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Abstract
For many applied mathematicians, and especially for biomathematicians, the first model proposed by the
Italian mathematician Vito Volterra in 1926 is well known, describing for the first time the relationship
between a predator and its prey. This model coincided with a similar system, on chemical reactions, pro-
posed by the physicist-chemist Alfred J. Lotka years earlier. Since then, and with an epidemic character,
variations, modifications, and the incorporation of new phenomena or ecological principles have been for-
mulated to ”make more realistic” the foundations and studies on this fundamental interaction between two
species of living beings. In this work, we will give a brief description of the historical context of this seminal
model, emphasizing its main properties; then we will add specific modifications, briefly outlining properties
of some of them.
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Resumen
Para muchos Matemáticos aplicados, y en especial para los Biomatemáticos es bien conocido el primer mo-
delo propuesto por el matemático italiano Vito Volterra en 1926, describiendo por primera vez la relación
entre un depredador y su presa. Este modelo coincidió con un sistema similar, sobre reacciones quı́micas,
propuesto por el fı́sico-quı́mico Alfred J. Lotka años antes. Desde entonces, y con un un carácter epidémi-
co, se han formulado variaciones, modificaciones y la incorporación de nuevos fenómenos o principios
ecológicos para ”hacer más realista”los fundamentos y estudios sobre esta fundamental interacción entre
dos especies de seres vivos. En este trabajo, haremos una breve descripción sobre el contexto histórico de
este seminal modelo, haremos hincapié en las propiedades principales; luego agregaremos modificaciones
especı́ficas, reseñando brevemente propiedades de alguno de de ellos.

Palabras clave. Modelo depredador-presa, refugio, estabilidad, bifurcaciones, ciclos lı́mites, curvas separatrices.
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1. Introducción. El empleo de modelos matemáticos o estadı́sticos en diversos ámbitos del conoci-
miento humano es un tema fundamental, aunque a veces polémico, debido principalmente a las hipótesis
subyacentes en su descripción, muchas veces no declaradas.

La formulación de modelos y su análisis ha permitido por una parte, un avance en diferentes áreas
de la Ciencia Matemática. Por otra lado, la modelación permite avances sustantivos en la aplicación de la
Matemática a problemas de la vida real y fenómenos naturales, cada vez más complejos.

En particular, esto acontece en la Dinámica Poblacional [1, 2], donde muchos modeladores aplican sus
conocimientos matemáticos para estudiar sistemas complejos como son las cadenas alimenticias (o redes
tróficas). En estos estudios es fundamental el conocimiento de las interacciones entre dos especies de seres
vivos, como es el caso de la depredación.

La principal motivación de la Biomatemática es la posibilidad de comprender diversos mecanismos de
los fenómenos biológicos mediante técnicas provenientes de las Matemáticas. Esta conexión existente entre
Biologı́a y Matemáticas, caracterizada por un amplio rango de comunicación, está y sigue experimentando
actualmente un proceso de activa profundización [3].

A partir de este proceso bidireccional, no solo se han resuelto problemas básicos de Biologı́a, sino que
también han surgido nuevas lı́neas de investigación en Matemáticas que han cobrado vida propia. Además,
es importante observar los nuevos campos emergentes en Matemáticas Aplicadas, como algoritmos genéti-
cos, redes neuronales, algoritmos sociobiológicos, lógica difusa, etc., que en muchos casos, deben sus con-
ceptos básicos a la Biologı́a Teórica o Biologı́a Matemática [3].

Ası́ la importancia de esta ciencia ha ido creciendo progresivamente y, en la actualidad, muchas áreas de
las Matemáticas son de utilidad en el estudio de los procesos biológicos como son: ecuaciones diferenciales,
teorı́a de grafos, matrices, métodos estadı́sticos, geometrı́a, topologı́a, etc. [4].

Particularmente, la Dinámica de Poblaciones se encuentra en la intersección de varios campos de estu-
dio tales como: las Matemáticas, las Ciencias Sociales (Demografı́a), la Biologı́a (Genética y Ecologı́a de
poblaciones) y la Medicina (Epidemiologı́a) [1].

Este artı́culo está organizado del siguiente modo: en la Sección 2, haremos una breve descripción sobre
el contexto histórico de la formulación del modelo, a continuación en la Sección 3 describiremos sus carac-
terı́sticas principales; luego en la Sección 4, agregaremos modificaciones especificas, reseñando brevemente
propiedades de alguno de los modelos modificados. En la última Sección, discutiremos los aspectos más
importantes del modelo original, indicando algunas lı́neas de trabajo que podrı́an ser abordadas a futuro.

2. El modelo de Lotka-Volterra. Muchos matematicos aplicados, y en especial los Biomatemáticos
conocen el primer modelo para la interacción entre un depredador y su presa favorita propuesto por el
matemático italiano Vito Volterra, en dos artı́culos complementarios publicados en 1926 [5, 6].

El modelo propuesto por Volterra es el primer intento de la aplicación de un sistema de ecuaciones
diferenciales ordinarias (EDO) para describir la dinámica de dos poblaciones interactuantes, un simple
sistema trófico compuestos por únicas especies presas y depredadoras [7].

Este seminal modelo, publicado hace cien años, coincide con otro sistema propuesto por el fı́sico-
quı́mico estadounidense Alfred J. Lotka [8], años antes, para reacciones quı́micas [9, 10]. Por eso el nombre
de modelo de Lotka-Volterra [9].

Desde su propuesta, y con un un carácter epidémico, una creciente complejidad y realismo natural se
han ido incorporando al marco formal fundamental de los modelos de depredación [2].

Debemos destacar, sin embargo, que la formulación de este primer modelo no se habrı́a producido, si
no hubieran confluı́do, diversos hechos y personas que estudiaban un hecho significativo en el ámbito de
las pesquerı́as.

Posteriormente, en los siguientes dos años, y con el mismo nombre del artı́culo publicado en 1926, Vol-
terra extiende su modelación describiendo sistemas bidimensionales más generales [11, 12]. En esto nuevos
artı́culos Volterra supone auto-interferencia entre las poblaciones (descripción considerando crecimiento
logı́stico en cada población) [13]. Si no existe, interacción entre las especies el sistema es desacoplado y las
poblaciones tienen un crecimiento logı́stico independiente.

Incluso en el trabajo publicado en 1931 [14], Volterra incorpora las ecuaciones integro-diferenciales,
que eran su objeto de estudio principal en los años previos.

Según algunos autores, en el año 1926 con el modelo de Volterra nació la ecologı́a cuantitativa de in-
teracciones tróficas complejas [15]. Por otra parte hay quienes afirman que sus contribuciones a la ecologı́a
son insuficientemente conocidas o mal entendidas [16], lo que nos lleva en este trabajo, a destacar su aporte
a esta área del conocimiento.
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2.1. El modelo de Lotka-Volterra y su contexto histórico. El biólogo marino Umberto D’Ancona
(1896-1964) considerando observaciones empı́ricas advirtió que la cantidad de selacios (tiburones y otros
depredadores similares, peces no consumidos como alimentos en aquellos años), capturados en el mar
Adriático habı́a aumentado después de la Primera Guerra Mundial, a pesar de que la actividad pesquera
general habı́a disminuido debido al conflicto.

Él supuso que al reducirse la captura de peces comestibles por parte de los pescadores, estos aumenta-
ban su tamaño poblacional; por lo tanto los peces depredadores también aumentaban su tamaño poblacional
[17].

Por aquel entonces, D´Ancona cortejaba a Luisa Volterra, hija de Vito Volterra, conocido principalmen-
te por sus trabajos sobre ecuaciones integro-diferenciales. Consultó el problema a su futuro suegro, quien
respondió desarrollando el conocido modelo depredador-presa [18], con el objeto de explicar esta anomalı́a.

Es claro que Volterra nunca se habrı́a planteado el problema sin el estı́mulo de un gran zoólogo y eco-
logista, su futuro yerno Umberto D’Ancona. Esto da cuenta que los principales avances de la Investigación
en Dinámica Poblacional y en otras áreas del saber, no son sólo producto del azar, sino de la colaboración
entre cientı́ficos de distintas áreas.

Figura 2.1: Vito Volterra (Ancona, 3 de mayo de 1860 - Roma, 11 de octubre de 1940). Fuente: Wikimedia
Commons.

Los datos que D’Ancona tenı́a, relativos al perı́odo 1905-1923, que incluı́a los años de guerra, cuando
la pesca era menos intensa, indicaban que la ”productividad”del pescador individual se mantenı́a sustan-
cialmente constante, mientras que dentro de la propia cosecha habı́a un aumento considerable (durante los
años de guerra y los inmediatamente posteriores) en el porcentaje de peces ”pertenecientes a la clase de los
selacios”, o elasmobranchii, una clase de peces que incluye tiburones, rayas y mantas [18].

Con base en estos datos, la disminución de la pesca podrı́a haber provocado un aumento de la población
de depredadores, que tienen un menor valor económico. Estas conclusiones, de confirmarse, tendrı́an obvias
implicaciones prácticas. La decisión de limitar y reducir las actividades pesqueras resultarı́a desacertada por
diversas razones: provocarı́a una disminución de las capturas a corto plazo, un aumento nulo en los perı́odos
posteriores y, en cualquier caso, una abundancia de peces con bajo valor comercial.[18].

El problema le sugirió a Volterra la idea de dividir toda la población marina en dos grandes clases:
presas y depredadores. Además, se descartaron por el momento definiciones más refinadas de fauna marina.
El número de presas y depredadores variarı́a con el tiempo: era precisamente el estudio de estas variaciones
y su posible dependencia de la mayor o menor intensidad de una fuerza externa, como la pesca, lo que
centraba la atención de Volterra. [18].

El trabajo de V. Volterra fue el precursor de los tres elementos que se han mostrado fundamentales
en la biologı́a matemática contemporánea: el proceso de modelización, el uso de ecuaciones diferenciales
(deterministas o estocásticas) y la incorporación de datos empı́ricos.

2.2. Revisión del modelo de Lotka-Volterra. El modelo de Lotka-Volterra es descrito por el siguien-
te sistema planar autónomo de ecuaciones diferenciales ordinarias (EDO) no-lineales:

Vω (x, y) :

 dx
dt = rx− qxy

dy
dt = pxy − cy,

(2.1)

donde x (t) e y (t) indican los tamaños de las poblaciones de presas y depredadores en el tiempo t ≥ 0,
respectivamente con x (0) e y (0) > 0. (Tendrán el mismo significado en el resto de la presentación).
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Los parámetros son todos positivos, esto es, ω = (r, q, p, c) ∈ R4
+, y sus significados ecológicos son los

siguientes:
r tasa intrı́nseca de crecimiento de la población de presas,
q tasa de consumo de un depredador en cada unidad de tiempo,
p tasa de nascimientos de nuevos depredadores por el consumo de presas, y
c tasa de mortalidad natural de los depredadores en ausencia de su comida favorita.

2.2.1. Propiedades dinámicas del modelo de Lotka-Volterra. Este simple sistema (2, 1) tiene las
siguientes conocidas propiedades que resumimos a continuación, pero que no daremos su demostración:

1. Está definido en Ω =
{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0

}
= R+

0 × R+
0 .

2. El conjunto Ω es una región positivamente invariante.
3. Todas las soluciones son acotadas.
4. Tiene dos puntos de equilibrio (0, 0) y (xe, ye) =

(
c
p ,

r
q

)
.

5. El equilibrio (0, 0) es un punto silla para todo valor de parámetros.
6. El equilibrio (xe, ye) =

(
c
p ,

r
q

)
siempre existe en el primer cuadrante.

7. El equilibrio
(

c
p ,

r
q

)
es un centro (neutralmente estable).

8. Todas sus soluciones al interior del primer cuadrante son órbitas cerradas, rodeando el único punto
de equilibrio positivo

(
c
p ,

r
q

)
.

9. La soluciones periódicas constituyen un conjunto denso.
10. El sistema es estructuralmente inestable. Un cambio en las funciones que describen el modelo

implica que el punto (xe, ye) pordrı́a dejar de ser un centro.
11. Los depredadores y las presas se encuentran aleatoriamente, y el número de estos encuentros no

depende de la abundancia de depredadores.

Observación 2.1. El parámetro r es el balance entre la tasa de nascimientos, muerte, emigración e
inmigración en la población de presas, es decir, r = b− d+ e− i, donde los parámetros positivos indican
los fenómenos indicados.

2.3. Soluciones en el plano de fase. En la siguiente figura (2,2) se muestra el comportamiento de las
trayectorias del sistema (2,1). Existe un único punto de equilibrio positivo (xe, ye) y todas las trayectorias
con condiciones iniciales en el interior del primer cuadrante, rodean dicho punto.

Figura 2.2: Soluciones en el plano de fase del modelo de Lotka-Volterra.(2.1)..

2.4. Interpretaciones y limitaciones ecológicas del modelo. Predicciones del modelo de Lotka-
Volterra.

1. Las poblaciones de ambas especies oscilarán a medida que transcurre el tiempo (lo cual puede no
reflejar la variabilidad observada en la naturaleza).

2. Existe un crecimiento exponencial de presas en ausencia de los depredadores (crecimiento mal-
thusiano).
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3. Los depredadores se extinguen exponencialmente cuando no existen las presas (decrecimiento
malthusiano).

4. Los depredadores consumen a sus presas de manera lineal (interacción bilineal). El modelo asu-
me una relación directa y simple entre depredadores y presas, donde la tasa de captura por cada
depredador es proporcional a la densidad de presas.

Crı́ticas ecológicas al modelo de Lotka-Volterra.
No incluye competencia intraespecı́fica entre las presas.
No considera posibles retardos en el crecimiento de las presas ni estocasticidad.
Ignora la influencia de otras especies (competencia, parásitos, etc.)
Sólo existen oscilaciones periódicas de los tamaños poblacionales, cuando los tamaños poblaciones de

ambas especies son positivos.
No considera factores limitantes como la disponibilidad de recursos alimenticios o el espacio donde

interactúan las especies ni factores ambientales que pueden afectar a ambas poblaciones.
Asume condiciones ideales que rara vez se encuentran en la naturaleza (por ejemplo, no considera el

tiempo de respuesta entre cambios en las poblaciones).
No incluye factores antidepredatorios, esto es, no incluye factores como competencia, refugios, u otras

estrategias defensivas de las presas, lo que limita su aplicabilidad a sistemas ecológicos más complejos.
La tasa de captura de los depredadores o respuesta funcional se supone lineal. Sin embargo, en diversas

situaciones reales, esta relación puede no ser lineal, ya que puede haber saturación en la captura a altas
densidades de presas.

Mitos, falacias y afirmaciones sobre el Modelo.
Es común encontrar en algunos textos no especializados y en ciertos artı́culos escritos por autores con

poca experiencia en Dinámica de Poblaciones algunas aseveraciones que no son ciertas. Por ejemplo:
1. Las soluciones periódicas son elipses. Las soluciones del sistema (2, 1) son órbitas cerradas., pero

puede demostrarse en un sistema topológicamente equivalente que las trayectorias son elipses.
2. El modelo explica la relación entre la liebre y el lince en el Ártico (u otras interacciones de de-

predación en la naturaleza como la interacción entre conejos y zorros, y otras relaciones entre dos
poblaciones.).

3. Altas tasas de depredación o reproducción descontrolada de presas puede llevar a la extinción de
los depredadores. Esto no es posible porque las soluciones son trayectorias cerradas y el punto
(∞, 0) del compacto del dominio es un equilibrio inestable.

4. El modelo da cuenta del Principio de exclusión competitiva [19, 20] pues una de las especies
se extinguirá. Siendo el sistema una descripción de un modelo de depredación, este fenómeno
ecológico no puede ocurrir. Este hecho sucede con frecuencia en la competición entre especies
[21].

5. La validez del modelo se ha comprobado empı́ricamente. Como se ha mencionado anteriormente,
existe mucha dificultad par encontrar en la naturaleza interacciones de depredación, que satisfagan
las propiedades analı́ticas del sistema (1). En general, la autointerferencia entre las presas para
compartir recursos alimenticios y espacio para desarrollarse inhiben el crecimiento poblacional de
las presas.

6. Las fluctuaciones de corto perı́odo están sincronizadas (¿existe isocronı́a? Esta afirmación no ha
sido probada).

7. Todas sus soluciones son órbitas cerradas (Recordar que x = 0 o y = 0 son soluciones del sistema,
además de punto (0, 0)).

8. El modelo no es perfecto (¿Que significa eso?).

3. Modificaciones al modelo de Lotka-Volterra. Dadas las limitaciones del modelo de Lotka-Volterra
para explicar muchas de las interacciones de depredación existentes en la naturaleza, se han propuesto
cambios en la formulación del modelo, asignando propiedades a las funciones que describen esta seminal
propuesta.

Puesto que desde la formulación del modelo de Lotka-Volterra en 1926, surgieron muchas crı́ticas a su
propiedades analı́ticas, el propio Vito Volterra planteó cambiar la función de crecimiento de las presas.

Advertimos que los resultados obtenidos son válidos bajo las hipótesis subyacentes en el modelo, las
cuales no son mencionados usualmente por los modeladores.

I. Proposiciones planteadas por Vito Volterra.
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En 1927, y con el mismo nombre del artı́culo publicado en 1926, Volterra extiende su modelación
describiendo sistemas bidimensionales más generales [11]. En este nuevo artı́culo, Volterra supone auto-
interferencia entre las poblaciones (descripción considerando crecimiento logı́stico en cada población) [13],
y fue el primero en describir un comportamiento oscilatorio estable en modelos de interacción de especies
[16].

Si no existe, interacción entre las especies, el sistema es desacoplado y las poblaciones tienen un
crecimiento logı́stico independiente.

En los años siguientes, continuó con el estudio de variados modelos de interacción entre especies , los
cuales fueron publicados en un libro en 1931 [14]. En uno de ellos, introduce el efecto de la historia pasada
en los sistemas biológicos, incorporando ecuaciones integro-diferenciales para su descripción.

II. Sistemas cuadráticos.
También por un interés principalmente matemático, se generalizó el modelo de Lotka-Volterra que fue

descrito por un sistema bidimensional de ecuaciones diferenciales ordinarias de segundo grado [24, 26] de
la forma:

Vν (x, y) :

 dx
dt = (a1 + b1x+ c1y)x

dy
dt = (a2 + b2x+ c2y) y,

(3.1)

con ν = (a1, b1, c1, a2, b2, c2) ∈ R6, los que pasaron a denominarse sistemas de Lotka-Volterra [22,
23] o sistemas cuadráticos de ecuaciones diferenciales [24, 25, 26]. Los coeficientes del sistema (3,1)
tienen interpretaciones cuando representan alguna de las interacciones entre dos especies [13].

Estos sistemas han sido estudiados bastante por diferentes autores, y su análisis se ha extendido a todo
el plano de fase [22]. En el trabajo [23] se corrige la cantidad total de dinámicas diferentes de este tipo de
modelo en todo el plano R2 establecidas previamente en [22].

III. El modelo de Volterra.
El propio Volterra propuso un nuevo modelo incluyendo el crecimiento logı́stico (ecuación de Verlhust)

para las presas [10]. Es decir, incorporó la competencia intraespecı́fica en la población de presas. Es descrito
por el sistema

Vµ (x, y) :

 dx
dt =

(
r
(
1− x

K

)
− qy

)
x

dy
dt = (px− c) y,

(3.2)

Los parámetros son positivos y tienen los mismos significados anterior, salvo K que es la capacidad de
soporte de la población de presas.

Propiedades del modelo de Volterra [27].
El sistema (3,2) tiene las siguientes propiedades generales:

1. Siempre existen los equilibrios de frontera (0, 0) y (K, 0).
2. Existe una región positivamente invariante dada por

Γ =
{
(x, y) ∈ R2 : 0 ≤ x ≤ K, y ≥ 0

}
.

3. Las soluciones son acotadas.
4. El equilibrio (0, 0) es un punto silla para todo valor de parámetros.
5. El equilibrio (K, 0) es un punto

• silla, si y sólo si, pK − c > 0,
• atractor, si y sólo si, pK − c < 0,
• silla-nodo atractor, si y sólo si, pK − c = 0.

6. El equilibrio (xe, ye) =
(

c
p ,

r
q

(
1− c

pK

))
• existe en el primer cuadrante, si y sólo si, pK − c > 0 y es un atractor,
• no existe en el primer cuadrante,, si y sólo si,pK − c < 0.
• coincide con (K, 0), si y solo si, pK − c = 0. Esto origina una bifurcación silla-nodo [33].

IV. Modelo de tipo Gause.
Un modelo generalizado de depredación fue propuesto por el biólogo ruso Georgii F. Gause (1910-

1986) en 1934 [28]; es descrito en forma general por el sistema de EDO
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Gρ (x, y) :

 dx
dt = xf (x)− h (x) y ,
dy
dt = (ph (x)− c) y,

(3.3)

donde
f (x) es la tasa de crecimiento per capita de la población de presas,
h (x) es la tasa de consumo de los depredadores o respuesta funcional.

El modelo de Volterra [10] es un caso especial de los modelos del tipo Gause [29].

V. Modelo del tipo Leslie o Leslie-Gower.
Fue propuesto por el fisiólogo escocés Patrick Holt Leslie (1900-1972) en 1948 [30], postulando que

la ecuación de crecimiento de los depredadores es también de tipo logı́stico, donde la capacidad de carga
de esta especie es proporcional a la cantidad de presas disponible en el medio ambiente. Es descrito por el
sistema

LG (x, y) :

 dx
dt = xf (x)− qh (x, y)

dy
dt = s

(
1− y

nx

)
y,

(3.4)

con Ky = K(x) = nx es la capacidad de soporte de los depredadores (dependiente de la cantidad de
presas)

VI. Sistemas de tipo Kolmogorov.
Una forma más general del sistema (2,1) fue propuesta por el matemático ruso Andrei N. Kolmogorov

(1903-1987) [31], la cual es descrita por el sistema siguiente:

K (x, y) :

 dx
dt = xf (x, y) ,

dy
dt = yg (x, y) .

(3.5)

Usualmente en estos sistemas las funciones f y g son continuas en un subconjunto de R+
0 × R+

0 . Los
ejes coordenados y el interior del primer cuadrante son conjuntos invariantes.

Para responder a algunas crı́ticas al modelo de Lotka-Volterra, el matemático ruso Kolmogorov, pro-
puso condiciones que deben satisfacer las funciones f y g para representar la interacción depredador-presa
y las restricciones que deben satisfacer para la existencia de al menos un ciclo lı́mite, estableciendo el
siguiente teorema

Teorema 3.1 (Teorema de Kolmogorov). Existencia de ciclos lı́mites, version de R May [9].
Supuesto que

1. ∂f
∂y < 0.

2. ∂g
∂x > 0.

3. Existe y1 > 0, tal que f (0, y1) = 0.
4. Existe x1 > 0, tal que g (x1, 0) = 0.
5. Existe x2 > 0, tal que f (x2, 0) = 0 con x2 > x1.
6. ∂f

∂x < 0 para valores grandes de x , pero ∂f
∂x > 0 para valores pequeños de x.

7. ∂g
∂y < 0.

8. Existe un punto de equilibrio positivo (xe, ye) el cual es inestable; esto es,
xe

∂f
∂x (xe, ye) + ye

∂g
∂y (xe, ye) > 0 y

∂f
∂x (xe, ye)

∂g
∂y (xe, ye)− ∂f

∂y (xe, ye)
∂g
∂x (xe, ye) > 0.

9. Mas aún, el punto (xe, ye) está localizado en la curva f (x, y) = 0, isoclina de las presas, cuya
pendiente es positiva.

Entonces, existe un ciclo lı́mite estable, y las poblaciones derivarán a oscilaciones periódicas permanentes.

Es importante señalar que existen sistemas de tipo Kolmogórov que no modelan interacciones entre
especies. Del mismo modo, hay modelos de relaciones entre especies que no pueden representarse mediante
sistemas de este tipo.
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3.1. Oscilaciones periódicas en la Naturaleza. Los únicos ciclos que se dan y perduran en la natura-
leza son llamados ecológicamente estables, lo cual significa que deben ser insensibles a perturbaciones del
mundo real [9].

La existencia de un ciclo estable da una explicación satisfactoria a las oscilaciones observadas en los
tamaños poblacionales en ciertas interacciones entre dos especies [32].

Un ciclo ecológicamente estable debe ser aislado y matemáticamente debe corresponder a un ciclo
lı́mite del sistema de ecuaciones que lo representa [33].

Sin embargo, NO se ha observado en la Naturaleza, interacciones presa-depredador en que existan
muchos ciclos.

Pero en la naturaleza existen interacciones destacadas que muestran ciclos ecológicamente estables,
ellas son:

el lince y la liebre del Ártico canadiense (linx-snowshoe hare),
la polilla de los bosques en árboles de los Alpes suizos (budworm-larsh tree), y
el lemming-vegetación en el norte de Europa.

También existen otras interacciones en la Naturaleza, donde se ha detectado la existencia de ciclos
lı́mite, las que se describen en el artı́culo de J. T. Tanner de 1975 [34].

Cabe preguntarse ¿Y las oscilaciones de los conejos y zorros?.
En nuestro conocimiento, no existen datos que justifiquen la existencia de órbitas periódicas entre estas

poblaciones. Sólo existen registros de aumento o disminuciones de estas especies, que no garantizan la
presencia de ciclos.

3.2. Oscilaciones periódicas y Matemática. En el mundo real y en particular en la interacción en-
tre ciertas especies, los fenómenos oscilatorios suceden con frecuencia, aún cuando no existan ”fuerzas
periódicas externas”[32].

Un problema importante en modelos de depredación descritos por EDO no-lineales, es establecer con-
diciones para la existencia de ciclos lı́mite y su unicidad [35].

Al incorporar diversos fenómenos biológicos en los modelos, la dinámica de los sistemas originales
sufren importantes cambios. Cada nuevo sistema obtenido debe ser analizado, pues NO existe una teorı́a
matemática general para establecer sus propiedades [33].

En particular, si las presas asumen algún comportamiento anti-depredatorio (APB), o su tasa de cre-
cimiento es afectada por algún evento ecológico, en el sistema podrı́an aparecer más de un ciclo lı́mite,
desaparecer estas oscilaciones o aumentar la cantidad de puntos de equlibrio [36].

3.3. Ciclos en Ecologı́a Matemática. En 1983 Courtney S. Coleman [32], propuso un problema aún
no resuelto en Dinámica Poblacional: Encontrar un modelo propuesto en la literatura ecológica, que posea
al menos dos ciclos lı́mite estables. Esto implica la existencia de al menos tres ciclos lı́mite rodeando un
punto de equilibrio positivo.

La determinación del número de soluciones periódicas en modelos ecológicos está relacionado con el
Problema 16 de Hilbert, referente a la cantidad y posición relativa de ciclos lı́mite en Sistemas Planares
polinomiales, propuesto por David Hilbert en el Congreso de Matemáticos realizado en Parı́s en 1900, que
aún permanece sin resolver [37].

4. Desafı́os en Dinámica Poblacional.

4.1. Acerca de la Modelación. El empleo de modelos matemáticos o estadı́sticos en diversos ámbitos
del conocimiento humano es un tema fundamental, aunque a veces polémico.

Esta situación queda ratificada con las diversas dificultades que se originan al construir modelos o
simulaciones que capturen completamente el funcionamiento de sistemas complejos.

El estudio de sistemas ecológicos en Dinámica Poblacional, como son las cadenas alimenticias, está
principalmente basado en el análisis de modelos describiendo interacciones entre dos especies, en particular
la dinámica de depredación (competencia, simbiosis comensalismo, amensalismo, huésped-parásito).

A medida que un modelo de un sistema complejo se vuelve más completo, se vuelve menos compren-
sible. Alternativamente, a medida que un modelo es más realista, se vuelve tan difı́cil de entender como los
procesos del mundo real que representa.

La construcción de modelos implica un compromiso (trade-off) necesario entre Generalización, Rea-
lismo y Precisión.

1. Generalización. Si un modelo se aplica a más sistemas del mundo real que otro.
2. Realismo . Si un modelo tiene en cuenta más variables independientes conocidas, para tener un

efecto mejor que otro.
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3. Precisión . Si un modelo genera predicciones adecuadas en base a los parámetros de salida.
En Dinámica de Poblaciones los modelos debieran cumplir al menos tres condiciones: Que sean

Creı́bles, Parsimoniosos y Utiles [38].

Principio de Parsimonia.
En igualdad de condiciones, la explicación más sencilla suele ser la correcta. Si un modelo que utiliza

pocas variables o parámetros no explica mucho del fenómeno, debe ser desechado.

4.2. Modelos generales de depredación. Un modelo de depredación es descrito en forma general por
el sistema de EDO

X (x, y) :

 dx
dt = xf (x)− h (x, y) ,
dy
dt = ϕ (x, y),

(4.1)

donde
f (x) es la tasa de crecimiento per capita de la población de presas,
h (x, y) es la tasa de consumo de los depredadores o respuesta funcional, y
ϕ (x, y) es la tasa de crecimiento de los depredadores.

Cada una de estos elementos fundamentales puede ser expresada por diferentes formas matemáticas
(Ver Apéndice).

En esta presentación, mostraremos la dinámica de algunos modelos de depredación, descritos por sis-
temas de ecuaciones diferenciales ordinarias autónomas, incorporando algunos fenómenos ecológicos en
modelos básicos propuestos.

También, trataremos de dejar planteados algunos problemas abiertos para los interesados, fundamen-
tados en las actuales tendencias en esta área de la modelación, los cuales deben satisfacer los criterios
establecidos en [38].

La respuesta funcional o tasa de consumo o función trófica expresa la acción del depredador en la tasa
de crecimiento de las presas [10].

Indica el cambio en la tamaño de la población (densidad) de presas muertas (o consumidas) por unidad
de tiempo y por depredador, cuando la densidad de presas está cambiando [29].

Pueden ser dependientes de ambas poblaciones h (x, y) o sólo de la población de presas, esto es, h =
h (x).

Estas últimas han sido clasificadas en 3 tipos diferentes por Courtney S. Holling en 1959 [39], en forma
empı́rica. Un cuarto tipo fue agregado por Robert Taylor en 1984 [40].

Son denominadas como respuestas funcionales de tipo Holling I, II, III y IV.

Tasa de crecimiento de los depredadores.
La tasa de crecimiento de los depredadores ϕ (x, y) puede ser expresada matematicamente de varias

formas, pero hay dos principales:
I) En modelos de tipo Gause [28] ϕ (x, y) = ph (x, y)− cy

G (x, y) :

 dx
dt = xf (x)− qh (x, y) .
dy
dt = ph (x, y)− cy.

(4.2)

II) En modelos de tipo Leslie [30] o Leslie-Gower ϕ (x, y) = s
(
1− y

Ky

)
y

LG (x, y) :

 dx
dt = xf (x)− qh (x, y),
dy
dt = s

(
1− y

nx

)
y,

(4.3)

donde Ky = K(x) = nx es la capacidad de soporte de los depredadores (dependiente de la
cantidad de presas).
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4.3. Comportamientos sociales influyendo en la depredación. Algunas de las conductas sociales
pueden ser causados por diversos motivos, por ejemplo cuando:

I) Las presas asumen comportamiento anti-depredadorios (APB), para reducir el riesgo de depreda-
ción [41], tales como:

la formación de grupos de defensa [42, 43],
la agregación [40],
el comportamiento de rebaño [44],
el uso de refugios (fı́sicos) [36, 45],
reducción de las actividades de las presas (metabolismo) [46].
reducción de la visibilidad de las presas,
migración vertical [47].

II) existe interferencia entre las presas [28].

III) Los depredadores adoptan un proceder colectivo como son:
la competición o interferencia en la cacerı́a [35],
la colaboración en la caza (hunting collaboration) [36],
los efectos inhibitorios [42], (no consumen a sus presas).

Otros aspectos que influyen en las interacciones depredador-presa son:
IV) La tasa de crecimiento de presas o depredadores puede ser afectada por algún evento ecológico,

como
el miedo [48],
la migración (traslados entre patches) [49],
el efecto Allee [50],
calentamiento global (global warming) [51].
parámetros dependiendo de la temperatura ambiente [52].

Pero también puede haber causas atribuibles a los individuos en forma aislada como:
V) tamaño del cuerpo de la presa demasiado grande o demasiado pequeño para las capacidades del

depredador,
defensas quı́micas (emisión de lı́quidos) (¿Cómo modelar?),
defensas morfológicas (aparición de púas) (¿Cómo modelar?).
defensas inducibles,
mimetismo (¿Cómo modelar?), [40], etc

Además, las poblaciones pueden tener un valor económico, que las hace vulnerables, cuando los
seres humanos (industrias) actúan como depredadores, esto es,

VI) la explotación o captura de una o ambas especies [53, 13].

5. Algunos ejemplos. A continuación formularemos tres modelos derivados, esbozando la determi-
nación de los puntos de equilibrio positivos de los sistemas.

Ejemplo 5.1. Inestabilidad estructural del modelo de Lotka-Volterra. Uso de refugio constante
Consideremos que una fracción xr de la población de presas hace uso de un lugar fı́sico para evitar la

depredación (madriguera, refugio, guarida, etc.). Supongamos que esa parte de la población es constante,
es decir, xr = σ. Por lo tanto, la cantidad de presas disponible para ser consumidas es x − σ. El sistema
de Lotka-Volterra es descrito ahora por

Xϕ (x, y) :

 dx
dt = rx− q (x− σ) y

dy
dt = p (x− σ) y − cy,

(5.1)

El sistema (4,4) no es del tipo Kolmogorov, ya que el eje vertical no es un conjunto positivamente
invariante. Se debe cumplir que x− σ > 0, para representar un modelo de depredación.

Teorema 5.1. El único punto de equilibrio positivo
(

c+pσ
p , r(c+pσ)

cq

)
del sistema (4,4) es global

asintóticamente estable (gas).
Demostración: Ver: [54] □
Observación. Este resultado llevó a afirmar a algunos modeladores que el refugio tiene un ”efecto

estabilizante” en la interacción depredador-presa.

Ejemplo 5.2. Competición o interferencia entre los depredadores.
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Un modelo derivado del modelo de Volterra [10], considerando intererencia entre los depredadores,
es descrito por el sistema

Cν (x, y) :


dx
dt =

(
r
(
1− x

K

)
− qy

)
x

dy
dt =

(
px − c− gy

y+b

)
y,

(5.2)

ν = (r,K, q, p, c, g, b) ∈ R7
+. La función g (y) = gy

y+b , indica que la competición entre los depredado-
res es acotada hasta un máximo g, pues limy→∞ = g. El parámetro b expresa la cantidad de depredadores
para saturar la mitad la competición.

Los puntos de equilibrio son (0, 0), (K, 0) y (xe, ye) que satisface las ecuaciones de las isoclinas
px − c− gy

y+a = 0 y r
(
1− x

K

)
− qy = 0.

Como y = r
q

(
1− x

K

)
, reemplazando en la segunda isoclina, se tiene que xe satisface la ecuación

cuadrática

P (x) = prx2 − (cr + gr +Kpr +Kapq)x+K (cr + gr + acq) = 0,

la cual puede tener dos soluciones reales positivas,
x1 = 1

2pr

(
(cr + gr +Kpr +Kapq)−

√
∆
)

y x2 = 1
2pr

(
(cr + gr +Kpr +Kapq) +

√
∆
)

,
si y sólo si,

∆ = (cr + gr +Kpr +Kapq)
2 − 4prK (cr + gr + acq) > 0.

Ejemplo 5.3. Impacto del miedo en un modelo de depredación.
Para describir el miedo en las presas, se considera la función f (α, y) = b

1+αy , modificando el modelo
de Leslie [10], suponiendo que el temor afecta la tasa de nacimiento de las presas b, con r = b−m.

En este caso, el modelo queda descrito por el sistema EDO del tipo Kolmogorov [29, 13].

Mυ (x, y) :


dx
dt = bx

1+αy −mx− rx2

K − qxy,

dy
dt = s

(
1 − y

nx+c

)
y,

(5.3)

con υ = (b,m, a, r,K, q, s, n, c) ∈ R9
+. Si m = 0, implica que r = b.

Las isoclinas son:
y = nx+ c, y b

1+αy −m− rx
K − qy = 0.

Reemplazando se obtiene la ecuación cuadrática:

P (x) = nα (r +Knq)x2+(r + crα+Knq +Kmnα+ 2Kcnqα)x−K
(
b−m− cq − cmα− c2qα

)
= 0,

la cual tiene una única raı́z real, si y sólo si, b−m− cq − cmα− c2qα > 0.

Observación 5.1. Es necesario hacer presente que existen variados supuestos implı́citos (subyacentes)
en los modelos usando EDO y que usualmente no se declaran. Algunos de estos supuestos son:

1. Los cambios en los tamaños poblacionales son debidos a nascimientos y muertes.
2. Los tamaños poblacionales cambian continuamente en el tiempo.
3. No se consideran factores abióticos influyendo en el crecimiento.
4. La poblaciones están homogéneamente distribuı́das en el espacio.
5. El sistema ecológico es cerrado, es decir, NO hay migraciones.
6. No se considera división por sexos o por edades.
7. Los parámetros y las variables son de naturaleza determinista.
8. No existe generación espontánea, esto es, un tamaño de población inicial nulo debe permanecer

nulo para cualquier perı́odo de tiempo y su tasa de variación también debe ser cero.

6. Discusión. En esta presentación hemos mostrado las propiedades fundamentales del modelo de
Lotka-Volterra [5], primer modelo para la depredación, descrito por un sistema de EDO en 1926. Además,

1. Se ha mostrado el contexto histórico en el que se formuló el modelo.
2. Se ha destacado no sólo el aporte realizado por el matemático italiano en la formulación del primer

modelo describiendo la interacción depredador presa [5, 6]. Además se ha destacados los estudios
realizados en los años posteriores [11, 14]. Esto le ha valido ser considerado por varios autores
como el primer biomatemático [15, 16, 56]
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3. Hemos mostrado los principales tipos de modelación para la interacción depredador-presa que se
propusieron a partir de ese modelo seminal (modelos de Gause, de Leslie, sistemas de Kolmogo-
rov)

4. En particular, se ha mostrado que el modelo de Lotka-Volterra es estructuralmente inestable, al
incorporar el uso de refugio fı́sico constante por una fracción de la población de presas [54].

5. Hemos mostrado que se pueden obtener nuevos modelos cambiando la función de crecimiento de
las presas, la respuesta funcional, o la función de crecimiento de los depredadores [9, 10].

6. En lo posible, se debe tratar de extender los resultados incorporando funciones generales y verificar
la influencia de las formas gráficas de funciones similares (structural sensitivity [57]).

7. Advertimos que un modelo explica aspectos importantes del fenómeno en estudio, pero no RIGE
el comportamiento del fenómeno.

8. Si bien es cierto que en los modelos basados en EDO aquı́ presentados pueden ser objetados por
diferentes causas, los resultados obtenidos pueden ser interpretados adecuadamente si se tiene en
consideración sus limitaciones. Los resultado analı́ticos obtenidos son válidos, pero no necesa-
riamente existe una correlación de los resultados con las diferentes interacciones existentes en la
Naturaleza.

9. Al aplicar otras ”herramientas”matemáticas para estudiar un fenómeno, como E D con Retardo, E.
D. Impulsivas, E. D. Parciales, E. D. Estocásticas, etc., no implica mayor realismo”.
Son otros puntos de vista en el estudio del fenómeno.

10. El análisis de los modelos expresados por EDO en dinámica poblacional usualmente tiene dos
perspectivas: la exclusivamente matemática, estableciendo propiedades generales de los sistemas
no-lineales, para los cuales NO existe una Teorı́a general, y la interpretación ecológica de los
resultados análiticos obtenidos.

11. Se ha hecho hincapié que el estudio de interacciones entre dos especies es importante para entender
la dinámicas de cadenas alimenticias o redes tróficas.

12. Los estudios pueden ser extendidos considerando maneras diferentes para describir el refugio, el
miedo, la colaboración entre depredadores, etc.

El modelo de Lotka-Volterra, que se ha convertido en una especie de paradigma en el estudio de los
sistemas dinámicos no lineales, ha sido objeto de numerosos trabajos y artı́culos que lo critican por su falta
de realismo [59].

Las principales fallas del modelo son la falta de un lı́mite al crecimiento de las presas, la falta de
consideración de las caracterı́sticas estacionales, es decir, considerar las tasas de crecimiento de presas y
depredadores como constantes, y proponer un modelo ideal y simplificado, limitándose a dos especies [59].

Sin embargo, contrariamente a una idea generalizada, algunos autores consideran que el modelo de
Lotka-Volterra es realista y su trabajo seminal sentó las bases para la Dinámica Poblacional moderna y la
ecologı́a matemática, aunque no haya incluidos aspectos como la estacionalidad, la migración, la contami-
nación y otros [59].

Actualmente, ha surgido varios temas de interés en los modelos de depredación. Uno de ellos se se
refiere a la sensibilidad estructural [57], y que está orientando el estudio de los modelos de interacción.

La diferencia en la estructura de bifurcaciones teniendo en cuenta formas funcionales similares se deno-
mina sensibilidad estructural [57]. Esto se presenta a menudo cuando se pueden usar diferentes respuestas
funcionales para ajustar un conjunto de datos, especialmente si los datos son escasos [57] o bien cuando son
usadas formas distintas para describir los elementos esenciales en la descripción de los modelos [58, 27].

Para orientar los trabajos de investigación futuros, es conveniente tener en cuenta los artı́culos de E.
Diz-Pita y M. V. Otero-Espinar [60, 61], quienes efectúan una revisión del estado del arte de los modelos
depredador-presa recientes , los que incluyen algunas caracterı́sticas interesantes como el efecto Allee, el
efecto del miedo, el canibalismo y la inmigración [60, 61].

Sin embargo, otros temas Más actuales se están incorporando a los modelos de depredación y a cadenas
tróficas como son el efecto de vientos fuertes (winds) [63] y el cambio climático (climate change) [62]

Por otra parte, desde un punto de vista matemático, en [37], se afirma que: ”se anticipa un nuevo
impulso en las próximas décadas en el estudio de los ciclos lı́mite en sistemas diferenciales polinomiales”.
Luego, se debe realizar el análisis de modelos de depredación enfatizando en este tipo de soluciones o
trayectorias de los sistemas. Esto se refuerza, cuando a través de un difeomorfismo se transforma el modelo
ecológico poblacional en un sistema polinomial bidimensional de EDO.
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488 González-Olivares E et al.- Selecciones Matemáticas. 2025; Vol.12(2):475-490
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[44] Vilches K, González-Olivares E, Rojas-Palma A. Prey herd behavior modeled by a generic non-differentiable functional res-

ponse, MMNP. 2018; 13-26.
[45] Sih A. Prey refuges and predator-prey stability. Theor. Popul. Biol. 1987; 31:1-12.
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Apéndice A. Funciones propuestas para describir algunos fenómenos ecológicos.
Algunas de estas funciones, ası́ como combinaciones de dos o más de ellas, pueden seleccionarse para

incorporarlas a alguno de los modelos, muchos de los cuales aún no han sido analizadoss.
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1. Funciones de crecimiento para una población.
1.1) Malthusiano xf (x) = rx, (En el modelo de Lotka-Volterra)
1.2) logı́stico xf (x) = r

(
1− x

K

)
x, (usado en el modelo de Volterra)

1.3) de Pella y Tomlinson (o Gilpin y Ayala) asimétrica.
xf (x) = r

(
1−

(
x
K

)σ)
x, con σ ̸= 1.

1.4) Con efecto Allee (overcrowding) [50]
xf (x) = r

(
1− x

K

)
(x−m)x, o

xf (x) = r
(
1− x

K − b
x+a

)
x,

xf (x) = r
(
1− x

K

)
x− bx exp (−cx).

1.5) Modelo de Smith xf (x) = r
γx+K

(
1− x

K

)
x [64].

1.6) Modelo de Gompertz xf (x) = (−r log x)x [65].

2. Respuestas funcionales de tipo Holling (sólo presa dependiente).
2.1) Respuesta funcional de Holling tipo I.

h (x) =

 qx, si x < b

qb, si x ≥ b

2.2) Respuestas funcionales de Holling tipo II.
h (x) = qx

x+a , hiperbólica,
h (x) = q (1− e−cx), de Ivlev,
h (x) = qxα

xα+aα , 0 < α < 1, [44]
h (x) = qx√

x2+a2
.

h (x) = q tanh (x), [57]
2.3) Respuestas funcionales de Holling tipo III o sigmoideas.

h (x) = qx2

x2+a2 ,
h (x) = qxn

xn+an , n > 1,

h (x) = qx2

x2+bx+a ,
h (x) = qxn

√
x2n+a2n

, n > 1.
2.3) Respuestas funcionales de Holling tipo IV o no-monotónicas.

h (x) = qx
x2+a , [42]

h (x) = qx
x2+bx+a , [43]

h (x) = qx2

x2−bx+a ,
h (x) = qxm

xp+ap , 1 ≤ m < p,
h (x) = qxα

xβ+aβ , 0 < α < β ≤ 1,
h(x) = k(e−ax − e−bx).

2.5) Respuesta funcional lineal h (x) = qx, que NO es de Holling tipo I.
2.6) Respuesta funcional de Rosenzweig h (x) = qxα con 0 < α < 1 [66].

3. Respuesta funcionales dependientes de ambas especies.
Existen varias respuestas funcionales que dependen de ambas poblaciones, como son:
3.1) razón dependiente

h (x) = qx
bx+cy ,

h (x) = qx2

bx2+cy2 ,
h (x) = qx

bx2+cy2 .
3.2) Beddington-DeAngelis h (x) = qx

a+bx+cy .
3.3) Crowley-Martin h (x) = qx

a+bx+cy+exy ,
3.4) Hassel-Varley h (x) = qx

x+cyγ , con γ ∈ ]0, 1[.
3.5) Otras respuesta funcionales pueden verse en [67].

3. Funciones describiendo uso de refugio por parte de las presas.
La cantidad de presas en refugio puede ser expresada por las funciones:
4.1) xr = βx, proporcional al tamaño total de la población de presas.
4.2) xr = γ, cantidad fija de lugares para esconderse.
4.3) xr = ηy, proporcional a la cantidad de depredadores.
4.4) xr = σxy, proporcional a la cantidad de encuentros entre ambas especies
4.5) xr = βx

x+α , una función creciente pero saturada
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4.6) xr = βx2

x2+α , una función creciente y sigmoidea pero saturada.

5. Funciones describiendo el miedo.
5.1) f (α, η, y) = η + α(1−η)

α+y , [48]

5.2) f (α, β, x, y) = b0(1+βx)
1+βx+αy , [48]

En la función 5.1 si α = 0, implica que las presas siempre viven con miedo, lo cual es algo
discutible.


