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Abstract

This work studies a mathematical model describing the transmission dynamics of malaria, in-
corporating intraspecific competition in human and mosquito populations, and biological control
through larvivorous fish. We prove the existence of a compact attracting set for the proposed
system of differential equations. Through stability analysis, we characterize the disease-free and
endemic equilibrium points, determining epidemiologically relevant thresholds. The basic repro-
duction number (Ry) is a key parameter: when Ry < 1, the disease-free equilibrium is globally
asymptotically stable, whereas for Ry > 1, a stable endemic equilibrium emerges. Numerical
simulations validate the theoretical results and reveal the regulatory effect of intraspecific compe-
tition on disease prevalence. Finally, we generalize previous models by incorporating competitive
interactions and vector management strategies.
Keywords . Dynamical systems, stability, intraspecific competition, mathematical epidemiology.

1. Introduction. Malaria is caused by parasites of the genus Plasmodium, transmitted to hu-
mans through the bites of infected female mosquitoes of the genus Anopheles (vectors) [1]. It
remains a major health concern, particularly in tropical regions. In 2017, there were 219 million
cases and 435,000 deaths, underscoring malaria’s significant global impact [2]. In response to
the increasing resistance to insecticides and drugs, the use of biological control strategies, such
as the introduction of larvivorous fish, offers a sustainable alternative to chemical interventions.
However, existing models often overlook intraspecific competition effects, which can significantly
influence disease dynamics.

2. Model. The classical Ross—Macdonald model laid the foundations for the mathematical
modeling of malaria [3]. Subsequently, works such as those by Lou and Zhao [4] incorporated
biological control through larvivorous fish. Ghosh et al. [5] extended these models by considering
variable populations and identifying backward bifurcation phenomena. Based on Ghosh et al. [5],
which focused on human—vector and predator—prey interactions (larvivorous fish and mosquito lar-
vae), in this study we incorporate intraspecific competition via the coefficients my, for humans and
m,, for female mosquitoes. Therefore, we propose the following model:
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dL
7~ 9No —dL - dL? — \,L — aqvLP — ajaz(1l — v)LgEP 2.1
dN,
dt” = \yL — d,N, — m,N? (2.2)
dP P
P rp (1 _ K) 4010 LP — geP 23)
dl 1y,
d—t“ = cB(N, — L,)N—h —dy Iy — myI,N, (2.4)
dIy, I
— =b0B(Np — In)~ — (dn + p+ p)In — mpIpNp, (2.5
dt Ny,
dN,
dTh =T — d,N,, — Iy, — mp N2, 2.6)
where the variables and parameters are defined in Tables 2.1 and 2.2 bellow.
Table 2.1: Model variables.
Symbol | Description Units
L(t) Total density of mosquito larvae per unit surface area individuals
Ny(t) | Total population of female mosquitoes individuals
I,(t) | Population of infected female mosquitoes individuals
P(t) Density of the larvivorous fish population in region one per unit surface area | individuals
Np(t) | Total human population individuals
I,(t) | Population of infected humans individuals
Table 2.2: Model parameters.
Parameter | Description Units
v Fraction of total breeding sites that are ponds, lakes, dimensionless
and rivers considered as region one
g Egg-laying rate of adult female mosquitoes 1/day
Ao Larval maturation rate 1/day
I3 Average number of bites per mosquito per unit time 1/day
d Natural mortality rate of mosquito larvae 1/day
c Probability of transmission from infected humans to mosquitoes dimensionless
b Probability of transmission from infected mosquitoes to humans dimensionless
di Density-dependent mortality rate of mosquito larvae 1/(day-individual)
dy Mortality rate of mosquitoes 1/day
r Intrinsic growth rate of the fish population 1/day
dp, Constant mortality rate of the human population 1/day
K Carrying capacity of the fish population in region one individuals
r Recruitment rate of the human population 1/day
aq Larval predation rate by fish 1/(day-individual)
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Parameter | Description Units

a9 Fraction of fish harvested from region one that are introduced dimensionless

into region two

My Mosquito competition coefficient 1/(day.individual)
mp, Human competition coefficient 1/(day.individual)
1) Recovery rate in humans 1/day
“ Malaria-induced mortality 1/day
q Catchability coefficient of fish dimensionless
0% Conversion efficiency from consumed larval biomass dimensionless

to fish biomass

E Harvesting effort of larvivorous fish from region one 1/day

3. Basic qualitative properties.
Theorem 3.1 (Positivity of solutions). Ler U C RS be the biologically feasible region defined
by

U= {(L,NU,P,IU,Ih,Nh) eR®:L>0,P>0,N,>0,1,>0, I, >0, Nj, > 0}.
If the initial conditions of system (2.1)—(2.6) are
LOO)=L">0, N,(0)=N?>o0, P(0) = P >0,
L(00)=1)>0,  I(0)=1I3>0,  Nu(0)=Ny>0,

then the solutions of the system belong to the set U.
Proof: We first prove that L(¢) > 0, YVt > 0. By contradiction, suppose there exists ¢; > 0
and exists 47 > 0 such that

L(t;) =0 and L'(t) <0, Vte [t1,t1+ 0],
and furthermore N, (t) > 0, Vt € [t1,t1 + d1]. Then we have:

dL(t1)
dt

= gN,(t1) — dL(t1) — d1L(t1)* — M\ L(t1)
— Ozl’UL(tl)P(tl) — 041042(1 — v)L(tl)qu(tl)
= ng(tl) Z 05

which is a contradiction. Now, we must prove that N, (¢) > 0, V¢ > 0. By contradiction, suppose
there exist ¢o > 0 and do > 0 such that

Ny(ts) =0 and N, (t) <0, VtE€ [ta,ta+ dal,
and furthermore L(t) > 0, Vt € [t2, t2 + J2]. Then we have:

dN,(t
di 2) _ 0 L(t2) — duNo(t2) — moN,(t2)’
= A\ L(t2) >0,
which is again a contradiction. Similarly, the result can be verified for each of the remaining
variables. O

Theorem 3.2 (Boundedness and biological feasibility of solutions). The system (2.1)—(2.6)
has a unique bounded solution with initial value

2% = (L° N2 PY 1%, 1) NP) e W = {(L, Ny, P, 1, Iy, N,) €U : I, < Ny, I, < Ny} .
Moreover, the compact set

(L7N117P> Ivth,Nh) ceW:

A K A
L< P<r<va1vg ; +(r—qE>),
I

Q= did, -

Ao\ r
Nvéi = ) Nh§77 IhSth
di \ dy
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attracts all positive solutions with initial conditions in W.

Proof: For any x = (z1,22,73,74,75,76) € W, since f € C*(int(U)), it follows that
the system (2.1)—(2.6) has a unique solution (¢, z) defined over its maximal interval of existence
(a,b), with 0 € (a, b) and u(0) = =z, by Theorem 1 (Section 2.4) in Perko [6].

Letu(t,z) = (ul(t,a:),uQ(t,x),u3(t,m),u4(t,x),U5(t,x),u6(t,x)) € RS, forallt € (a,b).
By contradiction, it can be shown that

us(t,z) <wug(t,x) and wuy(t,z) < ug(t,x),

hence u(t,xz) € W forall t € (a,b).
We now prove that the solution u(t,z) is bounded for all ¢ € (a,b), given the differential

equations:
du1 ) dUQ

ﬁ = )\UU1 — dUUQ.

We define the function:

h(ur,u) = (gus — diuf, Avuy — dyus) .

—2d
Dh(ul,uQ) = ( 1 g )

Then

v —d,.
The function h is cooperative on RZ: that is,

o,
8uj o

for1 <i,j <2, i4#j.

The Jacobian matrix Dh(uq, us) is irreducible for all (u1,u2) € R2.

h(0,0) = (0,0) and h;(u1,u2) > 0, V(ur,uz) € RZ withu; = 0; i = 1,2.

h is strictly subhomogeneous on R? ; that is, h(p(u1, us)) > ph(u1,us) forany p € (0,1)
and (u1, ug) € Int(R%).

Evaluating the Jacobian matrix at (0, 0):

Dh(0,0) = (AO _gd )

The spectral radius of Dh(0, 0) is defined as p(Dh(0,0)) = max{Re X : det(A\] — Dh(0,0)) =
0}. Thus, the characteristic equation is:

x2+xdv—)\vg:O:>x=

_ 2
bty ;1“ NG L DR(0,0)) > 0.

Therefore, by Corollary 3.2 of Zhao and Jing [7], the system has an equilibrium point

g (M
dydy’ dy \ dy ’
which is globally asymptotically stable with respect to all initial values in R% \ {(0,0)}.
Now, we observe that:
dL
— < gN, — d, L*
dt = giVy 1 )
By the comparison principle, there exist positive constants M and Mo such that:

L(t) < My,  Ny(t) < My, Vitel0,0,).

AN,

< AL — dyNy.

dP P
— =rP({l1-— LP —qEP
7t T ( K) + yoqv q
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dP

KE < (KyoyvMy + K(r —gE) —rP) P.

First, suppose that:

K
0 < KyayvMy + K(r—qFE)—rP=P< (valle—Fr—qE)

From which we directly obtain:

K Ay
]

Now, suppose that:
K
0> KyayoMy + K(r —qE) —rP = P > - (yonvMy +1r —qE) .

1 dP

K — < 1.
(rP — KyoayoMy — K(r —qE)) P dt —

Then, we have:
rP — KyoqgvM, — K(r — qF)

rP(0) — KyanvM; — K(r — qF)

5 < exp (—t(yaqvMy + 7 — gE)):

When ¢t — o0, it follows that:

rP — KyoyvMy — K(r — qF)
P

Thus, in all cases we conclude that:

K A
P§<fyalvg hd —|—7“—qE>.
r

P(0)

A
<0 = rP<K yalvgv—l-r—qE.
dydy

dydy

From the previous arguments we have:

lmsup(Lo(t), Na(t) < [ 222, 9 (Ae)’
1m v\l), Vo =~ il e .
P dod;’ dy \ d,

Moreover

K A
limsup P(t) < — <’ya1v A (r— qE)>
t—00 r dydy
dNp(t
C;Lt( ) =I - thh — Up — mh(Nh)2 S r— thh-
Hence
1 6_dht N 0 dnt
N, <T TRt
h < < o ) + Nu(0)e

When t — oo, we obtain N, < 7-. Therefore, (2 is globally attractive, and since the solution
u(t, z) is bounded on [0, b), we have b = oo by Corollary 2(Section 2.4) in Perko [6]. O

4. Existence of equilibria and the basic number Ry.
Theorem 4.1 (Disease-Free Equilibrium). The system (2.1)—(2.6) admits a unique disease-
free equilibrium point
D= (L*,N;,P*,0,0,N;) with N;#0, P*#0,
under the conditions:
dyr(d+ Ay + AK)
AKqFEd, + rgh,

<1,
(qE B T))‘v

dy N} + my(NF)?
Yo v
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where N is the positive root of the cubic equation:
a3x3 + a2x2 + a1z +ag =0,
with:
A=a1v+ ajaz(l —v)gFE,
AK
a3 = dym? + T’yalvm?j,
AK
ag = 2d1dymy, + 2——yavmyd,,
r

AK AK
a1 = dyd® 4 (d + M)Ay + AK Xym, + T’yalvd% - Toqumv,

AK
ap = —g\2 + dh\ydy, + N2d, + AK \yd, — — \yqFEd,,.
T

The expressions for the other variables in the disease-free equilibrium are:

B va;‘—l—mv(Nj)Q B —dh+\/di+4mhf

K
P =— L* —qFE L” Ny
(el — gB), el N o

Proof:
Setting I, = 0 and I,, = 0 in the system (2.1)—(2.6) and equating the right-hand sides to zero,

we obtain the expressions for P*, L* and IV} .
In addition, we obtain the equation:

q(x) = asz® + asx® + arx + ag = 0,

whose positive real solution is V).

It can be noted that:
¢"(x) >0, Vze[0,00),

that is, the polynomial is convex on [0, o). For the polynomial ¢(z) to have a positive real root,
the condition ¢(0) < 0 must hold, which is equivalent to:
dyr(d+ My + AK)

1
AKqed, + rgk, <

4.1. Basic Reproduction Number Ry.
The subsystem describing the dynamics of the infected compartments is given by:

dlclgt(t) = C/8<NU - [U)]{Zh - dUI’U - mv[fquv
h
dIy(t I,
n(t) = bﬂ(Nh —In)— —(dp+p+ M)Ih — mpIp Ny,
dt Ny,

The basic reproduction number, following the epidemiological definition in Basafiez and Rodriguez
[3], is defined as the number of secondary infections generated by a typical infected individual in

a disease-free population.
Following the next-generation matrix approach [8], where F represents the rate of appearance

of new infections, and V represents the rate of transitions and removals:

Iy

c¢B(N, — I,)—
Fo 6( )]}[h RV < dyly +myl,N, > '
bB(Ny, _Ih)ﬁq; (dn + p + p)In + mplpNp

Matrices F' and V are the Jacobians of F and V with respect to [, and I, respectively, evalu-
ated at the disease-free equilibrium D:

cONY
0 v dy + myN* 0
P N |, v (e .
b3 0 0 dy + p+ p+ mp Ny
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The next-generation matrix is given by:

0 BNy __
Fy-l— b3 (dn + p 4 p+ mpNF )Ny
dy + my N 0

Then, the spectral radius of the matrix F'V ! is the basic reproduction number Ry:

beB2N:
Ry = o
(dv + mvN;)k)(dh +p+u+ thh>Nh

.1

Theorem 4.2 (Endemic Equilibrium). The system (2.1)—(2.6) has at least one endemic equi-
librium point

EE - (Ea j\\[va ﬁ) j\va fha ]/\7}1)7
with N, % 0 and P =% 0, under the following conditions:

dvr(d + /\v + AK)
AKqEd, +rg\, ’
(qE B T))‘v

Yo

dvﬁv + mv(ﬁv)z >

and

_ 2  —dp+ 1/ d® +4m,T
(dp + 1) + /(dn + 1) Al _ 5 \ % .

2mh th

The variable N, is the unique positive root of the cubic equation:
3 2 _
asx® + asx” + a1x + ag = 0,
and Ny, is one of the positive roots of the quartic equation:
b4£L’4 + b3x3 + b2$2 + bla: + b() =0.
The coefficients are defined as:

A=ao1v+ ajas(l —v)gFE,

2

, AK
az = dlmv + T'yalvmv,

AK
ag = 2d1dymy, + 2——yavmyd,,
T
AK AK
a] = dldfj + (d+ Ap)Aymy + AK Aymy, + T’yalvdg — Talqemv,

AK
ag = —gA\2 + dhydy + N2d, + AK\yd, — T)\qudv,

by = cfmj,

by = mucB(dy + p+ ) + dpeBmy, — mpp(dy +myNy),

by = mpbc2N, + dpeB(dy + p+ p) — p(dy + moNy)(dy, + p + i) — Tefmy,
by = pbcB® Ny + dpbe* Ny — Tef(dy, + p + 1),

bo = —I'bcB%N,
The expressions for the other variables at the endemic equilibrium are:

vav + mng
v ’

- (dp+p+ p+ mp NN,

A . K A
L= P=—((r—-—qF+yoyvlL), I,= - =
ol ek bB(Np — In)

)
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and j — I'— th) th2

Moreover, if Rg >1 and

3c2B%(dn + p+ ) + 342 (dy + muN,)* + 362 B2, + 262 8% (dn + p + 1)
+ dmpT B2 < 2eBuldn + p + ) (dy + myNy) + dmpb? 82 N,
+ QC/Bﬂdh(dv + mva)mh,
then, N n has a unique positive real value; that is, E'p; is unique.

Proof:
The dlfferentlal system (2.1)—(2.6), when each equation is set to zero, yields the expressions

for L P Iv, and Ih
From the expression for [,, its positivity requires N, to satisfy the following bounds:

/2
—(dh+u)+\/(dh+u)2+4mhl“<ﬁ < —dp +/dj + 4mpT N

h > = .
2my, 2my, h

0<

Furthermore, the equation:
q(z) = azx® 4+ asx® + a1z + ag = 0,
has the unique positive root ]VU, and the equation:
p(z) = baz + bz + box® + by + by = 0,
where N, h 1§ one of its positive real roots.
Since N}, € (0, Ny], evaluating p(z) gives:
p(0) = —TbeB?N, = by <0, p(N;) = uN;i(RE - 1),

As p(0) < 0, the following cases may occur:

-If Ry > 1, then p(IN}¥) > 0. Therefore, the polynomial p(z) intersects the z-axis at some
Ny € (0, N }ﬂ .

-If Ry < 1, then p(N;') < 0, implying that there is no positive root of p(x) in [0, N}], and the
solution would be found for z > ;.

To guarantee the uniqueness of the positive real root of p(z) in the first case, the graph of p(z)
must be convex on (0, co), which holds if:

p’(z) >0, Vze (0,00).
The second derivative of the polynomial is:
P (z) = 12¢B(mp)*2® + 6 |mpcB(2dy + p + 1) — mpp(dy +moN,) | @
+ | mnbeB? Ny + dieB(dy, + p + p) — p(dy +muNy)(di, + p + 1) — TeBmy, | -

Since p(z) is a quadratic polynomial, to be strictly positive on (0, 00) its discriminant A must
be negative. That is, the following must hold:

3B2(dp, + p + )% + 3p3(dy + moN, )2 + 32B2d3 + 22 B%dy (dp, + p + 1) + 4mp T 52

< 2¢Buldy + p + 18)(dy + muNy) + 4mpbe BN, + 2¢Budy(dy + my Ny)my,.

This condition ensures the uniqueness of the positive real root of the polynomial p(x).

Remark 1. It is observed that at the disease-free equilibrium D, the densities of larvae,
ﬁsh and mosquito populatton coincide with those at the endemic equilibrium Eg, that is, L* =

LP* PN Nanth<Nh
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5. Stability.

5.1. Local Stability.
If £ = (21, 29, x3, x4, x5, T6) and we define the vector function f as

f(@) = (fi(2), fa(2), f3(), fa(), f5(2), fo(2)),

where

fi(x) = gxg — dxq — dlx% — A1 — apurizs — ajoe(l — v)gET a3,

f2(517) = M1 — dyT2 — mvl’%,

x
fa(x) =rxs (1 — ?3) + yajvxryrs — qExs,

To — T4 )T
Ja(w) = 5(2%4)5 — dyTy — MyT4T2,

Tg — X5)T
f5(z) = 55(63365)4 — (dn + p+ p)xs — mpres,

fo(x) =T — dpxe — pxs — mhxg.
Thus, the system (2.1)—(2.6) can be written as

dx
— = 5.1
= 1@ G0
Theorem 5.1. The disease-free equilibrium D is locally asymptotically stable if Ry < 1 and
locally unstable if Ry > 1, where N,y # 0 and P* # (.
Proof: From the equivalent system (5.1), the characteristic polynomial of the Jacobian matrix
Jf(D) is:
P(x) = Pi(x) Py (x) P3(x),

where:
Py (z) = —d, — 2N;m, — z,
CBN,: * *
h
P;(z) is the characteristic polynomial of the matrix J3,
with:
—d—2d1L* — N\, — AP* —AL* g
2P*
J3 = yapvP* r|l— % + yayvLl* — ge 0
Av 0 —dy — 2my N}

We observe that P; () has a negative real root. Now, expanding P»(x), we obtain:

Py(x) = 2® +(dp+p+p+mpNj +dy+Nimy) o+ (dp + p+ p+mpNj ) (dy + Nim,) [1— R3]
o If Ry < 1, then P»(x) has two negative real roots.
e If Ry > 1, then P (x) has one positive real root (instability).

As for P3(z), all its coefficients are positive, which implies that all its roots are negative real
numbers.
0

Theorem 5.2. The endemic equilibrium Eg is locally asymptotically stable if Ry > 1 and
g > Ny, with N, # 0, P # 0.

Proof:

The characteristic polynomial of the Jacobian matrix in Efg is

P(z) = Pi(z)Pa(z).
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Here P,(x) is the characteristic polynomial of the matrix

—d—2d,L — \, — AP —AL g
. 2P .
yav P r <1 — K) +vyayvl — qF 0
Ao 0 ~dy — 2my N,

previously analyzed in the proof of the disease-free equilibrium, which determined that it always
has three negative solutions.
Now we analyze the polynomial

Pl(.%') = 1'3 + CL1:L‘2 + asx + as,

where:
. I . . bs1
ay = dv+mva+CBA—h +(dh+2thh>+ dh—f—p—f—u—f—thh—f—& ,
Np, Ny,
beB2(N, — I,) (N, — I . . I
a2 = — Al Av)( L) + (dh+2thh> <dv + my Ny + CﬂA h)
2
Nj, Ny,
. I . bBI
(do - mofy+ LI (a4 pt o+ Ky + 22
Nh Nh
- bsI .
+ (dh+P+M+thh+ ]iv> (dh+2thh>
h
bBI,1, R
+M< 7 —mplp |,
-\ beB2(N, — I)(Ny — I
az = — (dh+2thh) (N sz)( h=1n)
Nj,
. bsI - I .
+ (dh+p+M+thh n ﬂ”) (dv +myN, + Pl "> (dh +2thh)
Nh Nh
5 Bl \ (bBLI -
bCBQ(NU - jv)(Nh — fh)fh

V3
Ni;
Applying the Routh—Hurwitz criterion given in Kiseliov et al. [9] to the polynomial P, for

it to have three roots with negative real part (two complex conjugate roots and one real root) the
following must hold:

A1:a1>0, Agzalag—a3>0, and ag > 0.

Using that I'/pu > Nj, and Ry > 1, the required conditions are satisfied. This completes the

proof.
0

5.2. Global stability of the disease-free equilibrium.

Theorem 5.3. If Ryg < Ry < 1, then the disease-free equilibrium D is globally asymptotically
stable for the system (2.1)—(2.6) in int(WW).

Moreover, the epidemiological threshold Ry is given by:

dj, be B2 N*
ROO—\/ hcﬁ v

dvr(dh'i_p_‘_u)

The complete proof of Theorem 5.3 is provides by Tamariz [10] in Theorem 4.6.3, but it follows
from the decomposition of the full system into two invariant subsystems and the application of
global stability results from the literature:
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o First three equations of (2.1)-(2.6). Global stability is established via the Lyapunov stabil-
ity theorem (Perko [6], Barreira [11]).

e Last three equations. Global stability is obtained by combining the threshold Ry with
Corollary 3.2 of Zhao [7], Lemma 1.2.1° of Zhao [12], and Theorem 3.2 with Remark 4.6
of Hirsch et al. [13].

6. Numerical Simulations.
Recall that the vector (L, N,,, P, I,,, I,, Ny,) represents, respectively, the populations of larvae, fish,
infected mosquitoes, total mosquito population, infected humans, and total human population for
each component of the vector.

6.1. Population Evolution when Ry < 1 and Ry > 1. We analyze the evolution of the pop-
ulations L, P, N,, and N}, for the cases Ry < 1 and Ry > 1. The parameter values given in
Table 6.1 correspond to a disease-free equilibrium point D. All parameter values are taken from
Ghosh et al.[5], except for the intra-specific competition coefficients m; and m,,, which are pro-
posed in this study.

Table 6.1: Parameter values for the disease-free equilibrium D.

Parameter | Value | Parameter Value
g 60 K 2000
d 0.05 | ¢ 0.3
dy 0.02 | 8 0.2
Ay 0.0625 | dj 0.00003913
0.2 dy 0.05
a1 0.2 P 0.005
1% 0.5 I 0.00005
q 0.3 b 0.3
0.5 r 0.8
r 0.2 My 0.002
0% 0.1 mp 0.004

From these values, we obtain Ry ~ 0.79 < 1 (Rgg ~ 0.09) and the disease-free equilibrium
point D = (12.46, 10.86, 998.53, 0, 0, 14.14), which is locally asymptotically stable. Fig-
ure 6.1 shows the evolution, according to the model, of the involved populations over a period of
50 days. It is observed that both the infected human and infected mosquito populations decrease
and tend toward the disease-free equilibrium. Initially, a larger quantity of larvivorous fish is re-
quired so that, by consuming larvae, this population ceases to grow. Subsequently, as the larval
population decreases, a smaller number of larvivorous fish will be needed.

Evolucian de poblaciones

Larvas

— Peces
Masquites infectagas
Humanos infectados

2000

Poblacion

a 2] 20 = a0 =
Tiempao {dias)

Figure 6.1: Population evolution with Ry < 1.
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In Figure 6.2, the phase planes Np—Ip,, N,—1I,,, and P—L are shown, where the direction fields
for each case and the location of the equilibrium point (in red) can be observed. In each phase
plane of system (2.1)—(2.6), for the parameter values given in Table 6.1, the asymptotic stability of
the infection-free equilibrium point D is illustrated.

il AT
il
il |||] |[| \'u flN
; T'!rﬁ‘ihﬁ |-‘.‘--_'|--il i I
T
A
(a) L-1,, plane (b) 1,,-1, plane (c) Ip-P plane

Figure 6.2: Phase planes showing convergence to the disease-free equilibrium (Ry < 1).

We now consider the parameter values given in Table 6.2, which correspond to the endemic
equilibrium point E'. All parameter values are taken from Ghosh et al. [5], except for the param-
eters my, and m,,, which are specific to this study.

Table 6.2: Parameter values for the endemic equilibrium point E.

Parameter | Value | Parameter | Value

g 60 K 2000

d 0.05 c 0.5

dy 0.02 B 0.3

Av 0.0625 | dy, 0.00003913
0.2 dy 0.05

a1 0.2 p 0.005

1% 0.5 W 0.00005

q 0.3 b 0.5

e 0.5 r 0.3

r 0.2 My 0.000002

ot 0.1 mp, 0.000004

We obtain Ry ~ 2.8 > 1, and the endemic equilibrium point is

Ep(23.24, 29.01, 1429.53, 19.03, 168.76, 265.14),

which is locally asymptotically stable. Figure 6.3 shows the evolution, according to the model, of
the populations involved over a 50-day period. It can be observed that both the infected human and
infected mosquito populations decrease and converge to the endemic equilibrium at a slower rate
than in the case of the disease-free equilibrium. Consequently, a larger initial number of larvivorous
fish will be required to consume the larvae and halt their population growth, after which the larval
population will decrease, reducing the required number of larvivorous fish.
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Figure 6.3: Population evolution in the endemic regime (Ry > 1).

Figure 6.4 shows the phase planes Ny, — I, N, —I,,, and P — L, where the direction field for
each and the location of the equilibrium point, marked in red, can be observed. In each phase plane
of system (2.1)—(2.6), for the values given in Table 6.2, the asymptotic stability of the endemic
equilibrium point E'g is shown.
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Figure 6.4: Trajectories towards the endemic equilibrium in different phase planes (Rg > 1).

6.2. of the Infected Populations I,, and I} Varying m, and/or my,. In this analysis, the
parameters of system (2.1)—(2.6) take the same values as those given in Table 6.2, except for m,,
and my,, which vary within the interval [0.000001, 0.1].

Figures 6.5 display the curves for the populations of infected humans and infected mosquitoes,
respectively, when varying the intraspecific competition coefficient among mosquitoes, m,,, while
keeping the intraspecific competition coefficient among humans, my,, constant. Results indicate
that as m,, increases—that is, as competition among mosquitoes becomes stronger—the infected
mosquito population decreases, and the infected human population also decreases. This suggests
that intraspecific competition among mosquitoes limits the growth of the vector population, thereby
reducing the spread of the parasite.

The I}, curve exhibits a much steeper decline than the I, curve, indicating that the dynamics of
transmission to humans are more sensitive to changes in m,,. This is possibly because even a small
change in the mosquito population has a large impact on the rate of infectious bites to humans.
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Evelucidn de humans infectades i Exiacitin de mosquies Infectados 11|

(a) Evolution of I, (b) Evolution of I,

Figure 6.5: Evolution of I;, and I,, under variations in m,,.

Figures 6.6 show the curves for the infected mosquito population and the infected human pop-
ulation, respectively, when varying the intraspecific competition coefficient among humans while
keeping constant the intraspecific competition coefficient among mosquitoes. It can be observed
that as my, increases, the infected human population does not decrease abruptly when mj, = 10~5;
however, for successive larger values of my, the decline in the infected human population be-
comes much more pronounced, tending towards the endemic equilibrium. This may be interpreted
as higher competition among humans for treatments, medical care, hospital beds, and related re-
sources, which could prolong the infection period, increase malaria-induced mortality, or raise
vulnerability. In contrast, the infected mosquito population decreases smoothly for smaller values
of my, but as my, becomes larger, the number of infected mosquitoes exhibits growth peaks within
the first 30 days before declining, due to the reduction in the infected human population, ultimately
approaching the endemic equilibrium.

Evelucidn de humanas infectads f Exiacitin de mosquies Infectados 11|

(a) Evolution of I}, (b) Evolution of I,

Figure 6.6: Evolution of I} and I,, under variations in my,.

Subsequently, by varying m,, and my, simultaneously, with m, = my, Figure 6.7 shows that
increasing both coefficients leads to a concurrent decrease in the populations of infected humans
and infected mosquitoes, with both tending toward extinction.

Evalrion e mesquise infeclados (L)

Evciurion de humans infectados i

= 1o m 1= m m
Terep

(a) Evolution of I, (b) Evolution of I,

Figure 6.7: Evolution of I;, and I,, for simultaneous variations in my, and m,,.

6.3. Evolution of Ry by varying m, and/or my,.

In this analysis, the parameters of (2.1)—(2.6) take the same values as those given in Table 6.2,
except for m,, and my, which will vary. Figure 6.8 shows the behavior of [Zy when the values
of my, vary while m,, remains constant. Results indicate that greater competition among humans
leads R to approach a value greater than 1, implying that the disease will become endemic. This
indicates the importance of implementing public policies that reduce competition for consumption
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resources among humans, such as improving access to healthcare facilities and medications for
malaria treatment.

0.000 ooz 0.004 0.006 0.008 0.010
My

Figure 6.8: Relationship between Ry and my,.

In Figure 6.9, the behavior of Ry is shown when the values of m,, vary while the value of my,
remains constant. It can be observed that greater competition among vectors causes Ry to tend
toward a value less than one, which implies that the disease will tend to disappear. In this case,
public policies aimed at increasing competition among vectors would lead to the disappearance
of the infection in the human population. Examples of such policies include the elimination of
mosquito breeding sites, the use of bed nets, and similar measures.

25

2.0

1.0

0.5

0.0 T T T T
0.000 0.002 0.004 0.006 o.o08 0.010
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Figure 6.9: Relationship between Ry and m,,.

In the figure 6.10 the surface of Ry as a function of m, and m, reveals an inverse relationship
of Ry with m,,, where higher vector intraspecific competition (or mortality) reduces R and thus
the transmission potential. In contrast, the effect of my, is nonlinear: initial increases in human
intraspecific competition raise Ry, but this effect slows down and may stabilize at higher levels of
my,. Biologically, these results indicate that malaria dynamics depend on the joint interaction of
both human and vector competition, suggesting that effective control strategies must integrate both
components to limit disease spread.
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Figure 6.10: 3D surface of Ry as a function of m,, and my,.

6.4. Evolution of R¢ and I;, at the Equilibrium Point by Varying 5. Figure 6.11 presents
the plot of the equilibrium values of [, for system (2.1)—(2.6) as the parameter [ varies, show-
ing a forward bifurcation from the disease-free point at Ry = 1. This result indicates that, for
instance, if public policies are implemented to keep the intraspecific competition parameters fa-
vorably controlled, it will be sufficient for the infection to converge to the disease-free equilibrium

when Ry < 1.
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Figure 6.11: Forward bifurcation at Ry = 1.

7. Conclusions.
Based on the results, the following conclusions were reached:

e The model with biological control and intraspecific competition presents feasible equilib-
rium points (disease-free and endemic), whose existence and uniqueness depend on the

system parameters and the basic reproduction number Rj.

o To ensure the local and global stability of the disease-free equilibrium point, it is necessary
that the basic reproduction number satisfies Ry < 1. Furthermore, to guarantee the local

stability of the endemic equilibrium point, it is necessary that Ry > 1.
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e Numerical simulations show that if competition among humans increases (e.g., competi-
tion for treatments, medical care, hospital beds, etc.), while competition among mosquitoes
remains constant, then the disease will become endemic.

e Numerical simulations show that if competition among vectors increases (e.g., competi-
tion for food, mating, etc.), while competition among humans remains constant, then the
disease will be eradicated.

e In scenarios where both intraspecific competition among humans (mj) and vectors (m,,)
increase, the simulations suggest a complex dynamic in which the disease may undergo
a transient expansion phase within the population, and subsequently, under certain con-
ditions of high competition, tend either to stabilize (endemic state) or to die out. This
highlights the importance of integrated control strategies that address both types of com-
petition.
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