898 5.00 0.00 5.00 5.00 5.00 5.00 5.00 

volumen 151898 125.00 0.00 125.00 125.00 125.00 125.00 125.00 

zona 151898 0.28 0.80 0.00 0.00 0.00 0.00 4.00 

au 151898 0.15 0.47 0.00 0.00 0.00 0.00 6.24 
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ag 151898 5.77 19.13 0.00 0.00 0.00 0.00 235.96 

cu 151898 0.24 0.75 0.00 0.00 0.00 0.00 14.99 

densidad 151898 2.80 0.00 2.80 2.80 2.80 2.80 2.80 

 

La tabla 2 resume las estadísticas descriptivas básicas para un conjunto de variables, que son determinantes en 

el análisis de bloques. Se ilustra de la siguiente manera: el número de observaciones (conteo), el promedio, la 

desviación estándar, el mínimo, el máximo, los percentiles del 25%, 50% (mediana) y 75% para cada variable. 

Las variables definidas incluyen coordenadas espaciales (x, y, z), dimensiones del bloque (dim_x, dim_y, 

dim_z), volumen del bloque, zonas geológicas identificadas (zona) y concentraciones de metales de interés 

económico, como oro (au), plata (ag) y cobre (cu), así como la densidad de los bloques. Estas cifras 

proporcionan una impresión inicial fundamental de la variabilidad y distribución en los datos que se analizarán 

y optimizarán para la minería y para validar modelos predictivos. 

3.2. Distribución de dominios geotécnicos en zonas 

La optimización del UPL es un elemento clave para especificar las áreas adecuadas, es decir, dónde deben 

extraerse los recursos minerales, y la caracterización del dominio geológico es crucial en esto. Los dominios 

geológicos, definidos por su código de zona, se presentan en la tabla 3 para reflejar el número de bloques, 

tonelaje, ley media de cobre (Cu) y coordenadas geoespaciales en las direcciones z, x e y. Esta información es 

fundamental para desarrollar un modelo de optimización adecuado para la estimación precisa de los recursos 

potenciales de extracción y para las restricciones geotécnicas y operativas relacionadas con ellos.  

Tabla 3 Distribución de bloques de acuerdo con las zonas litológicas   

Zona N°Bloq. Tonelaje X̅Cu z_min z_max x_min x_max y_min y_max 

0 131704 46062980.11 0.00 247.5 412.5 214961.13 215251.13 8080666.5 8081201.5 

1 6587 2303778.55 1.30 292.5 382.5 215066.13 215206.13 8080741.5 8081106.5 

2 6059 2119112.53 1.65 332.5 402.5 215056.13 215206.13 8080741.5 8081111.5 

3 5888 2059305.92 2.33 337.5 417.5 215051.13 215211.13 8080741.5 8081111.5 

4 1660 580578.78 2.80 352.5 422.5 215061.13 215196.13 8080746.5 8081096.5 

 

Para examinar la robustez del modelo, seleccionamos algunos parámetros importantes como el tonelaje total 

(por ejemplo, 46.062 millones toneladas en la zona 0) y la ley media de cobre (Cu) (por ejemplo, 1.298086 en 

la zona 1). Estos valores son vitales para evaluar la viabilidad económica de la extracción. También probamos 

la robustez del modelo observando la sensibilidad de los resultados a las variaciones en estos parámetros (para 

validar que el modelo de optimización tiene sentido bajo diversas condiciones geológicas y económicas). 

3.3. Distribución de Cobre (Cu) en el Modelo de Bloques 

Es un paso necesario analizar la distribución de la concentración de cobre (Cu) en la evaluación y optimización 

de las operaciones mineras. Decidir sobre la explotación de recursos solo es factible con una comprensión de 

la distribución de los niveles de Cu en el modelo de bloques. Los histogramas a continuación presentan la 

distribución de las concentraciones de cobre, completas y después de eliminar los valores de 0% de Cu, 

mostrando cómo varía este mineral en los bloques modelados. Comprender esto es esencial para modificar las 

estrategias mineras y lograr una extracción optimizada de recursos minerales valiosos. 
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Figura 4 Distribución de las concentraciones de Cu 

La figura 4 muestra dos histogramas de concentraciones de cobre (Cu) en el modelo de bloques. El primer 

histograma, a la izquierda, presenta los datos excluyendo bloques con 0% de Cu. La concentración de Cu en 

esta muestra está principalmente entre 0% y 2%, con un valor máximo cercano al 6%, lo que indica una 

mineralización moderada en las áreas evaluadas. El segundo histograma, a la derecha, incluye todos los 

bloques del modelo y exhibe una acumulación notable de datos en 0% de Cu, lo que distorsiona la distribución 

general y crea un sesgo hacia valores cercanos a cero. La diferencia en la distribución resalta la influencia de 

los bloques no mineralizados, cuyos valores representan más del 60% del total de datos. Este análisis demuestra 

la necesidad de separar los bloques no mineralizados para obtener una representación más precisa de la 

mineralización real. 

 

3.4. Curva tonelaje vs Ley 

El curva tonelaje ley que te refieres, muestra la relación entre el tonelaje (número de toneladas de mineral 

extraído) y su grado promedio de cobre (Cu) en varios valores de ley de corte. Los gráficos de este tipo son 

críticos para evaluar cómo varían estos dos parámetros a medida que cambia la restricción mínima de ley para 

la extracción. Tonelaje: indica el total de mineral extraído en toneladas, lo cual dependerá del valor de la ley 

de corte. Grado promedio: muestra el grado promedio de cobre (Cu) asociado con cada valor de t onelaje, 

ajustado según la ley de corte (ver figura 5). 
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Figura 5 Curva tonelaje vs ley 

Al cambiar el grado de corte, el gráfico "Curva de Tonnage vs Grado de Corte" indica que existe una relación 

inversa entre el tonelaje de mineral y el grado promedio de cobre (Cu). Aumentar el grado de corte hace que 

el tonelaje extraído sea menor, optando solo por los bloques que acumulan mayores contenidos de cobre. 

Específicamente, con un grado de corte de 0.0 el tonelaje es de 7.06e+06 toneladas con un grado de 1.829201, 

mientras que con un grado de corte de 1.0 el tonelaje cae a 5.56e+06 toneladas y el grado de cobre sube a 

2.181445. El valor extraído en este diagrama representa un equilibrio entre la cantidad de mineral extraído y 

su grado, lo cual es crítico en la optimización económica y operativa de la planificación minera.  

3.5. Visualización 3D de la Distribución de Cobre (Cu) 

La visualización tridimensional es un medio importante para interpretar la distribución espacial de las 

concentraciones de cobre (Cu) en el modelo de bloques. A través de esta visualización 3D, se pueden 

determinar de manera más eficiente las regiones de alta mineralización y analizar su distribución a lo largo de 

las coordenadas espaciales (x, y, z). La siguiente figura muestra una representación 3D de la concentración de 

cobre en el modelo, proporcionando una percepción real de la variabilidad espacial en  la mina. 

 

 
Figura 6 Visualización 3D de la distribución de Cu 

La distribución de las concentraciones de cobre (Cu) en el modelo de bloques se muestra en el gráfico 3D de 

la figura 6. Las coordenadas espaciales horizontales del modelo están representadas por los ejes X e Y, y el eje 

Z representa la elevación o profundidad de los bloques en esta visualización. Una paleta de colores que 

representa la concentración de Cu muestra los valores más altos de Cu en rojo y los valores más bajos en azul. 

Algunas regiones con mayores concentraciones de cobre en forma visual también se destacan, indicando 

posibles ubicaciones de extracción. Con esta visualización 3D, los patrones geoespaciales pueden reconocerse 

más fácilmente; y las decisiones sobre cómo aprovechar mejor los recursos mineros pueden tomarse con mayor 

facilidad. 

3.4. Visualización 3D de la Distribución de Cobre (Cu) en relación a cada zona 

Los dominios geológicos son cruciales para optimizar el UPL al organizarlos en categorías geológicas dentro 

del espacio. El gráfico tridimensional proporcionado en este documento demuestra la distribución de zonas de 

tipo geológico (zona 1, zona 2, zona 3, zona 4, zona 5) en el yacimiento y permite el análisis de diversas 

propiedades geológicas (tonelaje, ley de cobre, etc.). Esta información es crucial para la planificación minera 

y la toma de decisiones sobre la viabilidad de la extracción, que puede integrarse con modelos de optimización 

de tajos. 
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Figura 7 Visualización de las zonas 

 

 
Figura 8 Visualización de las zonas vista perfil 

La figura 7 y 8 es una ilustración de la organización espacial de los dominios geológicos dentro del depósito 

y los diferentes colores dados por el tipo de zona. Hay cinco zonas: Zona 1, Zona 2, Zona 3, Zona 4 y Zona 5, 

lo que permite determinar la variabilidad de las características geológicas utilizando las coordenadas X, Y y 

Z. La visualización de la representación espacial de los bloques es vital para diseñar un diseño de pozo óptimo 

y tomar una decisión minera. 

3.4. Descripción de perfiles geológicos  

Los gráficos con "Perfil Z = 422.5" y "Perfil Z = 417.5" muestran la distribución del grado de cobre (Cu) a 

diferentes profundidades, indicado por el eje X para las coordenadas Este y el eje Y para las coordenadas 

Norte. A Z = 422.5, los niveles de cobre varían del 1% al 5%, con una concentración máxima que ocurre en 

zonas específicas de la parte oriental del yacimiento, mientras que a Z = 417.5 los grados de cobre se han 

distribuido de manera más uniforme, con un máximo en los sitios más ricos de hasta el 5% (ver figura 9). Estos 

perfiles son importantes para comprender la distribución lateral del mineral a varias profundidades y facilitar 

la planificación para la extracción. 



 

 Ortiz E. Journal of Advanced Mining Modeling, Publicado en línea  

 

   

 

 
Figura 9 Perfiles geológicos máximos mínimos norte - este 

En los gráficos "Perfil Z = 412.5" y "Perfil Z = 407.5", se observa la variación del grado de cobre en función 

de la elevación (Z) y las coordenadas Norte (Y). A Z = 412.5, el grado de cobre varía entre 2% y 4%, con áreas 

de mayor concentración ubicadas en la parte superior del perfil. Al descender a Z = 407.5, la distribución de 

Cu se vuelve más homogénea, pero aún hay áreas que muestran concentraciones de hasta 5% (ver figura 10). 

Estos perfiles ayudan a entender cómo cambia la calidad del mineral a medida que nos movemos a mayores 

profundidades, proporcionando información sobre la continuidad del depósito. 
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Figura 10 Perfiles geológicos máximos mínimos elevación - norte  

Los gráficos “Perfil Z = 327.5” y “Perfil Z = 322.5” ilustran la relación entre la elevación (Z) y las coordenadas 

Este (X), mostrando la variación del grado de cobre en las regiones laterales del yacimiento. A Z = 327.5, el 

grado de cobre presenta un rango del 1% al 3%, con la concentración más alta en áreas dispersas. El grado de 

cobre es menor a Z = 322.5, variando entre 0.5% y 2.5% (ver figura 11), lo que indica una disminución en la 

calidad del mineral en esta área. Estos perfiles permiten evaluar la variación lateral y la continuidad del mineral 

en el yacimiento. 

 

 
Figura 11 Perfiles geológicos máximos mínimos elevación – este 
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3.4. Optimización UPL con Lerchs & Grossman 

El precio del cobre es de 2,26 US$/lb base, 0,12 US$/lb costo de venta, 6,15 US$/tonelada métrica (t) costo de 

minería. El factor de conversión es de 2204,62 lb/tonelada métrica (t), así como un pozo de 100 se sigue para 

llevar a cabo la evaluación económica. Tales parámetros son útiles para la optimización económica de la 

extracción minera, haciendo posible obtener una evaluación precisa de la rentabilidad y operación.  

Tabla 4 Parámetros de optimización de pit   

Índice n X̅ σ Mín. 25% Me 75% Máx. 

x 151898 215104.9 79.2426 214961.1 215041.1 215106.1 215166.1 215251.1 

y 151898 8080921 148.8983 8080667 8080797 8080912 8081042 8081202 

z 151898 307.713 39.60693 247.5 272.5 302.5 337.5 422.5 

dim_x 151898 5 0 5 5 5 5 5 

dim_y 151898 5 0 5 5 5 5 5 

dim_z 151898 5 0 5 5 5 5 5 

volumen 151898 125 0 125 125 125 125 125 

zona 151898 0.283144 0.804035 0 0 0 0 4 

au 151898 0.147162 0.473707 0 0 0 0 6.237 

ag 151898 5.769075 19.13042 0 0 0 0 235.961 

cu 151898 0.243182 0.749505 0 0 0 0 14.994 

densidad 151898 2.79797 9.69E-12 2.79797 2.79797 2.79797 2.79797 2.79797 

Tonelaje 151898 349.7463 1.23E-09 349.7463 349.7463 349.7463 349.7463 349.7463 

Fino 151898 0.85052 2.621366 0 0 0 0 52.44095 

Recuperación 151898 0.117165 0.299352 0 0 0 0 0.91 

Cost. Proc. 151898 1.619178 4.15679 0 0 0 0 14.63 

Cost. Mina 151898 6.15 1.56E-11 6.15 6.15 6.15 6.15 6.15 

Valor Planta 151898 828.5567 9734.213 -6578.73 -2150.94 -2150.94 -2150.94 213616.6 

Valor Botadero 151898 -2150.94 3.92E-09 -2150.94 -2150.94 -2150.94 -2150.94 -2150.94 

Valor max 151898 847.4433 9725.661 -2150.94 -2150.94 -2150.94 -2150.94 213616.6 
 

La tabla 4, presenta las estadísticas descriptivas de las variables clave del modelo de bloque de beneficios, 

incluyendo las coordenadas geoespaciales (X, Y y Z), tonelaje, ley de cobre (Cu), costos de procesamiento y 

minería, y niveles de planta y valores máximos. Las coordenadas geográficas (X e Y) tienen un promedio de 

2.51e+05, mientras que Z muestra un promedio de 3.37e+01, con valores que van desde 2.15e+05 hasta 

2.15e+05 para X e Y, y desde 2.28e+02 hasta 4.22e+02 para Z. El tonelaje tiene una media de 3.49e+06 y una 

desviación estándar de 1.23e+06, mientras que la ley de cobre varía entre 0.00 y 14.99, con un promedio de 

0.24. Los costos de procesamiento promedian 16.1, y los costos de minería son 6.15, mientras que el promedio 

del valor de planta y el valor máximo son 288 y 844, respectivamente. Estas son características geológicas y 

económicas del depósito y son valiosas para maximizar la planificación minera y las decisiones operativas.  

Luego, basándose en los parámetros económicos ya establecidos (precio base del cobre, costos de ventas y 

minería, entre otros) utilizando el algoritmo de LG, se calculó el valor total de cada bloque en el modelo. Los 

costos de extracción, recuperación y procesamiento de cada bloque se ajustaron iterativamente de acuerdo con 

las coordenadas geoespaciales de los bloques (X, Y, Z) para esto. Derivamos el “Valor_max” (beneficio 

máximo) de cada bloque a través de la fórmula de valor económico combinado. Este es un valor que refleja el 

beneficio neto máximo que se puede obtener de la extracción de minerales en cada posición espacial dentro 

del tajo. 

Utilizamos el algoritmo LG para visualizar el pozo final optimizado. Este proceso considera las restricciones 

geotécnicas, operativas y económicas del yacimiento para identificar el área de extracción más rentable. El 

modelo así creado visualiza las zonas viables para la minería (áreas que generan un beneficio neto positivo), 

identificando claramente las áreas de mayor valor económico. El pozo final se configura entonces con 
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consideraciones geométricas de manera que se enfatizan para la extracción las zonas con alto valor de cobre y 

bajos costos de extracción. 

 

 

 
Figura 12 Vista de la optimización de pit final 

En la figura 12 se muestra la optimización del tajo con LG realizó un beneficio total del tajo de 

3,984,588,535.5427316 USD que mostró un valor máximo significativo generado a partir de la extracción 

optimizada basada en costos y rendimientos. La asignación de bloques de beneficio para maximizar el 

potencial de beneficio total mientras se minimizan los costos operativos y geotécnicos también se muestra en 

consecuencia. Los principales resultados de la optimización del UPL con el algoritmo de LG se pueden 

encontrar en la Tabla 10. Precio del cobre: 2.26 USD/lb; VAN: 239.92 millones de dólares (MUSD). Se estima 

que se extraerán 18,393 bloques con un tonelaje total de mineral de 6,295,982.75 toneladas y 106,322.86 

toneladas de material de desecho. La profundidad del tajo es de 110 unidades, y el volumen del tajo es de 

3,523,275 unidades cúbicas. Las extensiones laterales en X e Y son 160.00 y 420.00 unidades, 

respectivamente, lo que proporciona información sobre la operación minera mostrado en la tabla 5. 

Tabla 5 Resultados de la optimización de pit final  
 

Precio 

[US$/lb

] 

VAN 

(MUSD

) 

Cantida

d de 

bloques 

a minar 

Tonelaje 

total 

mineral 

(toneladas) 

Tonelaje 

total 

estéril 

(tonelada

s) 

Profundida

d total del 

pit final 

Volumen 

total del 

pit final 

Extensió

n lateral 

en X 

Extensió

n lateral 

en Y 

Lerchs & 

Grossman

n  

2.26 239.92 18,393 6,295,982.7
5 

106,322.8
6 

110.00 
unidades 

3,523,275.0
0 unidades 

cúbicas 

160.00 
unidades 

420.00 
unidades 

 

La comparación entre el método de LG y el método Pseudoflow (ver tabla 6) muestra que, aunque se utiliza el 

mismo precio del cobre en ambos casos (2.26 US$/lb), Pseudoflow obtiene un mayor tonelaje de mineral 

(70,345,500 toneladas) y tonelaje de desecho (117,691,000 toneladas) que LG (6,295,982.75 y 106,322.86 

toneladas, respectivamente). Sin embargo, Pseudoflow produce un VAN ligeramente inferior (232.95 MUSD) 

que LG (239.92 MUSD); Pseudoflow puede optimizar la cantidad de material extraído, pero LG ofrece una 

mejor eficiencia económica en valor neto. 
Tabla 6 Comparativa literaria entre LG vs Pseudoflow  

Método Precio 

(US$/lb) 

VAN (MUSD) Tonelaje 

total mineral 

(toneladas) 

Tonelaje total 

estéril 

(toneladas) 

Lerchs & 

Grossmann 

2.26 239.92 6295982.75 106322.86 

Pseudoflow 

[83] 

2.26 232.95 70 345 500.0  117 691 000.0  

4. Discusión 

El algoritmo de LG sigue siendo ampliamente reconocido en la literatura como el estándar para la optimización 

del UPL. Se destaca por su capacidad para maximizar el VAN al considerar las restricciones geotécnicas y 

económicas del yacimiento. Estudios previos, como [84, 85]  han confirmado la efectividad de LG en la 

determinación de límites óptimos de extracción, permitiendo soluciones robustas y rentables en proyectos 

mineros. Sin embargo, el desafío del alto cómputo requerido por LG persiste, especialmente en grandes 
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yacimientos o cuando se deben considerar múltiples restricciones geotécnicas, lo que limita la velocidad de 

toma de decisiones. El estduio realizado por [86] se aplicó el algoritmo de LG para identificar el UPL de un 

depósito de cobre en La Libertad, resultando en un tajo final de 62,220 bloques y una ley de cobre de 0% a 

1.46%. El valor del tajo calculado basado en los escenarios alternativos logró un VAN de 6.6 mil millones de 

USD. En comparación, nuestros resultados obtenidos usando LG arrojaron un VAN de 239.92 MUSD y un 

precio del cobre de 2.26 USD/lb, que son ligeramente inferiores a los de Castro Solis. En cuanto al volumen 

extraído, nuestro tajo final mostró 18,393 bloques y 6,295,982.75 toneladas de mineral, consistente con el 

tonelaje de mineral para el estudio, mientras que el tonelaje de desecho total de la mina fue de 106,322.86 

toneladas, comparable con el valor reportado. La profundidad total del tajo final en ambos experimentos es de 

110.00, y el volumen total del tajo final es de 3,523,275.00 unidades cúbicas.  Abarcando otros putos la 

comparar resultados obtenido por [83] sobre el algoritmo Pseudoflow mostró un mayor tonelaje de mineral 

(70,345,500 toneladas) y desecho (117,691,000 toneladas) en comparación con LG (6,295,982.75 toneladas 

de mineral y 106,322.86 toneladas de desecho), lo que subraya la capacidad del algoritmo para optimizar la 

extracción de material, pero a un costo en términos de VAN (232.95 MUSD frente a 239.92 MUSD con LG).  

Desde una perspectiva práctica, los resultados obtenidos con LG sugieren que este algoritmo es ideal cuando 

la rentabilidad económica es la principal prioridad. La capacidad de LG para maximizar el VAN en 

comparación con Pseudoflow es particularmente valiosa en proyectos donde los márgenes de ganancia son 

ajustados y los costos de remoción de material de desecho son altos. En este sentido, LG sigue siendo una 

herramienta eficiente y confiable para la optimización económica, especialmente en yacimientos donde la 

prioridad es maximizar el valor neto y controlar los costos operativos. Este enfoque se alinea con estudios 

previos, como el de Keshtel et al. (2023), que también destacan la efectividad de LG en maximizar la 

rentabilidad en contextos mineros con un enfoque económico estricto. Por otro lado, Pseudoflow ha 

demostrado ser más adecuado en operaciones donde la extracción de grandes volúmenes de material es más 

relevante que la optimización del valor económico. Aunque este algoritmo permite una mayor extracción de 

material, los resultados obtenidos en esta investigación, así como los reportados por Sim et al. (2014), indican 

que el VAN puede ser menor debido a la mayor cantidad de material de desecho removido. Esto resalta la 

necesidad de evaluar cuidadosamente las condiciones específicas de cada proyecto minero. Si el volumen de 

material extraído es una prioridad, como en ciertos yacimientos de cobre o minerales industriales, Pseudoflow 

podría ser más adecuado, pero si la rentabilidad económica es el objetivo principal, LG sigue siendo la opción 

preferida. 
 

4. Conflicto de interés 

El autor afirma no tener conflicto de interés. 

5. Conclusión 

El resultado de este estudio mostró que el algoritmo de LG sigue siendo muy útil para el UPL en la minería a 

cielo abierto, y aumenta significativamente la rentabilidad económica de la operación. Al llevar a cabo el 

modelo de bloques sintético con 151,898 bloques y ajustar los factores geotécnicos a la economía, se logró un 

VAN de 239.92 millones de USD y se produjo un tonelaje máximo de 6,295,982.75 toneladas de mineral y 

106,322.86 toneladas de material de desecho. Los resultados confirman que LG funciona bien como 

herramienta de optimización del tajo final, enfatizando tanto las consideraciones operativas como económicas 

sobre otros algoritmos, como Pseudoflow, que pueden lograr la optimización del volumen de mineral extraído, 

pero resultan en un VAN ligeramente inferior.  

El presente trabajo añade pruebas empíricas a los estudios ya publicados sobre optimización minera al 

proporcionar evidencia de efectividad para escenarios de planificación minera realistas del algoritmo LG. 

También refleja la necesidad de incorporar perspectivas geotécnicas y económicas en la toma de decisiones en 

cuanto al diseño del tajo, ayudando así en el desarrollo de procesos mineros sostenibles y rentables. La 

incorporación de este algoritmo en entornos mineros puede utilizarse para mejorar la productividad operativa 

y aumentar la rentabilidad.  

No obstante, existen algunas limitaciones (ya que hay un modelo de bloques sintético que no es representativo 

de depósitos minerales genuinos) en este trabajo. Trabajos futuros pueden involucrar la combinación de datos 

de depósitos activos más realistas y la mejora de algoritmos híbridos (el uso de LG mezclado con métodos de 

IA) en el proceso de optimización. De manera similar, los modelos estocásticos y las simulaciones de Monte 
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Carlo podrían proporcionar una descripción más completa de la incertidumbre en las decisiones de 

planificación minera. 
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