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Abstract
For many applied mathematicians, and especially for biomathematicians, the first model proposed by the
Italian mathematician Vito Volterra in 1926 is well known, describing for the first time the relationship
between a predator and its prey. This model coincided with a similar system, on chemical reactions, pro-
posed by the physicist-chemist Alfred J. Lotka years earlier. Since then, and with an epidemic character,
variations, modifications, and the incorporation of new phenomena or ecological principles have been for-
mulated to "make more realistic” the foundations and studies on this fundamental interaction between two
species of living beings. In this work, we will give a brief description of the historical context of this seminal
model, emphasizing its main properties; then we will add specific modifications, briefly outlining properties
of some of them.
Keywords . Predator-prey model, refuge, stability, bifurcations, limit cycles, separatrix curves.

Resumen

Para muchos Matemditicos aplicados, y en especial para los Biomatemdticos es bien conocido el primer mo-
delo propuesto por el matemdtico italiano Vito Volterra en 1926, describiendo por primera vez la relacion
entre un depredador y su presa. Este modelo coincidio con un sistema similar, sobre reacciones quimicas,
propuesto por el fisico-quimico Alfred J. Lotka afios antes. Desde entonces, y con un un cardcter epidémi-
co, se han formulado variaciones, modificaciones y la incorporacion de nuevos fenomenos o principios
ecolégicos para ”hacer mds realista” los fundamentos y estudios sobre esta fundamental interaccion entre
dos especies de seres vivos. En este trabajo, haremos una breve descripcion sobre el contexto historico de
este seminal modelo, haremos hincapié en las propiedades principales; luego agregaremos modificaciones
especificas, resefiando brevemente propiedades de alguno de de ellos.

Palabras clave. Modelo depredador-presa, refugio, estabilidad, bifurcaciones, ciclos limites, curvas separatrices.
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1. Introduccion. El empleo de modelos matemdticos o estadisticos en diversos dmbitos del conoci-
miento humano es un tema fundamental, aunque a veces polémico, debido principalmente a las hipdtesis
subyacentes en su descripcidon, muchas veces no declaradas.

La formulacién de modelos y su andlisis ha permitido por una parte, un avance en diferentes areas
de la Ciencia Matemadtica. Por otra lado, la modelacién permite avances sustantivos en la aplicacion de la
Matematica a problemas de la vida real y fendmenos naturales, cada vez mas complejos.

En particular, esto acontece en la Dindmica Poblacional [1, 2], donde muchos modeladores aplican sus
conocimientos matematicos para estudiar sistemas complejos como son las cadenas alimenticias (o redes
tréficas). En estos estudios es fundamental el conocimiento de las interacciones entre dos especies de seres
vivos, como es el caso de la depredacion.

La principal motivacién de la Biomatematica es la posibilidad de comprender diversos mecanismos de
los fendmenos biol6gicos mediante técnicas provenientes de las Matematicas. Esta conexion existente entre
Biologia y Matematicas, caracterizada por un amplio rango de comunicacion, estd y sigue experimentando
actualmente un proceso de activa profundizacion [3].

A partir de este proceso bidireccional, no solo se han resuelto problemas basicos de Biologia, sino que
también han surgido nuevas lineas de investigacién en Matemadticas que han cobrado vida propia. Ademas,
es importante observar los nuevos campos emergentes en Matemadticas Aplicadas, como algoritmos genéti-
cos, redes neuronales, algoritmos sociobioldgicos, logica difusa, etc., que en muchos casos, deben sus con-
ceptos basicos a la Biologia Teérica o Biologia Matematica [3].

Asi la importancia de esta ciencia ha ido creciendo progresivamente y, en la actualidad, muchas areas de
las Matematicas son de utilidad en el estudio de los procesos biolégicos como son: ecuaciones diferenciales,
teoria de grafos, matrices, métodos estadisticos, geometria, topologia, etc. [4].

Particularmente, la Dindmica de Poblaciones se encuentra en la interseccion de varios campos de estu-
dio tales como: las Matematicas, las Ciencias Sociales (Demografia), la Biologia (Genética y Ecologia de
poblaciones) y la Medicina (Epidemiologia) [1].

Este articulo esta organizado del siguiente modo: en la Seccion 2, haremos una breve descripcion sobre
el contexto historico de la formulacion del modelo, a continuacion en la Seccion 3 describiremos sus carac-
teristicas principales; luego en la Seccién 4, agregaremos modificaciones especificas, resefiando brevemente
propiedades de alguno de los modelos modificados. En la dltima Seccién, discutiremos los aspectos mds
importantes del modelo original, indicando algunas lineas de trabajo que podrian ser abordadas a futuro.

2. El modelo de Lotka-Volterra. Muchos matematicos aplicados, y en especial los Biomatematicos
conocen el primer modelo para la interaccién entre un depredador y su presa favorita propuesto por el
matemadtico italiano Vito Volterra, en dos articulos complementarios publicados en 1926 [5, 6].

El modelo propuesto por Volterra es el primer intento de la aplicacion de un sistema de ecuaciones
diferenciales ordinarias (EDO) para describir la dindmica de dos poblaciones interactuantes, un simple
sistema tréfico compuestos por Unicas especies presas y depredadoras [7].

Este seminal modelo, publicado hace cien afios, coincide con otro sistema propuesto por el fisico-
quimico estadounidense Alfred J. Lotka [8], afios antes, para reacciones quimicas [9, 10]. Por eso el nombre
de modelo de Lotka-Volterra [9].

Desde su propuesta, y con un un caricter epidémico, una creciente complejidad y realismo natural se
han ido incorporando al marco formal fundamental de los modelos de depredacién [2].

Debemos destacar, sin embargo, que la formulacién de este primer modelo no se habria producido, si
no hubieran confluido, diversos hechos y personas que estudiaban un hecho significativo en el dmbito de
las pesquerias.

Posteriormente, en los siguientes dos afios, y con el mismo nombre del articulo publicado en 1926, Vol-
terra extiende su modelacion describiendo sistemas bidimensionales mas generales [11, 12]. En esto nuevos
articulos Volterra supone auto-interferencia entre las poblaciones (descripcién considerando crecimiento
logistico en cada poblacion) [13]. Si no existe, interaccion entre las especies el sistema es desacoplado y las
poblaciones tienen un crecimiento logistico independiente.

Incluso en el trabajo publicado en 1931 [14], Volterra incorpora las ecuaciones integro-diferenciales,
que eran su objeto de estudio principal en los afios previos.

Segtin algunos autores, en el afio 1926 con el modelo de Volterra nacié la ecologia cuantitativa de in-
teracciones troficas complejas [15]. Por otra parte hay quienes afirman que sus contribuciones a la ecologia
son insuficientemente conocidas o mal entendidas [16], lo que nos lleva en este trabajo, a destacar su aporte
a esta area del conocimiento.
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2.1. El modelo de Lotka-Volterra y su contexto histérico. El biélogo marino Umberto D’ Ancona
(1896-1964) considerando observaciones empiricas advirtié que la cantidad de selacios (tiburones y otros
depredadores similares, peces no consumidos como alimentos en aquellos afios), capturados en el mar
Adriatico habia aumentado después de la Primera Guerra Mundial, a pesar de que la actividad pesquera
general habfa disminuido debido al conflicto.

El supuso que al reducirse la captura de peces comestibles por parte de los pescadores, estos aumenta-
ban su tamafio poblacional; por lo tanto los peces depredadores también aumentaban su tamafio poblacional
[17].

Por aquel entonces, D”Ancona cortejaba a Luisa Volterra, hija de Vito Volterra, conocido principalmen-
te por sus trabajos sobre ecuaciones integro-diferenciales. Consult6 el problema a su futuro suegro, quien
respondié desarrollando el conocido modelo depredador-presa [18], con el objeto de explicar esta anomalia.

Es claro que Volterra nunca se habria planteado el problema sin el estimulo de un gran zodlogo y eco-
logista, su futuro yerno Umberto D’ Ancona. Esto da cuenta que los principales avances de la Investigacion
en Dindmica Poblacional y en otras 4reas del saber, no son sélo producto del azar, sino de la colaboracién
entre cientificos de distintas dreas.

Figura 2.1: Vito Volterra (Ancona, 3 de mayo de 1860 - Roma, 11 de octubre de 1940). Fuente: Wikimedia
Commons.

Los datos que D’ Ancona tenfa, relativos al periodo 1905-1923, que incluia los afios de guerra, cuando
la pesca era menos intensa, indicaban que la “’productividad”del pescador individual se mantenia sustan-
cialmente constante, mientras que dentro de la propia cosecha habia un aumento considerable (durante los
afios de guerra y los inmediatamente posteriores) en el porcentaje de peces “pertenecientes a la clase de los
selacios”, o elasmobranchii, una clase de peces que incluye tiburones, rayas y mantas [18].

Con base en estos datos, la disminucién de la pesca podria haber provocado un aumento de la poblacién
de depredadores, que tienen un menor valor econémico. Estas conclusiones, de confirmarse, tendrian obvias
implicaciones practicas. La decision de limitar y reducir las actividades pesqueras resultaria desacertada por
diversas razones: provocaria una disminucion de las capturas a corto plazo, un aumento nulo en los periodos
posteriores y, en cualquier caso, una abundancia de peces con bajo valor comercial.[18].

El problema le sugirié a Volterra la idea de dividir toda la poblacién marina en dos grandes clases:
presas y depredadores. Ademas, se descartaron por el momento definiciones mas refinadas de fauna marina.
El nimero de presas y depredadores variaria con el tiempo: era precisamente el estudio de estas variaciones
y su posible dependencia de la mayor o menor intensidad de una fuerza externa, como la pesca, lo que
centraba la atencion de Volterra. [18].

El trabajo de V. Volterra fue el precursor de los tres elementos que se han mostrado fundamentales
en la biologia matematica contemporédnea: el proceso de modelizacion, el uso de ecuaciones diferenciales
(deterministas o estocdsticas) y la incorporacién de datos empiricos.

2.2. Revision del modelo de Lotka-Volterra. El modelo de Lotka-Volterra es descrito por el siguien-
te sistema planar auténomo de ecuaciones diferenciales ordinarias (EDO) no-lineales:

dx

Vo(wy):q @ = T @.1)
) dy _
dt = pry—cy,

donde z (t) e y () indican los tamafios de las poblaciones de presas y depredadores en el tiempo ¢ > 0,
respectivamente con z (0) e y (0) > 0. (Tendran el mismo significado en el resto de la presentacion).
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Los pardmetros son todos positivos, esto es, w = (r,¢,p,c) € Ri, y sus significados ecolégicos son los
siguientes:

r tasa intrinseca de crecimiento de la poblacién de presas,

q tasa de consumo de un depredador en cada unidad de tiempo,

p tasa de nascimientos de nuevos depredadores por el consumo de presas, y

c tasa de mortalidad natural de los depredadores en ausencia de su comida favorita.

2.2.1. Propiedades dinidmicas del modelo de Lotka-Volterra. Este simple sistema (2, 1) tiene las
siguientes conocidas propiedades que resumimos a continuacién, pero que no daremos su demostracion:

1.

© N kD

11.

Estd definidoen Q = {(z,9) eR?*: 2 >0,y > 0} =Ry x R].

El conjunto €2 es una region positivamente invariante.

Todas las soluciones son acotadas.

Tiene dos puntos de equilibrio (0,0) y (ze,y.) = (%, g)

El equilibrio (0, 0) es un punto silla para todo valor de pardmetros.

El equilibrio (z¢,ye) = (19), g) siempre existe en el primer cuadrante.

El equilibrio (19), g) es un centro (neutralmente estable).

Todas sus soluciones al interior del primer cuadrante son 6rbitas cerradas, rodeando el inico punto
de equilibrio positivo (%, g)

La soluciones periddicas constituyen un conjunto denso.

. El sistema es estructuralmente inestable. Un cambio en las funciones que describen el modelo

implica que el punto (., y.) pordria dejar de ser un centro.
Los depredadores y las presas se encuentran aleatoriamente, y el nimero de estos encuentros no
depende de la abundancia de depredadores.

Observacion 2.1. El pardmetro r es el balance entre la tasa de nascimientos, muerte, emigracion e
inmigracion en la poblacion de presas, es decir, r = b — d + e — i, donde los pardmetros positivos indican
los fenomenos indicados.

2.3. Soluciones en el plano de fase. En la siguiente figura (2,2) se muestra el comportamiento de las
trayectorias del sistema (2,1). Existe un tnico punto de equilibrio positivo (z.,y.) y todas las trayectorias
con condiciones iniciales en el interior del primer cuadrante, rodean dicho punto.

4.5 r = — — ., — — = =

Figura 2.2: Soluciones en el plano de fase del modelo de Lotka-Volterra.(2.1)..

2.4. Interpretaciones y limitaciones ecoldgicas del modelo. Predicciones del modelo de Lotka-
Volterra.

1.

Las poblaciones de ambas especies oscilardn a medida que transcurre el tiempo (lo cual puede no
reflejar la variabilidad observada en la naturaleza).

2. Existe un crecimiento exponencial de presas en ausencia de los depredadores (crecimiento mal-

thusiano).



Gonziélez-Olivares E et al.- Selecciones Matematicas. 2025; Vol.12(2):475-490 479

3. Los depredadores se extinguen exponencialmente cuando no existen las presas (decrecimiento
malthusiano).

4. Los depredadores consumen a sus presas de manera lineal (interaccion bilineal). El modelo asu-
me una relacion directa y simple entre depredadores y presas, donde la tasa de captura por cada
depredador es proporcional a la densidad de presas.

Criticas ecologicas al modelo de Lotka-Volterra.

No incluye competencia intraespecifica entre las presas.

No considera posibles retardos en el crecimiento de las presas ni estocasticidad.

Ignora la influencia de otras especies (competencia, parasitos, etc.)

Sélo existen oscilaciones periddicas de los tamafios poblacionales, cuando los tamafios poblaciones de
ambas especies son positivos.

No considera factores limitantes como la disponibilidad de recursos alimenticios o el espacio donde
interactdan las especies ni factores ambientales que pueden afectar a ambas poblaciones.

Asume condiciones ideales que rara vez se encuentran en la naturaleza (por ejemplo, no considera el
tiempo de respuesta entre cambios en las poblaciones).

No incluye factores antidepredatorios, esto es, no incluye factores como competencia, refugios, u otras
estrategias defensivas de las presas, lo que limita su aplicabilidad a sistemas ecoldgicos mas complejos.

La tasa de captura de los depredadores o respuesta funcional se supone lineal. Sin embargo, en diversas
situaciones reales, esta relacion puede no ser lineal, ya que puede haber saturacién en la captura a altas
densidades de presas.

Mitos, falacias y afirmaciones sobre el Modelo.
Es comun encontrar en algunos textos no especializados y en ciertos articulos escritos por autores con
poca experiencia en Dindmica de Poblaciones algunas aseveraciones que no son ciertas. Por ejemplo:

1. Las soluciones periddicas son elipses. Las soluciones del sistema (2, 1) son 6rbitas cerradas., pero
puede demostrarse en un sistema topolégicamente equivalente que las trayectorias son elipses.

2. El modelo explica la relacién entre la liebre y el lince en el Artico (u otras interacciones de de-
predacién en la naturaleza como la interaccidn entre conejos y zorros, y otras relaciones entre dos
poblaciones.).

3. Altas tasas de depredacion o reproduccion descontrolada de presas puede llevar a la extincion de
los depredadores. Esto no es posible porque las soluciones son trayectorias cerradas y el punto
(00, 0) del compacto del dominio es un equilibrio inestable.

4. El modelo da cuenta del Principio de exclusién competitiva [19, 20] pues una de las especies
se extinguird. Siendo el sistema una descripcién de un modelo de depredacion, este fenémeno
ecoldgico no puede ocurrir. Este hecho sucede con frecuencia en la competicién entre especies
[21].

5. La validez del modelo se ha comprobado empiricamente. Como se ha mencionado anteriormente,
existe mucha dificultad par encontrar en la naturaleza interacciones de depredacion, que satisfagan
las propiedades analiticas del sistema (1). En general, la autointerferencia entre las presas para
compartir recursos alimenticios y espacio para desarrollarse inhiben el crecimiento poblacional de
las presas.

6. Las fluctuaciones de corto periodo estdn sincronizadas (;existe isocronia? Esta afirmacién no ha
sido probada).

7. Todas sus soluciones son 6rbitas cerradas (Recordar que x = 0 o y = 0 son soluciones del sistema,
ademds de punto (0,0)).

8. El modelo no es perfecto (;Que significa eso?).

3. Modificaciones al modelo de Lotka-Volterra. Dadas las limitaciones del modelo de Lotka-Volterra
para explicar muchas de las interacciones de depredacién existentes en la naturaleza, se han propuesto
cambios en la formulacién del modelo, asignando propiedades a las funciones que describen esta seminal
propuesta.

Puesto que desde la formulacion del modelo de Lotka-Volterra en 1926, surgieron muchas criticas a su
propiedades analiticas, el propio Vito Volterra planteé cambiar la funcién de crecimiento de las presas.

Advertimos que los resultados obtenidos son vdlidos bajo las hipdtesis subyacentes en el modelo, las
cuales no son mencionados usualmente por los modeladores.

1. Proposiciones planteadas por Vito Volterra.
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En 1927, y con el mismo nombre del articulo publicado en 1926, Volterra extiende su modelacién
describiendo sistemas bidimensionales mas generales [11]. En este nuevo articulo, Volterra supone auto-
interferencia entre las poblaciones (descripcion considerando crecimiento logistico en cada poblacién) [13],
y fue el primero en describir un comportamiento oscilatorio estable en modelos de interaccién de especies
[16].

Si no existe, interaccién entre las especies, el sistema es desacoplado y las poblaciones tienen un
crecimiento logistico independiente.

En los afios siguientes, continud con el estudio de variados modelos de interaccion entre especies , los
cuales fueron publicados en un libro en 1931 [14]. En uno de ellos, introduce el efecto de la historia pasada
en los sistemas bioldgicos, incorporando ecuaciones integro-diferenciales para su descripcion.

II. Sistemas cuadraticos.

También por un interés principalmente matemadtico, se generaliz6 el modelo de Lotka-Volterra que fue
descrito por un sistema bidimensional de ecuaciones diferenciales ordinarias de segundo grado [24, 26] de
la forma:

dz =
Vi (y): 4 o (b ey e (3.1)
Y= (a4 bar +c2y)y,

con v = (ay,by,c1,az, by, c2) € RS, los que pasaron a denominarse sistemas de Lotka-Volterra [22,
23] o sistemas cuadrdticos de ecuaciones diferenciales [24, 25, 26]. Los coeficientes del sistema (3,1)
tienen interpretaciones cuando representan alguna de las interacciones entre dos especies [13].

Estos sistemas han sido estudiados bastante por diferentes autores, y su andlisis se ha extendido a todo
el plano de fase [22]. En el trabajo [23] se corrige la cantidad total de dindmicas diferentes de este tipo de
modelo en todo el plano R? establecidas previamente en [22].

[II. El modelo de Volterra.

El propio Volterra propuso un nuevo modelo incluyendo el crecimiento logistico (ecuacién de Verlhust)
para las presas [10]. Es decir, incorporé la competencia intraespecifica en la poblacidn de presas. Es descrito
por el sistema

dz _z\ _

Vi(zy): 4 * (=) —ay)e (3.2)
Bo= -y
dt ’

Los pardmetros son positivos y tienen los mismos significados anterior, salvo K que es la capacidad de
soporte de la poblacion de presas.

Propiedades del modelo de Volterra [27].
El sistema (3,2) tiene las siguientes propiedades generales:
1. Siempre existen los equilibrios de frontera (0,0) y (K, 0).
2. Existe una region positivamente invariante dada por
F:{(:c,y)ERQ:nggK,yZO}.
3. Las soluciones son acotadas.
El equilibrio (0, 0) es un punto silla para todo valor de parametros.
5. El equilibrio (K, 0) es un punto
e silla, siy sélosi, pK —c >0,
e atractor, siy solo si, pK — ¢ < 0,
e silla-nodo atractor, si y sélo si, pK — ¢ = 0.

6. El equilibrio (2, ye) = (g,g (1 - TK))
e existe en el primer cuadrante, si y s6lo si, pK — ¢ > 0y es un atractor,
e 1o existe en el primer cuadrante,, si 'y sélo si,pK — ¢ < 0.

e coincide con (K, 0), siy solo si, pK — ¢ = 0. Esto origina una bifurcacién silla-nodo [33].

>

IV. Modelo de tipo Gause.
Un modelo generalizado de depredacién fue propuesto por el bidlogo ruso Georgii F. Gause (1910-
1986) en 1934 [28]; es descrito en forma general por el sistema de EDO
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& = af(x)-h(x)y.

Gp(xa ):
A R

(3.3)

donde
f (z) es la tasa de crecimiento per capita de la poblacién de presas,
h (z) es la tasa de consumo de los depredadores o respuesta funcional.
El modelo de Volterra [10] es un caso especial de los modelos del tipo Gause [29].

V. Modelo del tipo Leslie o Leslie-Gower.

Fue propuesto por el fisidlogo escocés Patrick Holt Leslie (1900-1972) en 1948 [30], postulando que
la ecuacién de crecimiento de los depredadores es también de tipo logistico, donde la capacidad de carga
de esta especie es proporcional a la cantidad de presas disponible en el medio ambiente. Es descrito por el
sistema

dz zf (x) —qh(v,y)
& s(1-£)y,

LG (z,y) : (3.4)

con K, = K(z) = nx es la capacidad de soporte de los depredadores (dependiente de la cantidad de
presas)

VL. Sistemas de tipo Kolmogorov.
Una forma mds general del sistema (2,1) fue propuesta por el matematico ruso Andrei N. Kolmogorov
(1903-1987) [31], la cual es descrita por el sistema siguiente:

di =
K(zy):q & =f (@9), 3.5
Z = yg(z,y).

Usualmente en estos sistemas las funciones f y g son continuas en un subconjunto de Ra’ X Rf{ .Los
ejes coordenados y el interior del primer cuadrante son conjuntos invariantes.

Para responder a algunas criticas al modelo de Lotka-Volterra, el matematico ruso Kolmogorov, pro-
puso condiciones que deben satisfacer las funciones f y g para representar la interaccién depredador-presa
y las restricciones que deben satisfacer para la existencia de al menos un ciclo limite, estableciendo el
siguiente teorema

Teorema 3.1 (Teorema de Kolmogorov). Existencia de ciclos limites, version de R May [9].

Supuesto que

120 <.

52 > 0.
Existe y; > 0, tal que f (0,y1) = 0.
Existe x1 > 0, tal que g (x1,0) = 0.
Existe xo > 0, tal que f (x2,0) = 0 con xo > x1.
9 <0 para valores grandes de x , pero g > 0 para valores pequerios de x.
=2 < 0.
Existe un punto de equilibrio positivo (., y.) el cual es inestable; esto es,
Le gi (xevye) + ye(% (Te,ye) >0y
g£ (xeaye) (Te,Ye) — gi (levye) (Tesye) > 0.
9. Mas aiin, el punto (a:e, Ye) estd localizado en la curva f (x,y) = 0, isoclina de las presas, cuya
pendiente es positiva.
Entonces, existe un ciclo limite estable, y las poblaciones derivardn a oscilaciones periodicas permanentes.

o N kN

Es importante sefialar que existen sistemas de tipo Kolmogdrov que no modelan interacciones entre
especies. Del mismo modo, hay modelos de relaciones entre especies que no pueden representarse mediante
sistemas de este tipo.
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3.1. Oscilaciones periddicas en la Naturaleza. Los tinicos ciclos que se dan y perduran en la natura-
leza son llamados ecoldgicamente estables, 1o cual significa que deben ser insensibles a perturbaciones del
mundo real [9].

La existencia de un ciclo estable da una explicacidn satisfactoria a las oscilaciones observadas en los
tamafios poblacionales en ciertas interacciones entre dos especies [32].

Un ciclo ecoldgicamente estable debe ser aislado y mateméticamente debe corresponder a un ciclo
limite del sistema de ecuaciones que lo representa [33].

Sin embargo, NO se ha observado en la Naturaleza, interacciones presa-depredador en que existan
muchos ciclos.

Pero en la naturaleza existen interacciones destacadas que muestran ciclos ecolégicamente estables,
ellas son:

el lince y la liebre del Artico canadiense (linx-snowshoe hare),
la polilla de los bosques en arboles de los Alpes suizos (budworm-larsh tree), y
el lemming-vegetacion en el norte de Europa.

También existen otras interacciones en la Naturaleza, donde se ha detectado la existencia de ciclos
limite, las que se describen en el articulo de J. T. Tanner de 1975 [34].

Cabe preguntarse (Y las oscilaciones de los conejos y zorros?.

En nuestro conocimiento, no existen datos que justifiquen la existencia de orbitas periddicas entre estas
poblaciones. Sélo existen registros de aumento o disminuciones de estas especies, que no garantizan la
presencia de ciclos.

3.2. Oscilaciones periddicas y Matematica. En el mundo real y en particular en la interaccion en-
tre ciertas especies, los fendmenos oscilatorios suceden con frecuencia, atin cuando no existan ’fuerzas
periddicas externas”[32].

Un problema importante en modelos de depredacién descritos por EDO no-lineales, es establecer con-
diciones para la existencia de ciclos limite y su unicidad [35].

Al incorporar diversos fendmenos bioldgicos en los modelos, la dindmica de los sistemas originales
sufren importantes cambios. Cada nuevo sistema obtenido debe ser analizado, pues NO existe una teoria
matematica general para establecer sus propiedades [33].

En particular, si las presas asumen algiin comportamiento anti-depredatorio (APB), o su tasa de cre-
cimiento es afectada por algln evento ecoldgico, en el sistema podrian aparecer mas de un ciclo limite,
desaparecer estas oscilaciones o aumentar la cantidad de puntos de equlibrio [36].

3.3. Ciclos en Ecologia Matematica. En 1983 Courtney S. Coleman [32], propuso un problema atin
no resuelto en Dindmica Poblacional: Encontrar un modelo propuesto en la literatura ecoldgica, que posea
al menos dos ciclos limite estables. Esto implica la existencia de al menos tres ciclos limite rodeando un
punto de equilibrio positivo.

La determinacién del nimero de soluciones periddicas en modelos ecoldgicos estd relacionado con el
Problema 16 de Hilbert, referente a la cantidad y posicion relativa de ciclos limite en Sistemas Planares
polinomiales, propuesto por David Hilbert en el Congreso de Matematicos realizado en Paris en 1900, que
aun permanece sin resolver [37].

4. Desafios en Dinamica Poblacional.

4.1. Acerca de la Modelaciéon. El empleo de modelos matematicos o estadisticos en diversos ambitos
del conocimiento humano es un tema fundamental, aunque a veces polémico.

Esta situacion queda ratificada con las diversas dificultades que se originan al construir modelos o
simulaciones que capturen completamente el funcionamiento de sistemas complejos.

El estudio de sistemas ecoldgicos en Dindmica Poblacional, como son las cadenas alimenticias, esta
principalmente basado en el andlisis de modelos describiendo interacciones entre dos especies, en particular
la dindmica de depredacién (competencia, simbiosis comensalismo, amensalismo, huésped-parasito).

A medida que un modelo de un sistema complejo se vuelve mds completo, se vuelve menos compren-
sible. Alternativamente, a medida que un modelo es mds realista, se vuelve tan dificil de entender como los
procesos del mundo real que representa.

La construccion de modelos implica un compromiso (trade-off) necesario entre Generalizacion, Rea-
lismo y Precision.

1. Generalizacién. Siun modelo se aplica a mas sistemas del mundo real que otro.
2. Realismo . Si un modelo tiene en cuenta mas variables independientes conocidas, para tener un
efecto mejor que otro.
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3. Precision . Si un modelo genera predicciones adecuadas en base a los parametros de salida.
En Dindmica de Poblaciones los modelos debieran cumplir al menos tres condiciones: Que sean
Creibles, Parsimoniosos y Utiles [38].

Principio de Parsimonia.
En igualdad de condiciones, la explicacion mas sencilla suele ser la correcta. Si un modelo que utiliza
pocas variables o pardmetros no explica mucho del fenémeno, debe ser desechado.

4.2. Modelos generales de depredacion. Un modelo de depredacién es descrito en forma general por
el sistema de EDO

dz —h ,
X(@y):q o ZJZ:“) (z,y) @.1)
¥ = S Y)s

donde
f (z) es la tasa de crecimiento per capita de la poblacién de presas,
h (x,y) es la tasa de consumo de los depredadores o respuesta funcional, y
¢ (z,y) es la tasa de crecimiento de los depredadores.

Cada una de estos elementos fundamentales puede ser expresada por diferentes formas matematicas
(Ver Apéndice).

En esta presentacién, mostraremos la dindmica de algunos modelos de depredacién, descritos por sis-
temas de ecuaciones diferenciales ordinarias auténomas, incorporando algunos fenémenos ecoldgicos en
modelos basicos propuestos.

También, trataremos de dejar planteados algunos problemas abiertos para los interesados, fundamen-
tados en las actuales tendencias en esta area de la modelacidn, los cuales deben satisfacer los criterios
establecidos en [38].

La respuesta funcional o tasa de consumo o funcién tréfica expresa la accion del depredador en la tasa
de crecimiento de las presas [10].

Indica el cambio en la tamafio de la poblacién (densidad) de presas muertas (o consumidas) por unidad
de tiempo y por depredador, cuando la densidad de presas esta cambiando [29].

Pueden ser dependientes de ambas poblaciones h (z, y) o sélo de la poblacién de presas, esto es, h =
h(x).

Estas ultimas han sido clasificadas en 3 tipos diferentes por Courtney S. Holling en 1959 [39], en forma
empirica. Un cuarto tipo fue agregado por Robert Taylor en 1984 [40].

Son denominadas como respuestas funcionales de tipo Holling I, I, Il y IV.

Tasa de crecimiento de los depredadores.
La tasa de crecimiento de los depredadores ¢ (z,y) puede ser expresada matematicamente de varias
formas, pero hay dos principales:
I) En modelos de tipo Gause [28] ¢ (z,y) = ph (x,y) — cy

e —  pf(z)—qh(z,y).
oo { f @)= ah (z,9) wr
@ = phizy) —cy
II) En modelos de tipo Leslie [30] o Leslie-Gower ¢ (x,y) = s (1 — K%/) y
dz — () — gh xz,),
()] f (@) —qh(z,y) 43)
@ = (=)

donde K, = K(x) = nx es la capacidad de soporte de los depredadores (dependiente de la
cantidad de presas).
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4.3. Comportamientos sociales influyendo en la depredacion. Algunas de las conductas sociales
pueden ser causados por diversos motivos, por ejemplo cuando:
I) Las presas asumen comportamiento anti-depredadorios (APB), para reducir el riesgo de depreda-
cién [41], tales como:

la formacion de grupos de defensa [42, 43],
la agregacion [40],
el comportamiento de rebafio [44],
el uso de refugios (fisicos) [36, 45],
reduccion de las actividades de las presas (metabolismo) [46].
reduccion de la visibilidad de las presas,
migracion vertical [47].

II) existe interferencia entre las presas [28].

III) Los depredadores adoptan un proceder colectivo como son:
la competicién o interferencia en la caceria [35],
la colaboracién en la caza (hunting collaboration) [36],
los efectos inhibitorios [42], (no consumen a sus presas).
Otros aspectos que influyen en las interacciones depredador-presa son:
IV) La tasa de crecimiento de presas o depredadores puede ser afectada por algtin evento ecoldgico,
como
el miedo [48],
la migracién (traslados entre patches) [49],
el efecto Allee [50],
calentamiento global (global warming) [51].
pardmetros dependiendo de la temperatura ambiente [52].

Pero también puede haber causas atribuibles a los individuos en forma aislada como:
V) tamaio del cuerpo de la presa demasiado grande o demasiado pequefio para las capacidades del
depredador,
defensas quimicas (emisién de liquidos) (;Cémo modelar?),
defensas morfoldgicas (aparicién de puas) (;Cémo modelar?).
defensas inducibles,
mimetismo (;Cémo modelar?), [40], etc

Ademads, las poblaciones pueden tener un valor econdmico, que las hace vulnerables, cuando los
seres humanos (industrias) actian como depredadores, esto es,
VI) la explotacion o captura de una o ambas especies [53, 13].

5. Algunos ejemplos. A continuacién formularemos tres modelos derivados, esbozando la determi-
nacién de los puntos de equilibrio positivos de los sistemas.

Ejemplo 5.1. Inestabilidad estructural del modelo de Lotka-Volterra. Uso de refugio constante

Consideremos que una fraccion x.. de la poblacion de presas hace uso de un lugar fisico para evitar la
depredacion (madriguera, refugio, guarida, etc.). Supongamos que esa parte de la poblacion es constante,
es decir, x, = o. Por lo tanto, la cantidad de presas disponible para ser consumidas es x — o. El sistema
de Lotka-Volterra es descrito ahora por

dr _ (e
Xo(wyy):{ & = TEmamoly (5.1)
@ = plE-o)y—ca,

El sistema (4,4) no es del tipo Kolmogorov, ya que el eje vertical no es un conjunto positivamente
invariante. Se debe cumplir que © — o > 0, para representar un modelo de depredacion.

Teorema 5.1. El iinico punto de equilibrio positivo (H'%, N%f‘”) del sistema (4,4) es global
asintdticamente estable (gas).

Demostracion: Ver: [54] O

Observacion. Este resultado llevo a afirmar a algunos modeladores que el refugio tiene un “efecto

estabilizante” en la interaccion depredador-presa.

Ejemplo 5.2. Competicion o interferencia entre los depredadores.
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Un modelo derivado del modelo de Volterra [10], considerando intererencia entre los depredadores,
es descrito por el sistema

Cy(z,y): % - (T (1—%)—qy)x (5.2)
& = (px—c—%)y,

v=(rK,qp,c,g,b)€ RZF. La funcion g (y) = %, indica que la competicion entre los depredado-
res es acotada hasta un mdximo g, pues lim,_, o = g. El pardmetro b expresa la cantidad de depredadores
para saturar la mitad la competicion.

Los puntos de equilibrio son (0,0), (K,0) y (ze,ye) que satisface las ecuaciones de las isoclinas

—c— 9y _— _ oz _ _
pr —c y+a—0yr(1 K) qy = 0.
Comoy = g (1 — %) reemplazando en la segunda isoclina, se tiene que x. satisface la ecuacion
cuadrdtica

P (z) = pra® — (cr + gr + Kpr + Kapq) « + K (cr 4 gr + acq) = 0,

la cual puede tener dos soluciones reales positivas,
T = 5 ((cr—i—gr—i—Kpr—i— Kapq) — \/K) YTy = 5 ((cr—i—gr—f— Kpr + Kapq) + \/Z),

2pr 2pr
si 'y solo si,

A= (cr+gr+Kpr+Kapq)2 —4prK (er 4+ gr + acq) > 0.

Ejemplo 5.3. Impacto del miedo en un modelo de depredacion.

Para describir el miedo en las presas, se considera la funcion f (o, y) = ﬁ, modificando el modelo
de Leslie [10], suponiendo que el temor afecta la tasa de nacimiento de las presas b, conr = b — m.

En este caso, el modelo queda descrito por el sistema EDO del tipo Kolmogorov [29, 13].

dz _ bx ra?
T = —mz — = — quy,

. dt 1+ay
M, (z,y) : ay (1 Ly ) (5.3)
dt - nr4c Y,

conv = (b,m,a,r,K,q,s,n,c) € RY. Sim =0, implica que r = b.
Las isoclinas son:

rT

_ b _
yfnx+c,ymfmf?fqyf0.
Reemplazando se obtiene la ecuacion cuadrdtica:

P (z) = na(r + Kng) 2®+(r + cra + Kng + Kmna + 2K enga) 2—K (b — m — cg — ema — ¢*qa) = 0,
la cual tiene una vinica raiz real, si y sélo si, b — m — cq — cma — c?qa > 0.

Observacion 5.1. Es necesario hacer presente que existen variados supuestos implicitos (subyacentes)
en los modelos usando EDO y que usualmente no se declaran. Algunos de estos supuestos son:
Los cambios en los tamariios poblacionales son debidos a nascimientos y muertes.
Los tamarios poblacionales cambian continuamente en el tiempo.
No se consideran factores abidticos influyendo en el crecimiento.
La poblaciones estdn homogéneamente distribuidas en el espacio.
El sistema ecoldgico es cerrado, es decir, NO hay migraciones.
No se considera division por sexos o por edades.
Los pardmetros y las variables son de naturaleza determinista.
No existe generacion espontdnea, esto es, un tamaiio de poblacion inicial nulo debe permanecer
nulo para cualquier periodo de tiempo y su tasa de variacion también debe ser cero.

0N AW~

6. Discusion. En esta presentacién hemos mostrado las propiedades fundamentales del modelo de
Lotka-Volterra [5], primer modelo para la depredacién, descrito por un sistema de EDO en 1926. Ademas,

1. Se ha mostrado el contexto histdrico en el que se formulé el modelo.

2. Se ha destacado no sélo el aporte realizado por el matematico italiano en la formulacién del primer
modelo describiendo la interaccidn depredador presa [5, 6]. Ademads se ha destacados los estudios
realizados en los afios posteriores [11, 14]. Esto le ha valido ser considerado por varios autores
como el primer biomatematico [15, 16, 56]
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3. Hemos mostrado los principales tipos de modelacion para la interaccion depredador-presa que se
propusieron a partir de ese modelo seminal (modelos de Gause, de Leslie, sistemas de Kolmogo-
rov)

4. En particular, se ha mostrado que el modelo de Lotka-Volterra es estructuralmente inestable, al
incorporar el uso de refugio fisico constante por una fracciéon de la poblacién de presas [54].

5. Hemos mostrado que se pueden obtener nuevos modelos cambiando la funcion de crecimiento de
las presas, la respuesta funcional, o 1a funcion de crecimiento de los depredadores [9, 10].

6. Enlo posible, se debe tratar de extender los resultados incorporando funciones generales y verificar
la influencia de las formas graficas de funciones similares (structural sensitivity [57]).

7. Advertimos que un modelo explica aspectos importantes del fendmeno en estudio, pero no RIGE
el comportamiento del fendmeno.

8. Si bien es cierto que en los modelos basados en EDO aqui presentados pueden ser objetados por
diferentes causas, los resultados obtenidos pueden ser interpretados adecuadamente si se tiene en
consideracién sus limitaciones. Los resultado analiticos obtenidos son validos, pero no necesa-
riamente existe una correlacién de los resultados con las diferentes interacciones existentes en la
Naturaleza.

9. Al aplicar otras "herramientas”’matemadticas para estudiar un fenémeno, como E D con Retardo, E.
D. Impulsivas, E. D. Parciales, E. D. Estocasticas, etc., no implica mayor realismo”.

Son otros puntos de vista en el estudio del fenémeno.

10. El andlisis de los modelos expresados por EDO en dindmica poblacional usualmente tiene dos
perspectivas: la exclusivamente matematica, estableciendo propiedades generales de los sistemas
no-lineales, para los cuales NO existe una Teoria general, y la interpretacion ecoldgica de los
resultados andliticos obtenidos.

11. Se ha hecho hincapié que el estudio de interacciones entre dos especies es importante para entender
la dindmicas de cadenas alimenticias o redes trdficas.

12. Los estudios pueden ser extendidos considerando maneras diferentes para describir el refugio, el
miedo, la colaboracion entre depredadores, etc.

El modelo de Lotka-Volterra, que se ha convertido en una especie de paradigma en el estudio de los
sistemas dindmicos no lineales, ha sido objeto de numerosos trabajos y articulos que lo critican por su falta
de realismo [59].

Las principales fallas del modelo son la falta de un limite al crecimiento de las presas, la falta de
consideracion de las caracteristicas estacionales, es decir, considerar las tasas de crecimiento de presas y
depredadores como constantes, y proponer un modelo ideal y simplificado, limitdndose a dos especies [59].

Sin embargo, contrariamente a una idea generalizada, algunos autores consideran que el modelo de
Lotka-Volterra es realista y su trabajo seminal sentd las bases para la Dindmica Poblacional moderna y la
ecologia matemadtica, aunque no haya incluidos aspectos como la estacionalidad, la migracién, la contami-
nacién y otros [59].

Actualmente, ha surgido varios temas de interés en los modelos de depredacién. Uno de ellos se se
refiere a la sensibilidad estructural [57], y que estd orientando el estudio de los modelos de interaccién.

La diferencia en la estructura de bifurcaciones teniendo en cuenta formas funcionales similares se deno-
mina sensibilidad estructural [S7]. Esto se presenta a menudo cuando se pueden usar diferentes respuestas
funcionales para ajustar un conjunto de datos, especialmente si los datos son escasos [57] o bien cuando son
usadas formas distintas para describir los elementos esenciales en la descripcion de los modelos [58, 27].

Para orientar los trabajos de investigacién futuros, es conveniente tener en cuenta los articulos de E.
Diz-Pita y M. V. Otero-Espinar [60, 61], quienes efectian una revision del estado del arte de los modelos
depredador-presa recientes , los que incluyen algunas caracteristicas interesantes como el efecto Allee, el
efecto del miedo, el canibalismo y la inmigracién [60, 61].

Sin embargo, otros temas Mas actuales se estan incorporando a los modelos de depredacién y a cadenas
tréficas como son el efecto de vientos fuertes (winds) [63] y el cambio climdtico (climate change) [62]

Por otra parte, desde un punto de vista matematico, en [37], se afirma que: ’se anticipa un nuevo
impulso en las préximas décadas en el estudio de los ciclos limite en sistemas diferenciales polinomiales”.
Luego, se debe realizar el andlisis de modelos de depredacién enfatizando en este tipo de soluciones o
trayectorias de los sistemas. Esto se refuerza, cuando a través de un difeomorfismo se transforma el modelo
ecoldgico poblacional en un sistema polinomial bidimensional de EDO.
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Apéndice A. Funciones propuestas para describir algunos fenomenos ecolégicos.
Algunas de estas funciones, asi como combinaciones de dos o mds de ellas, pueden seleccionarse para

incorporarlas a alguno de los modelos, muchos de los cuales atin no han sido analizadoss.
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Funciones de crecimiento para una poblacion.
1.1) Malthusiano z f (x) = rz, (En el modelo de Lotka-Volterra)
1.2) logisticozf (z) =r (1 — %) x, (usado en el modelo de Volterra)
1.3) de Pella y Tomlinson (o Gilpin y Ayala) asimétrica.
zf(z)=r(1—(£)")z,cono # 1.
1.4) Con efecto Allee (overcrowding) [50]
zf (@)=r(1—-2£)(x—m)z, o0
xf (x )—r(l—?—ﬁ x,
xf()*r(lfi)xfbxexp( x).
1.5) Modelo de Smith 2 f (z) = "% (1— L)z [64].
1.6) Modelo de Gompertz z f (z) = (—rlogx) = [65].

. Respuestas funcionales de tipo Holling (solo presa dependiente).

2.1) Respuesta funcional de Holling tipo 1.

z,six <b
h@ =4 "
qb,six >b
2.2) Respuestas funcionales de Holling tipo II.
h(x)= Iq—fa hiperbdlica,
h(z)=q (1 e~ %), de Ivlev,

h(z) = a+aa,0<a<1 [44]
h(z) = 75

h(z) = q tanh (z), [57]
2.3) Respuestas funcionales de Holling tipo III o sigmoideas.

h(z) = gfa -
h(x)= §+a,,,n> 1,
") = i
h(z) = \/#W, n>1
2.3) Respuestas funcionales de Holling tipo IV o no-monoténicas.
h(w) = i 42
h(z) = m, [43]
h(x) = x?q%:zﬂ’
h(z) = m,1<m<p,
h(x)= Lﬁ+,3,0<a<5<1

h(x) = k(e —e~t").
2.5) Respuesta funcional lineal h (x) = gx, que NO es de Holling tipo 1.
2.6) Respuesta funcional de Rosenzweig h (z) = qz® con 0 < o < 1 [66].

Respuesta funcionales dependientes de ambas especies.

Existen varias respuestas funcionales que dependen de ambas poblaciones, como son:

3.1) razén dependiente

h (.’I}) = bw(fc%/’

h(x) = e

h(z) = 250
3.2) Beddington-DeAngelis h () = — +b;+ml
3.3) Crowley-Martin h (z) = m
3.4) Hassel-Varley h (z) = T_H —,con~y €10, 1].

3.5) Otras respuesta funcnonales pueden verse en [67].

. Funciones describiendo uso de refugio por parte de las presas.

La cantidad de presas en refugio puede ser expresada por las funciones:

4.1) x, = Bz, proporcional al tamaio total de la poblacién de presas.

4.2) x, = v, cantidad fija de lugares para esconderse.

4.3) x, = ny, proporcional a la cantidad de depredadores.

4.4) x, = oxy, proporcional a la cantidad de encuentros entre ambas especies

4.5) xz, = ffa, una funcién creciente pero saturada
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2
4.6) z, = ﬁ%, una funcion creciente y sigmoidea pero saturada.

5. Funciones describiendo(el m)iedo.
a(l—n

51) fla,ny)=n+ oty 48]

52) f(a,B,2,y) = 25HPE 48]
En la funcién 5.1 si @« = 0, implica que las presas siempre viven con miedo, lo cual es algo

discutible.



