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ABSTRACT 
 

Rice is a globally important crop and a staple in the diet of a large part of the world’s population. This underscores the need for 
hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic 
Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, 
seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to 
develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine 
(SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, 
number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 
for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology 
significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that 
enhances and facilitates selection criteria. 
 

Keywords: Oriza sativa; remote sensing; multispectral imagery; machine learning; breeding. 
 

 

RESUMEN 
 

El arroz es un cultivo de gran importancia a nivel mundial y un alimento básico en la dieta de gran parte de la población. Esto subraya 
la necesidad de la hibridación y la mejora genética del arroz para satisfacer la demanda alimentaria de forma sostenible. Los Sistemas 
de Información Geográfica (SIG) han demostrado ser herramientas valiosas para el fenotipado morfométrico de diferentes genotipos. 
En este estudio se evaluaron siete genotipos de arroz con el objetivo de seleccionar aquellos con mayor rendimiento. Se utilizaron 
imágenes multiespectrales para desarrollar modelos predictivos basados en algoritmos de aprendizaje supervisado, incluyendo 
regresión lineal (RL), máquinas de vectores de soporte (SVM), bosques aleatorios (RF), red elástica (EN) y redes neuronales (NN). 
Las variables estudiadas fueron la altura de la planta, el número de espigas, el número de tallos y el rendimiento. Los resultados 
mostraron los siguientes niveles de precisión: para la altura de la planta, con bosques aleatorios, un R² = 0,44; para el número de 
espigas, con redes neuronales, un R² = 0,92; para el número de tallos, con SVM, un R² = 0,44; y para el rendimiento, con SVM un R² 
= 0,31. Esta tecnología complementa significativamente las metodologías tradicionales de selección para la hibridación y la mejora 
genética, al proporcionar un enfoque espacial que mejora y facilita los criterios de selección. 
 

Palabras clave: Oryza sativa; teledetección; imágenes multispectrales; aprendizaje automático; mejora genética. 
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1. Introduction 
 

Rice is a globally important crop and a staple food 
for a significant proportion of the world's 
population (Cantrell & Reeves, 2002). The high 
demand for rice has driven the selection of 
different genotypes to develop environmentally 
sustainable varieties or cultivars, focusing on high 
yields, resistance to pests and diseases, and 
tolerance to various stresses and environmental 
conditions (Araus & Cairns, 2014; Tanaka et al., 
2024). Rice phenotyping is based on agronomic, 
morphological and biochemical traits that are 
critical for improving varieties that can adapt to 
climate change. This breeding process is often 
slow and labor-intensive and faces challenges 
such as the difficulty of analyzing large field areas 
and collecting data (Reynolds et al., 2020). 
The use of remote sensing technologies, such as 
unmanned aerial vehicles (UAVs), has proven to 
be a valuable tool in agriculture for crop 
monitoring. Equipped with multispectral or 
hyperspectral cameras, UAVs can calculate 
various vegetation indices, of which the 
normalized difference vegetation index (NDVI) is 
one of the most used (Sulik & Long, 2016). The 
use of this indices helps to estimate biomass, leaf 
area index (LAI), chlorophyll content and other 
parameters related to plant health (Wan et al., 
2021; Yang et al., 2017). In addition, the 
integration of different indices over different 
phenological stages of the crop improves the 
accuracy and reliability of these estimates. Light 
Detection and Ranging (LiDAR), which is used to 
create three-dimensional orthomosaics and 
estimate plant height, canopy cover and crop 
texture, is another key technology for phenotyping 
and genotype characterization (Christiansen et al., 
2017). Thermal cameras are used to measure the 
energy emitted by plants, which provide valuable 
insights into physiological activities such as 
stomatal conductance and transpiration rates, 
essential for assessing plant responses to biotic 
and abiotic stresses (Giménez-Gallego et al., 
2021). 
In rice phenotyping, plant height is a crucial 
parameter as it is used to assess biomass and 
grain yield (Boomsma et al., 2010; Kawamura et 
al., 2020). Shorter varieties are generally easier to 
manage for crop maintenance, facilitating the 
application of pest-management products and 
fertilizers, and making harvesting more accessible 
to machinery. Traditionally, height is measured 
manually using tape measures, which is very time-
consuming when working with large areas and 

numerous genotypes. In addition to plant height, 
other morphometric traits important for pheno-
typing and genotype selection for high yield 
include the number of tillers and panicles per 
plant, which are directly related to productivity 
(Chen et al., 2024; Lyu et al., 2021). Various 
methods and models have been used to estimate 
these traits, ranging from multiple linear 
regression to supervised machine learning 
approaches, such as R-CNN or YOLOv8-X 
algorithms for panicle counting, or canopy height 
models for estimating plant height (Chen et al., 
2024; Tan et al., 2023). 
Precision agriculture is an emerging technology in 
Peru that has the potential to significantly improve 
farming practices by reducing costs and saving 
time. Rice is a key component of Peruvian 
agriculture, covering nearly 400,000 hectares 
nationwide, with the San Martin region alone 
contributing 22% of the country's total rice 
production (Caribou Space, 2022). To further 
develop this sector, the Ministry of Agrarian 
Development and Irrigation is investing in the 
development of rice varieties that are more 
resilient and adapted to the unique environmental 
conditions of different regions (INIA, 2024). The 
integration of remote sensing technology into 
precision agriculture will provide valuable insights 
into rice breeding programs and improve the 
management of large amounts of data for 
genotype selection based on various criteria, such 
as morphology and physiology, to improve the 
selection process for new rice varieties that are 
adapted to climatic changes and are able to satisfy 
food demand. 
The aim of this study is to develop models for 
estimating plant height, number of tillers, number 
of panicles, and yield of different rice genotypes 
using multispectral imagery. To achieve this, we 
employ various supervised machine learning 
models to identify the most effective approach for 
each variable. This study seeks to enhance the 
accuracy and reliability of trait estimation, 
supporting more informed decisions in rice 
breeding and management. 

 
2. Methodology 
 

2.1. Site description 
This study was conducted at the Estación 
Experimental Agraria El Porvenir of the Instituto 
Nacional de Innovación Agraria (INIA), located in 
the Juan Guerra district, in the province and 
department of San Martín, Peru (6° 35’ 54’’ S, 76° 
19’ 27’’ W, 202 masl) (Figure 1).  
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Figure 1. Location and distribution of research field. 

 
The rice cultivation period lasted 143 days, 
starting with sowing in the seedbed in March and 
ending with harvesting in August 2023. 
Meteorological data provided by the Servicio 
Nacional de Meteorología e Hidrología del Perú 
(SENAMHI) indicated a mean maximum 
temperature of 31.9 °C, a mean mini-mum 
temperature of 21.7 °C, a mean precipitation of 
2.9 mm, and a mean relative humidity of 58.39% 
during the experimental period. Soil charac-
teristics were 0.39% N, 25.40 mg/kg P, 415.98 
mg/kg K, a pH of 6.95, electrical conductivity of 
22.62 mS/m, and clay texture. 
 
2.2. Experimental design 
The experimental design was a Completely 
Randomized Design (CRD) with seven different 
genotypes: L01 (PALM-72-EP4-2-M-1-1), L02 (CT 
8008-3-5-8P-M-2P/PSM3-2-2/EMAPASC108), 
L03 (CT 22978-F1-VF2012-32-F2-30-2-EP1-4), 
L04 (VF 2008-1006-11-2-3-4-2-EP1-1), L05 (VF 
2008-1006-37-6-4-4-2-EP1-2), L06 (VF 2008-
1006-11-2-3-4-1-EP1-3), and L07 (VF 2008-1006-
11-2-3-4-3-EP1-6). Each experimental plot 
measured 500 m², with four replications per 
genotype (n = 28). The sowing system involved 
direct transplanting of rice plants. Agronomic 
parameters are shown in Table 1. 
 

2.3. Agronomical variables determination 
Tiller and height measurement: Tiller number was 
determined by directly counting the tillers per 
plant, and plant height was measured using a 
measuring tape (Rosero, 1983). All measure-
ments were taken within a one-square-meter area. 
 

Yield determination: Yield was determined by four 
components; NP: number of panicles, NGP: 
number of grains per panicle, NGF: percentage of 
fertile grains, and W: weight of 1000 grains at 14 
% RH (Rosero, 1983). All parameters were 
evaluated per square meter, and yield was 
calculated using equation 1. 
 

𝑌𝑖𝑒𝑙𝑑 = (𝑁𝑃 × 𝑁𝐺𝑃 × 𝑁𝐺𝐹 ×𝑊)/1000 (1) 
 

2.4. Flight plan and indices vegetation estimation 
Multispectral images were acquired using a DJI 
Matrice 300-RTK UAV equipped with a Micasense 
RedEdge-P multispectral sensor camera (Mica-
Sense, RedEdge, NC, USA). The camera 
captured images across five spectral bands: blue 
(475 nm), green (560 nm), red (668 nm), red edge 
(717 nm), and near-infrared (NIR, 842 nm), each 
with a 1.6 MP shutter. Images were collected on 
eight dates: 94 days after sowing (DAS) corres-
ponding to the reproductive stage, and 101, 108, 
115, 122, 130, 136, and 143 DAS corresponding 
to the ripening stage, under sunny conditions. 
 



 D. Goigochea-Pinchi et al. / Agroind. sci. 15(3): 243-253 (2025) 
 

- 246 - 

 

The flight plan was carried out using the DJI Pilot 
2 application, featuring a frontal and lateral overlap 
of 80%, a flight altitude of 50 m, and a speed of 4.5 
m/s. The camera was positioned perpendicularly 
to the ground, which provided a spatial resolution 
of 2.08 cm/pixel in the multispectral images. 
Following image capture, the images were 
processed for georeferencing and brightness 
correction using radiometric calibration proce-
dures in Pix4Dmapper (v4.5.6, Pix4D SA, Prilly, 
Switzerland), resulting in the creation of an 
orthomosaic. Vegetation indices were computed 
for the rice canopy area, which was defined 
through spatial mask extraction in ArcGIS 10.8.1. 
Table 2 summarizes the vegetation indices 
assessed throughout the study period. 
 
2.5. Data analysis and model development 
Data were assessed for normality and homos-
cedasticity using the Shapiro-Wilk and Levene's 

tests, respectively. Following these assumptions, 
an analysis of variance (ANOVA) was performed 
to determine significant differences among rice 
genotypes concerning yield, plant height, number 
of tillers, and panicle count. Tukey's test (p < 0.05) 
was used to identify specific differences when 
significant results were found. These analyses 
were conducted using the agricolae package (de 
Mendiburu, 2023). Additionally, Pearson correla-
tion analysis was performed to examine 
relationships among the evaluated variables and 
vegetation indices (VIs). 
To identify the most significant vegetation indices 
and examine their variations across rice genoty-
pes over time, Principal Component Analysis 
(PCA) was performed using the factoMineR (Lê et 
al., 2008) and factoextra (Kassambara & Mundt, 
2020) packages. For the development of 
performance prediction models, the dataset was 
divided into 80% for training and 20% for testing. 

 
Table 1 
Timeline of Key Agronomic Activities in Rice Cultivation 
 

Date Activity Description 

03/17/2023 Seed sowing Installation of seedbed 

04/14/2023 Transplanting Transplant spacing: 0.3 m x 0.3 m, one plant per hill 

04/19/2023 NPK Fertilization  46 kg/ha N, 69 kg/ha P (P2O5), 90 kg/ha K (K2O) 

05/06/2023 Nitrogen Fertilization  69 kg/ha N 

05/13/2023 Nitrogen Fertilization  69 kg/ha N 

05/26/2023 Tiller measurement  

07/15/2023 Height and panicle measurement  

08/08/2023 Harvest and yield measurement  

 
 

Table 2 
Vegetation indices applied for this study 
 

Indices Equation Source 

Normalized Difference Vegetation Index (NDVI) 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Peñuelas et al., 1993) 

Green Normalized Difference Vegetation Index (GNDVI) 
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 (Gitelson et al., 1996) 

Red Edge Chlorophyll Index (ReCL) (
𝑁𝐼𝑅

𝑅𝑒𝑑
) − 1 (Gitelson et al., 2005) 

ChlorophyII Index Green (CIgreen) (
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
) − 1 (Gitelson et al., 2005) 

Optimized Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16) (
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.16
) (Rondeaux et al., 1996) 

Soil Adjusted Vegetation Index (SAVI) 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)(1 + 𝐿)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
 (Huete, 1988) 

Normalized Difference Red Edge Index (NDRE) 
𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝑒𝑑𝑔𝑒
 (Gitelson & Merzlyak, 1994) 

Leaf Chlorophyll Index (LCI) 
𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Datt, 1999) 

Normalized Difference Water Index (NDWI) 
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (McFeeters, 1996) 
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Several machine learning models were employed, 
including Linear Regression (LR), Support Vector 
Machine (SVM), Random Forest (RF), Elastic Net 
(EN), and Neural Networks (NN), with 5-fold cross-
validation applied using the caret package (Kuhn, 
2008). The model performance was evaluated 
using metrics such as the coefficient of determi-
nation (R²), root mean squared error (RMSE), and 
mean absolute error (MAE), as detailed in Equa-
tions 2, 3, and 4, respectively. In these equations, 
yi represents the observed value, and ŷi, indicates 
the predicted value, with 𝑛 indicating the number 
of samples. All analyses were performed using R 
version 4.4.1 (R Core Team, 2023). 
 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
1

∑ (𝑦𝑖−𝑦̂𝑖)
2𝑛

1
   (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
1   (3) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
1    (4) 

3. Results and discussion 
 

3.1. Morphological characteristics 
 

All morphological parameters, except for the 
number of panicles, showed significant differen-
ces among rice genotypes.  
 

Figure 2 presents Tukey's post hoc analysis (p < 
0.05), highlighting mean comparisons among 
genotypes for each parameter: Height (F = 33.15, 
p < 0.001) was greatest in genotype L01, reaching 
115.35 cm, and significantly differed from all other 
genotypes. Regarding the number of tillers (F = 
3.06, p < 0.05), genotype L05 had the highest 
count, differing significantly only from genotype 
L06. The number of panicles (F = 1.681, p > 0.05) 
did not vary significantly among genotypes. For 
yield (F = 9.41, p < 0.001), genotype L02 achieved 
the highest yield, significantly differing from the 
other genotypes. 

 

 
 

Figure 2. Barplot with Tukey post hoc analysis (p < 0.05) showing mean comparisons among rice genotypes. (a) Height, (b) Number 
of tillers, (c) Number of panicles, and (d) Yield. Letters above the bars indicate significant differences among genotypes. 
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Rice improvement studies aim for high yields and 
adaptability to climate change. In addition, 
morphometric aspects search for different 
"ideotypes" regarding the ideal characteristics that 
a rice plant should have (Khush, 2013). For height, 
an ideal height of 90 cm has been proposed (Ata-
Ul-Karim et al., 2022).  
However, while this height is considered ideal on 
a global scale, it often does not reflect reality, as 
other factors beyond height need to be 
considered. In this study, a maximum height of 
115.35 cm was achieved for genotype L01, while 
genotype L05 had a lower height of 83.32 cm.  
Other studies have also reported high variability in 
height among different genotypes, such as a 
maximum height of 116.22 cm for the genotype 
identified as Jiafuzhan and a minimum height of 
79.52 cm for the genotype NIL36 (He et al., 2022); 
or even heights averaging 106.3 cm during the dry 
season and 120.3 cm during the rainy season, 
obtained from 19 different genotypes (Ata-Ul-
Karim et al., 2022). Plant height is more related to 
the expression of genes involved in hormone 
biosynthesis, such as gibberellic acid, 
strigolactones and brassi-nosteroids (Shearman 
et al., 2022).  

Although height is not directly related to yield, 
traits such as number of tillers and panicles are 
morphological traits that are directly related to 
yield. The number of tillers will vary due to factors 
such as genotypes and environmental conditions; 
a similar pattern is observed with the number of 
panicles (Takai, 2024; Takai et al., 2023; Zhang et 
al., 2021). The tiller/panicle ratio depends on nutri-
tion and photosynthetic rate, which are crucial for 
developing tillers sufficiently to produce productive 
panicles (Ohe & Mimoto, 2002). In terms of yield, 
well-developed panicles are directly related to 
achieving high yields. Therefore, yield will depend 
on biotic, abiotic, and intrinsic factors, which can 
be summarized as pests and diseases, agronomic 
management, and rice cultivars or varieties. 
 

3.2. Behavior of vegetation indices 
Most vegetation indices exhibit a decreasing trend 
over time. In contrast, NDWI displays an 
increasing trend, likely due to the suspension of 
irrigation as harvest days approach (Figure 3). The 
PCA results presented in Figure 4 illustrate the 
behavior of the vegetation indices over DAS and 
reveal distinct patterns of these indices for each 
genotype over the DAS evaluated. 

 

 
 

Figure 3. Behavior of vegetation indices at different evaluated days. (a) NDVI, (b) CIGREEN, (c) GNDVI, (d) LCI, (e) NDRE, (f) NDWI, 
(g) OSAVI, (h) RECL, and (i) SAVI estimated by multispectral images from UAV. 
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Figure 4. PCA of vegetation indices during the evaluation days: (a) PCA for all indices and days after sowing (DAS); PCA for the 
indices and groups of rice genotypes at (b) 94 DAS, (c) 101 DAS, (d) 108 DAS, (e) 115 DAS, (f) 122 DAS, (g) 130 DAS, (h) 136 DAS, 

and (i) 143 DAS. 
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The analysis shows that 94 and 101 DAS form a 
cluster associated with ReCL, Clgreen and NDRE 
indices. In contrast, 108, 115 and 122 DAS cluster 
together and are associated with NDVI, OSAVI 
and SAVI. Finally, 130, 136 and 143 DAS are 
associated with NDWI. Furthermore, the PCA 
analysis highlights the evolving relationships 
between genotypes and vegetation indices over 
time. While most genotypes remain clustered 
across the DAS evaluated, genotype L02 
consistently forms an isolated group at 101, 108, 

122, 130, 136 and 143 DAS. In addition, at 122 
DAS, genotypes L04 and L07 begin to separate 
from the other groups and show a clear 
relationship with the SAVI and OSAVI indices. 
Vegetation indices are complementary tools that 
integrate geographic information systems to 
analyze crops based on the reflectance they emit 
(Quille-Mamani et al., 2022). These indices are 
generally used to assess biomass or crop health 
but are also employed in monitoring different 
phenological stages.

NDVI is particularly relevant during the vegetative 
stage of rice, as it is related to biomass production. 
However, during the reproductive and maturation 
stages, NDVI loses sensitivity, making it 
necessary to use other vegetation indices (Sulik & 
Long, 2016; Yue et al., 2019). 
In this study, we observed that most vegetation 
indices show a decreasing trend as the maturation 
phase approaches. In this stage, the OSAVI and 
SAVI indices stand out due to their relevance, as 
they are especially sensitive to water availability 
and soil cover factors that change when irrigation 
is suspended during maturation. Similarly, NDWI 
is also relevant in this phase due to its ability to 
detect soil and vegetation moisture (McFeeters, 
1996). 
Other studies have highlighted the importance of 
the Normalized Difference Yellow Index (NDYI) 
during the maturation stage, as it is sensitive to the 
color change from green to yellow (Zhao et al., 
2023). It is important to note that vegetation 
indices may vary in their response depending on 
the specific field behavior of each variety and 
temporal variations across different years (Dong et 
al., 2015). Some genotypes exhibit the "stay-
green trait," maintaining green coloration and 
chlorophyll presence even in the maturation 
phase, which is an attractive characteristic for 
selecting genotypes in breeding and hybridization 
programs, as it is associated with high yields 
(Zang et al., 2022). 
 
3.3. Models prediction 
Pearson correlation analysis revealed that most 
vegetation indices exhibit an inverse correlation 
between yield and panicle number. However, 
NDWI was an exception, showing a direct and 
significant correlation with both yield and panicle 
number. In contrast, the number of tillers displayed 
a direct correlation with most vegetation indices, 
although these correlations were not statistically 
significant (Figure 5). The performance of model 
predictions varied across different metrics and 
variables evaluated. For height, the Random 

Forest (RF) model exhibited the best performance 
with an R² of 0.44, an RMSE of 8.38, and an MAE 
of 7.50. The number of panicles showed the 
highest performance with the Neural Network (NN) 
algorithm, which achieved an R² of 0.92, an RMSE 
of 2.81, and an MAE of 2.44. For the number of 
tillers, the Support Vector Machine (SVM) model 
performed best with an R² of 0.44, an RMSE of 
2.74, and an MAE of 2.68. Finally, yield prediction 
was most accurate with the SVM model, showing 
an R² of 0.31, an RMSE of 1.18, and an MAE of 
0.90. Detailed performance metrics for all models 
and variables are provided in Table 3. 
In rice phenotyping, the use of remote sensors as 
auxiliary tools has become very useful for studying 
extensive areas that include a large number of 
different genotypes. Therefore, predictive models 
for evaluating morphometric characteristics are 
useful for conducting rice phenotyping at a spatial 
level. Among the most studied characteristics is 
plant height; in this study, a moderate 
performance was obtained with a coefficient of 
determination of 0.44 using the Random Forest 
(RF) algorithm.  
 

 
 

Figure 5. Correlogram of Pearson correlations between yield, 
panicle number, tiller number, and height with vegetation 
indices. Asterisks indicate significant differences: * p < 0.05, 
** p < 0.01, and *** p < 0.001. 
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Table 3 
Performance metrics of machine learning models for predicting height, panicle number, tiller count, and yield 
 

Model 
Height Panicle number Tiller number Yield 

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE 

RL 8.97 0.12 7.57 4.20 0.70 3.27 4.13 0.11 3.49 1.85 0.06 1.39 

SVM 8.26 0.23 6.38 2.43 0.67 2.08 2.74 0.44 2.68 1.18 0.31 0.90 

RF 8.38 0.44 7.50 2.02 0.15 1.54 3.44 0.38 3.32 1.19 0.15 1.01 

EN 8.41 0.33 7.40 2.67 0.41 2.11 3.22 0.02 2.67 1.91 0.30 1.42 

NN 8.11 0.06 7.01 2.81 0.92 2.44 3.68 0.01 3.06 1.24 0.05 1.09 

 

Other studies have reported coefficients of 
determination of 0.72 using a canopy height model 
(CHM) method followed by a k-fold cross-
validation procedure (Kawamura et al., 2020). 
Canopy NDVI values, along with SPAD, have also 
been used, achieving high performance with a 
coefficient of determination of 0.84 (Lu et al., 
2021). Regarding panicle count, a high 
performance was shown using neural networks 
(NN), obtaining a coefficient of determination of 
0.92. Similar levels of fit were found using R-CNN 
with a coefficient of 0.91, using the YOLOv5-x 
model in the early heading stage with a coefficient 
of determination of 0.97, and the YOLOv8-x model 
in the later heading stage with a coefficient of 
determination of 0.86 (Chen et al., 2024). Other 
models, such as the Cascade RCNN model, 
achieved a coefficient of determination of 0.98 
(Tan et al., 2023). This indicates that it is possible 
to use vegetation indices through different 
supervised learning models to estimate the 
number of panicles in the different genotypes 
evaluated. Although the estimation of the number 
of tillers has not been widely studied, in this study, 
a performance of 0.44 was obtained using the 
SVM model. To our knowledge, the number of 
tillers has been estimated using RGB images and 
classification models, achieving a coefficient of 
determination of 0.83 (Yamagishi et al., 2022). 
The study of tillers is also highlighted as an 
important variable, since establishing tillers with 
optimal development leads to the development of 
panicles. 
Finally, the yield of different genotypes is crucial 
for the productive approach and meeting food 
demand. Many rice yield models have been 
reported, whose success depends on the phase or 
period of evaluation, obtaining coefficients of 
determination of 0.50 in the maturation phase 
using RGB and multispectral images using deep 
CNN (Yang et al., 2019). Other studies using RF 
models along with vegetation indices and 
phenological stages have achieved high 
performance in yield estimation, with a coefficient 

of determination of 0.70 (Ge et al., 2021). In this 
study, a low performance of 0.31 was found with 
the SVM model; another study on rice yield 
prediction models obtained a coefficient of 
determination of 0.43 through multiple linear 
regression in the maturation phase using NDVI, 
EVI, and SAVI (Goigochea-Pinchi et al., 2024). 
Although yield and resistant rice genotypes are 
crucial for meeting global food demands, other 
parameters such as aboveground biomass, leaf 
area index (LAI), and SPAD values are also used 
to estimate yield, as they help to establish 
relationships between yield and tolerance levels to 
pests and diseases (Duan et al., 2025, Li et al., 
2025, Zhou et al., 2025). This work presents the 
use of remote sensing technologies, such as 
multispectral imagery, as a tool to support the 
selection of high-yielding rice genotypes adapted 
to climate variability. As future research, it is 
essential to continue enriching the dataset with 
new evaluations of these and other rice lines over 
multiple growing seasons. This will allow a better 
understanding of their performance and tolerance 
levels to pests, diseases, and environmental stres-
ses, enabling more informed decision-making 
based on vegetation indices and spectral imagery. 
 

4. Conclusions 
 

The use of tools such as multispectral imagery for 
rice phenotyping based on morphometric traits 
proves to be highly valuable in establishing 
estimation models for the studied variables. In this 
work, various supervised learning models were 
evaluated using machine learning, with the best 
performances obtained for plant height using 
Random Forest (R² = 0.44), number of panicles 
with Neural Networks (R² = 0.92), number of tillers 
with SVM (R² = 0.44), and yield with SVM (R² = 
0.31). Although this technology is relatively new in 
Peru, its proper implementation has the potential 
to generate significant advancements in spatial-
level rice phenotyping, enhancing the efficiency in 
the selection of genotypes and adaptation to local 
conditions. 
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