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Abstract

This work interprets human conversation as a controllable and observable dynamical system. Each inter-
locutor influences the discursive state of the other, allowing the interaction to be modeled by differential
equations. Using results from control theory, we consider a convex and compact space as admissible
interactions, with extreme points corresponding to bang—bang interventions such as interruptions or em-
phatic statements. We validate the model through numerical simulations and synchrony metrics, showing
that conversational symmetry improves stability and consensus, asymmetry produces biased equilibria, and
temporal variations in coupling generate transient desynchronization followed by recovery, analogous to
conflict and reconciliation phases in dialogue.

Keywords . Human conversation, controllable and observable dynamical system, bang—bang interventions, syn-
chrony.

1. Introduction. Control theory studies how to modify the behavior of a dynamical system through
suitable inputs that drive it toward a desired state. Since the twentieth century, this framework has found
applications in engineering, biology, economics, and neuroscience, providing a unified language to describe
regulation and feedback in complex systems [1, 2]. Beyond these traditional domains, social and cognitive
phenomena such as learning, negotiation, and conversation can also be viewed as regulated processes in
which the responses of each participant influence the global evolution of the interaction.

A conversation between two individuals can be conceived as a process of mutual regulation. Each
speaker continuously adjusts tone, timing, and discourse according to the feedback received from the other,
seeking a communicative equilibrium. This reciprocal adaptation can be formalized by a system of coupled
differential equations, analogous to those governing a controlled physical system [3].

Previous studies explored similar ideas from complementary perspectives. For instance, [4] interprets
communication as an active inference process in which agents update their beliefs through sensory feed-
back, an idea conceptually close to our approach, though formulated within a probabilistic Bayesian frame-
work. Authors in [5] provide empirical evidence of interpersonal coordination, showing how gestures,
pauses, and verbal responses synchronize dynamically during conversation. From the perspective of opti-
mal control, [6] and [7] analyze the role of bang—bang controls in optimal policies and sequential convex
prediction. Their results justify the theoretical efficiency of extremal strategies, a principle reinterpreted
here in a social context. Similarly, [8] and [9] propose dynamical models adaptive to social and emotional
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stress in which agents adjust their actions according to contextual feedback. Together, these studies con-
verge toward a view of communication as a self-regulating dynamical system sustained by mutual feedback
and adaptation.

In this work, we extend this perspective by formalizing conversational dynamics as conditions of con-
trollability and observability in a linear system (for non-linear extensions, see Appendix B). We develop
an analytical framework grounded in linear control theory and convex analysis that explains how extreme
(bang—bang) strategies work as optimal mechanisms for stabilizing communicative interaction. Specifically,
we consider

i(t) = Mz(t) + Na(t),  x(0) =2°, (1.1)

where z(t) € R™ represents the conversational state, «(t) € R™ denotes admissible controls, and M and
N are matrices encoding the interactive dynamics of agents.

The model (1.1) describes a conversational balance in which every change in tone or opinion produces a
proportional reaction that restores harmony. The matrix M represents each participant’s tendency to return
to their usual expressive state, acting as a form of inertia, while the matrix N measures how open each
person is to the other’s influence. Together, these elements form an interaction rule where small verbal
signals combine additively, capturing the early rational stage of dialogue before emotional effects become
dominant. Besides, the eigenvalues of M describe the rhythm of reciprocity in dialogue. Negative real
values indicate smooth mutual adjustment, while complex pairs produce oscillations that reflect alternating
turns.

The set of admissible controls A = [—1, 1]™ is convex and compact. According to Alaoglu’s theorem,
it is compact in the weak—x* topology of L, and by the Krein—-Milman theorem, any continuous linear
functional defined on a convex and compact set attains its maximum at an extreme point [10]. This property
underlies the emergence of bang—bang controls in optimal control problems, where extreme actions corre-
spond to abrupt conversational interventions, such as silences, interruptions, or emphatic statements, that
can quickly redirect the trajectory of dialogue toward a consensus.

The main contribution of this paper is to describe conversation using a mathematical model that can
be both controlled and observed. Controllability expresses how the speakers can guide their dialogue to-
ward agreement, while observability reflects how they can understand or infer each other’s internal state.
Bang-bang controls represent clear and decisive verbal actions, such as interruptions or emphatic responses,
that help regulate the interaction. The model is supported by simulations and quantitative measures of syn-
chrony and coupling, showing patterns consistent with real conversational behavior.

The remainder of the paper is organized as follows. Section 2 develops the theoretical foundations of
controllability and observability and interprets these notions in the context of social interaction. Section 3
analyzes the role of bang—bang controls as extremal strategies for conversational regulation. Section 4
presents conceptual simulations illustrating symmetric, asymmetric, and phase-shifting dialogues, while
Section 5 validates the model through numerical and statistical metrics. Finally, Section 6 finishes with
conclusions.

2. Controllability and Observability. We define the set of states reachable of the system (1.1) at time
t as

C(t) = {2° : Ja(-) € A such that x(t) = 0}.
Theorem 2.1. The system (1.1) is controllable if and only if the matrix
G =[N,MN,M?N,...,M" ' N]

has full rank, that is, rank(G) = n.
Proof: If rank(G) = n, the columns of G span R™. Using the Cayley—Hamilton theorem [10] and the
representation

t
z(t) = Mz —|—/ e =IMN(s) ds,
0
it follows that the origin belongs to the interior of the set C(¢). For further details, see [1, 2]. (]

The controllability matrix

G =[N,MN,...,M""'N],
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determines the dimension of the space of social adaptability. Full rank means that every interpersonal ten-
sion can be decomposed into combinations of reciprocal actions, a form of adaptability. When rank(G) <
n, some directions in the discursive space become inaccessible, revealing conversational rigidity or domi-
nance asymmetry.

The condition rank(G) = 2 indicates that the interlocutors possess sufficient mutual influence to steer
the interaction toward consensus. When the system is fully symmetric or entirely unilateral, controllability
is lost, and the dialog tends to stabilize quickly.

Definition 2.1. The system @ = Mx + No, y = Cx is observable if the initial state x° can be
determined from the observation y(-) over a finite time interval.

Theorem 2.2. The pair (M, C) is observable if and only if the pair (M™T,CT) is controllable. See
[1, 2] for a proof.

This duality (M, C') — (M7T,CT) shows a structural symmetry between the ability to influence and the
ability to understand. In conversation, these ideas correspond to two key skills: guiding the dialogue and
interpreting the other person’s intentions.

On the other hand, the observability Gramian [11]

o= / ' eMTtOT CeMt gt
0

measures how much one agent can know about the other’s state. Large eigenvalues of O indicate strong
empathy, meaning that even small expressive cues allow one agent to understand the other’s hidden state.
Empathy and influence, therefore, act as complementary aspects of interaction, reflecting the algebraic
duality between (M, C') and (M, CT). Further details on the shared information between agents can be
computed quantitatively, see Appendix A.

3. Bang-Bang Controls and Extremality. The set of admissible conversational strategies A = [—1,1]?
is convex and compact in L>°([0, 7). By the Krein—-Milman theorem, any continuous linear functional on
A attains its extreme values at the extreme points, which correspond to bang—bang controls [1].

Definition 3.1. A control o(-) € A is called bang—bang if for each component i, |o;(t)| = 1 for almost
everyt € [0, 7).

Theorem 3.1. [f there exists a control o(-) € A that drives the state from x° to 0 in time T, then there
also exists a bang—bang control o*(-) achieving the same effect.

Proof: ThesetK = {a(-) € A : z(T) = 0} is convex, compact, and nonempty. By the Krein—-Milman
theorem, at least one extreme point «*(-) exists. It can be shown that these extreme points satisfy |a (t)] =
1 a.e. See [12, 2] for further details. O

When the Hamiltonian is linear in the control,
H(z,p,a) =pT (Mz + Na),

the optimal action is «;(t) = sign(p? N;) [13]. This means that each agent switches between opposite
behaviors, acting or staying silent, to restore balance in the conversation as efficiently as possible.

In the social interpretation, bang—bang interventions represent extreme discursive actions such as inter-
ruptions, long silences, or emphatic statements. They are the extreme points of the space of communicative
strategies and thus the most effective mechanisms for redirecting the trajectory of dialogue toward a desired
conversational state.

4. Conceptual Simulations and Dynamic Analysis. To illustrate the dynamic interpretation of a
conversation as a controlled system, we present three scenarios. In each case, the states 1 (t) and xo(t)
represent the discursive positions of two interlocutors, while the controls «;(¢) and as(t) denote their
respective intervention strategies. Positive values indicate agreement or empathy, whereas negative values
represent disagreement or confrontation.

Example 1: Symmetric conversation. Consider the coupled linear system

i(t) = -b 08 z(t) + Lo alt),  a(t) €[-1,1].
0.5 —1 0 1

The matrix M models the spontaneous interaction dynamics between the interlocutors. The negative di-
agonal terms represent the tendency of each agent to stabilize their own state (self-regulation), while the
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off-diagonal coefficients quantify empathy or cross-influence. When Mjs, My > 0, the interaction is
cooperative; if one of them is negative, the system tends toward competition or desynchronization.
We define the bang—bang control law as

a1 (t) = —sign(z1(t) + x2(t)), as(t) = sign(zq(t) — x2(t)).

Each agent reacts strongly when their opinions differ: large disagreements lead to extreme actions, such as
interruptions or firm statements. As their views become closer, the responses soften and gradually bring the
conversation into agreement.

The evolution of the system can be described as in Table 4.1.

Table 4.1: Conceptual evolution of conversational states (symmetric case).

t | z1(t) | x=2(t) Type of interaction

0.0 | +1.0 | -0.8 Initial disagreement
0.5 ] +0.3 —0.2 | Strong intervention (bang)
1.0 | +0.1 | +0.05 Reciprocal adjustment
1.5 0.0 0.0 Consensus reached

The system is controllable since rank(G) = 2. The state trajectory converges exponentially to the
origin, representing consensus achieved through reciprocal adjustments. Bang—bang interventions enable
rapid corrections, shortening the convergence time. Socially, this corresponds to a balanced conversation in
which both participants possess equal capacity for influence and mutual empathy.

Example 2: Asymmetric conversation. We now consider a scenario in which one interlocutor applies
strong influence over the other:

-1 0.2 1 0
(t) = 2(t) + alt),  ai(t) e [-1,1].
09 -1 0 0.7

Here agent 1 possesses a high persuasive capacity (Ms; = 0.9), while agent 2 responds with lower
intensity. The second column of matrix N indicates that the control of agent 2 has a reduced effective
weight in the overall dynamics.

We apply the same bang—bang control, adjusting the relative intensities:

aq (t) = —sign(1.2z1(t) + z2(t)), as(t) = 0.7sign(x () — z2(t)).

We summarize this behaviour in Table (4.2).

Table 4.2: Conceptual evolution of conversational states (asymmetric case).

to| x1(t) | z2(t) Type of interaction
0.0 | +1.0 | -1.0 Strong disagreement
0.5 | +0.6 —0.3 | Agent 1 dominates the conversation
1.0 | +0.2 0.0 Partial alignment of agent 2
1.5 | +0.05 | +0.02 Final asymmetric equilibrium

Although the system remains controllable (rank(G) = 2), convergence does not occur toward a sym-
metric consensus but rather toward a biased equilibrium in which the dominant agent’s opinion prevails.
The system converges to a stable subspace z2 ~ Sz with 8 < 1, reflecting a phenomenon of forced align-
ment. In other words, this represents that one participant directs or imposes the course of interaction while
the other gradually adapts. Stability is achieved, but through unilateral rather than reciprocal control.
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This scenario and the last one reveal how the matrix structure (M, N) determines the nature of inter-
action. In the symmetric case, the cross terms of M are comparable and the controls have equal weight,
allowing an equitable consensus. In the asymmetric case, the imbalance in empathy or communicative
power alters the trajectory, shifting the equilibrium toward the perspective of the dominant agent.

The results show that bang—bang controls are effective in different situations, but their impact depends
on how equally the agents influence each other. Thus, conversational harmony arises from both the strength
of actions and the balance of influence.

Example 3: Conversation with phase change. The third scenario shows a conversation that starts
cooperatively but loses synchrony for a while after one agent changes attitude or empathy, and later returns
to stability. This behavior shows that conversations can oscillate back and forth, much like cycles in physical
systems.

Specifically, consider the system

() = () + alt),  ou(t) € [-1,1],

where the empathy coefficient k() varies over time according to

07, 0<t<l,
k(t)={ —04, 1<t<2,
05, t>2.

Thus, the relationship between agents shifts from cooperative (k > 0) to competitive (k < 0) and later
returns to a reconciliatory phase (see Figure 4.1).

Ozl(t)

k (empathy)

asz(t)
Bidirectional interaction between agents with alter-
nating bang-bang controls converging to consensus.

Figure 4.1: Conceptual representation of the symmetric conversational system.

The controls follow a bang—bang law depending on the relative sign of the states:

o (t) = —sign(z1(t) + z2(1)), az(t) = sign(z1(t) — 22(t)).

Table 4.3: Conceptual evolution of conversational states with phase change.

to| z(t) | x2(t) Type of interaction
0.0 | +0.8 | -0.7 Cooperative phase: moderate disagreement
0.5 | +0.2 | -0.1 Empathic adjustment (partial consensus)
1.2 | 40.5 | +0.6 Change of sign in k(t): active opposition
1.8 | -0.3 +0.4 | Desynchronization and oscillation (confrontation)
2.5 | 40.1 | +0.05 Return to cooperation and reconciliation
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In the first phase (k > 0), both agents cooperate and quickly reach balance. When k() becomes
negative, their influence reverses, creating temporary conflict and oscillation. As empathy returns (k > 0),
stability is restored and agreement emerges again. This reflects a dialogue that moves through conflict,
adjustment, and reconciliation.

-1 k(t
For M(t) = ®) , the empathy coefficient k(t) acts as a bifurcation parameter. When k(t)

k(t) -1
crosses zero, the equilibrium switches from cooperative to antagonistic coupling, producing transient diver-
gence analogous to a Hopf-like transition [14].

This example shows that conversational dynamics are not always monotonic or linearly convergent.
Even within a linear model, temporal variations in the interaction parameters k(t) can produce nontrivial
trajectories characterized by temporary loss of controllability, inversion of influence (from cooperation to
opposition), and subsequent restoration of synchrony.

5. Validation of the model. This section presents the numerical and statistical validation of the pro-
posed model of conversation as a controllable and observable dynamical system.

The purpose of this validation is to test whether the model behaves as expected: when influence is
balanced, the conversation should be stable and synchronized, while imbalance or phase changes should
reduce that synchrony. The analysis uses common metrics for human interaction, such as cross-correlation,
mutual information, and cross-recurrence quantification (CRQA). The results confirm that the model is both
dynamically consistent and statistically reliable, and they provide a foundation for future validation with
real conversational data [15, 4].

Two temporal signals x1 (¢) and x2(t) were generated to emulate the conversational states of two agents
under three scenarios:

1. Symmetric cooperative: both agents exert balanced influence (small phase lag and low noise);

2. Asymmetric dominant: one agent leads (larger phase lag and/or higher noise in the other);

3. Phase change: the effective empathy changes sign over time (cooperation - conflict - reconcilia-
tion).

For each scenario, trajectories were simulated for ¢ € [0, 5] using 1000 samples, and three measures of
synchrony and coupling were calculated. These were: the optimal lag (7*) from cross-correlation, showing
who leads or follows in time; the mutual information (MI) between x; and z2, measuring how strongly they
are related; and the recurrence rate (RR), the fraction of times when |z1(t) — z2(¢)| < €, used as a simple
estimate of CRQA [16].

Under the assumption of bidirectional controllability (both agents influence each other equally), the
expected results are high RR, showing strong synchrony, high MI, showing strong coupling, and 7* ~ 0,
meaning no clear leader or follower. When the system is asymmetric or changes phase, RR and MI decrease,
and |7*| increases, indicating a temporary loss of coordination. These results agree with previous studies
on human synchrony and cooperative communication [15, 4].

Simulation results are stable and reproduce the theoretical expectations, that is

e Symmetric: high RR (~ 0.80-0.90), high MI (~ 0.50-0.70), and 7* ~ 0;

e Asymmetric: moderate RR (~ 0.45-0.60), moderate MI (~ 0.30-0.45), and larger |7*[;

e Phase change: intermediate and variable RR/MI, with non-stable 7* reflecting loss and recovery
of synchrony.
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(c) Phase-change scenario.

Figure 5.1: Temporal evolution of conversational states x1(¢) and x2(¢) under three conditions: (a) sym-
metric, (b) asymmetric, and (c) phase-changing. The trajectories show transitions from stable synchrony
(complete controllability) to desynchronization and partial resynchronization.

Figure 5.1 displays the comparative trajectories, Figure 5.2 illustrates synchrony differences, Figure 5.3
shows internal coherence among metrics (RR, MI), and Figure 5.4 depicts convergence toward 1 = x3 in
the symmetric case.
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Comparison of Recurrence Rate (RR)
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Figure 5.2: Comparison of synchrony (RR) across scenarios: symmetric, asymmetric, and phase change.
Higher RR in the symmetric case supports the prediction of bidirectional controllability.

Correlation Matrix of Metrics

Lag
05 g
._g
Mutual_Info @
0.0 5
O
Recurrence_Rate
-0.5

Figure 5.3: Correlation matrix among metrics
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Figure 5.4: Trajectory (z1(¢), z2(t), t) in the symmetric case. The curve approaches the diagonal z1 = x4,
interpreted as conversational consensus.

The simulation results confirm the model’s predictions. When control is symmetric, both synchrony
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(RR) and coupling (MI) remain high, whereas asymmetry or phase variations cause a temporary disruption
followed by recovery of coordination. These findings demonstrate the model’s internal consistency and
provide a solid basis for future validation with real conversational data.

6. Conclusions. The proposed model demonstrates that human conversation can be represented as a
controllable and observable linear system. Controllability captures the interlocutors’ ability to steer their
interaction toward consensus, observability reflects their capacity to infer one another’s internal states, and
bang-bang controls formalize abrupt discursive interventions, such as interruptions or emphatic statements,
as optimal regulatory strategies.

The analyses identify three conversational patterns: symmetric interactions lead to quick agreement,
asymmetric ones create dominance or imbalance, and time-varying coupling causes brief conflict followed
by reconciliation.

These patterns are consistent with empirical findings on conversational synchrony and coordination
[5, 15] and with the active inference framework of [4], in which mutual prediction and error correction
sustain communicative stability.

Compared with probabilistic or simulation-based models, this approach offers a clear and deterministic
framework. While the active inference model [4] views communication as interlocutors adjust their knowl-
edge according to the information they receive, our formulation treats it as a control-observation process,
focusing on how structure enables mutual regulation. The idea of bang—bang controls agrees with recent
studies in optimal and predictive control [6, 7], where extreme actions tend to be efficient.

In summary, this framework connects control theory with social and cognitive dynamics, explaining
how stability, cooperation, and leadership arise in conversation, and providing a basis for future work on
more complex conversational models.

Author contributions. C. Nufiez: conceptualization; methodology; formal analysis; investigation;
writing-original draft preparation. L. Navarrete: writing-review and editing; supervision. All authors have
read and agreed to the published version of the manuscript.

Funding. Did not receive financing

Acknowledgment. This article was written within the framework of the Maestria en Educacién Mencién
en Docencia e Investigacion en Educacién Superior — III Cohorte 2025 at the Universidad Estatal de Mila-
gro.

We would also like to express our sincere gratitude to the organizers of the Sociedad Peruana de
Matematica Aplicada for their kind invitation to participate in the XII International Congress on Applied
and Computational Mathematics (CIMAC XII) in Peru, and to the beautiful city of Puno for its warm
hospitality.

Conflicts of interest. The authors declare no conflict of interest.

ORCID and License
Lisseth Navarrete Vaca https://orcid.org/0009-0008-4595-6"
6

344
Cristhian Nifiez Ramos https://orcid.org/0009-0009-4659-6640

This work is licensed under the Creative Commons - Attribution 4.0 International (CC BY 4.0)

References

[1] Evans LC. An Introduction to Mathematical Optimal Control Theory, University of California, Berkeley, 2013.
[2] Sontag E. Mathematical control theory: Deterministic ﬁnite dimensional systems. 2nd ed. Texts in Applied Mathematics, Vol.

6. New York: Springer-Verlag; 1998. doi:https://doi.org/10.1007/978-1-4612-0577-7.

[3] Van Amerongen J, Breedveld P. Modelling of phys1cal systems for the de31gn and control of mechatronic systems. Annu Rev
Control. 2003; 27(1):87-117. doi:ht tps doi.org/10.1016/S1367-5788(03)00010-5.

[4] Tison R, Poirier P. Active inference and cooperanve commumcatlon an ecological altematlve to the alignment view. Front
Psychol. 2021; 12:708780. doi: https://soi.org/10.3389/fpsyg.2021.7 80.

[5S] Ebesu Hubbard AS. Interpersonal coordmatlon in interactions: evaluatlom and social skills. Commun Res Rep. 2000; 17(1):95—
104. doi:https://doi.org/10.1080/08824C )09 /

[6] Seyde T, Gilitschenski I, Schwarting W, Stellato B, Riedmiller M, Wultmeler M, Rus D. Is bang-bang control all you need?
Solving continuous control with Bernoulli policies. In: Proceedings of the 35th International Conference on Neural Infor-
mation Processing Systems (NIPS *21). Red Hook (NY): Curran Associates Inc.; 2021. p. 2084.

[7] Jones M, Nie Y, Peet MM. Model predictive bang-bang controller synthesis via approximate value functions. arXiv [math.OC].
2024. Available from: https://arxiv.org/abs/2402.08148.

[8] Crosato L, Tian K, Shum HPH, Ho ESL, Wang Y, Wei C. Social interaction-aware dynamical models and decision-making for
autonomous vehicles. Adv Intell Syst. 2023, Dec 1. doi:https://doi.org/10.1002/aisy.202300575.


 https://orcid.org/0009-0008-4595-6344
https://orcid.org/0009-0009-4659-6640
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4612-0577-7
https://doi.org/10.1016/S1367-5788(03)00010-5
https://soi.org/10.3389/fpsyg.2021.708780
https://doi.org/10.1080/08824090009388755
https://arxiv.org/abs/2402.08148
https://doi.org/10.1002/aisy.202300575

374 Navarrete L, Nuiiez C.- Selecciones Matematicas. 2025; Vol.12(2):365-374

[9] Asghar N, Kobyzev I, Hoey J, Poupart P, Sheikh M. Generating emotionally aligned respon@eﬂ in dialogues using affect control

theory. arXiv [cs.CL]. 2020 Mar. doi:https://doi.org/10.48550/arXxiv.2003.0364

[10] Falk JE. Optimization by vector space methods (David G. Luenberger). SIAM Rev. 1970; 12(2):315- 316 doi:http://doi.
org/10.1137/1012072.

[11] Kailath T. Linear Systems. Englewood Cliffs (NJ): Prentice—Hall; 1980.

[12] Barvinok A. A course in convexity. Graduate Studies in Mathematics, Vol. 54. Providence (RI): American Mathematical Soci-
ety; 2002.

[13] Lenhart S, Workman JT. Optimal Control Applied to Biological Models. Boca Raton (FL): Chapman & Hall/CRC; 2007.

[14] Slmpson DIJW. Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems. arXiv [math.DS]. 2019. Available from:

bs://arxiv.o /1905.01329.

[15] Burns SM Tsoi L, Falk EB, Speer SPH, Mwilambwe-Tshilobo L, Tamir DI. Interdependent mmds quantifying the dy-
namics of successful social interaction. Curr Dir Psychol Sci. 2025 Apr 15. doi:https://doi.org/10.1177/
09637214251323598. Epub ahead of print. PMID: 40852687; PMCID: PMC12366877.

[16] Coco MI, Dale R. Cross-recurrence quantification analysis of categorical and continuous time series: an R package. Front
Psychol. 2014 Jun 26; 5:510. doi:https://doi.org/10.3389/fpsyg.2014.00510.

Appendix A. Information coupling index. The mutual information

p(l’l, IQ)
p(x1)p(w2)

shows how much information the two agents share. Here, p(x1,x2) is the probability that both agents are
in certain conversational states at the same time, and ® is a weight that represents the social context. When
I = 0, the agents act independently; higher values of I mean their behaviors are connected. This relates to
controllability, since stronger dependence indicates greater mutual influence in the dialogue.

I(xy;29) z/@p(ajl,xg)log dx1dxs

Appendix B. Extensions. We could consider a simple nonlinear variant and compare qualitatively
with the linear case. For example, consider the following system:

@i(t) = —xi(t) + k(t) tanh(z;(t)) + (),  i,5€{1,2}, i#]

where k(¢) is a time-varying empathy coefficient (similar to Example 3), tanh(-) introduces a saturating,
nonlinear coupling between agents, a;(t) € [—1,1] are admissible controls (which may also be chosen
bang—bang).

This nonlinear model captures a saturation of influence when one interlocutor’s state becomes large.
In real conversations, the effect of a very strong emotional or discursive state often cannot push the other
beyond a certain bound; this tanh captures that effect. One can simulate this system under analogous
scenarios (symmetric, asymmetric, phase change) using bang—bang controls.
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