
Special issue: XII International Congress of Applied and Computational Mathematics

Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS
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Abstract

This work studies a mathematical model describing the transmission dynamics of malaria, in-
corporating intraspecific competition in human and mosquito populations, and biological control
through larvivorous fish. We prove the existence of a compact attracting set for the proposed
system of differential equations. Through stability analysis, we characterize the disease-free and
endemic equilibrium points, determining epidemiologically relevant thresholds. The basic repro-
duction number (R0) is a key parameter: when R0 ≤ 1, the disease-free equilibrium is globally
asymptotically stable, whereas for R0 > 1, a stable endemic equilibrium emerges. Numerical
simulations validate the theoretical results and reveal the regulatory effect of intraspecific compe-
tition on disease prevalence. Finally, we generalize previous models by incorporating competitive
interactions and vector management strategies.

Keywords . Dynamical systems, stability, intraspecific competition, mathematical epidemiology.

1. Introduction. Malaria is caused by parasites of the genus Plasmodium, transmitted to hu-
mans through the bites of infected female mosquitoes of the genus Anopheles (vectors) [1]. It
remains a major health concern, particularly in tropical regions. In 2017, there were 219 million
cases and 435,000 deaths, underscoring malaria’s significant global impact [2]. In response to
the increasing resistance to insecticides and drugs, the use of biological control strategies, such
as the introduction of larvivorous fish, offers a sustainable alternative to chemical interventions.
However, existing models often overlook intraspecific competition effects, which can significantly
influence disease dynamics.

2. Model. The classical Ross–Macdonald model laid the foundations for the mathematical
modeling of malaria [3]. Subsequently, works such as those by Lou and Zhao [4] incorporated
biological control through larvivorous fish. Ghosh et al. [5] extended these models by considering
variable populations and identifying backward bifurcation phenomena. Based on Ghosh et al. [5],
which focused on human–vector and predator–prey interactions (larvivorous fish and mosquito lar-
vae), in this study we incorporate intraspecific competition via the coefficients mh for humans and
mv for female mosquitoes. Therefore, we propose the following model:
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dL

dt
= gNv − dL− d1L

2 − λvL− α1vLP − α1α2(1− v)LqEP (2.1)

dNv

dt
= λvL− dvNv −mvN

2
v (2.2)

dP

dt
= rP

(
1− P

K

)
+ γα1vLP − qeP (2.3)

dIv
dt

= cβ(Nv − Iv)
Ih
Nh

− dvIv −mvIvNv (2.4)

dIh
dt

= bβ(Nh − Ih)
Iv
Nh

− (dh + ρ+ µ)Ih −mhIhNh (2.5)

dNh

dt
= Γ− dhNh − µIh −mhN

2
h , (2.6)

where the variables and parameters are defined in Tables 2.1 and 2.2 bellow.

Table 2.1: Model variables.

Symbol Description Units
L(t) Total density of mosquito larvae per unit surface area individuals

Nv(t) Total population of female mosquitoes individuals

Iv(t) Population of infected female mosquitoes individuals

P (t) Density of the larvivorous fish population in region one per unit surface area individuals

Nh(t) Total human population individuals

Ih(t) Population of infected humans individuals

Table 2.2: Model parameters.

Parameter Description Units
v Fraction of total breeding sites that are ponds, lakes, dimensionless

and rivers considered as region one

g Egg-laying rate of adult female mosquitoes 1/day

λv Larval maturation rate 1/day

β Average number of bites per mosquito per unit time 1/day

d Natural mortality rate of mosquito larvae 1/day

c Probability of transmission from infected humans to mosquitoes dimensionless

b Probability of transmission from infected mosquitoes to humans dimensionless

d1 Density-dependent mortality rate of mosquito larvae 1/(day·individual)

dv Mortality rate of mosquitoes 1/day

r Intrinsic growth rate of the fish population 1/day

dh Constant mortality rate of the human population 1/day

K Carrying capacity of the fish population in region one individuals

Γ Recruitment rate of the human population 1/day

α1 Larval predation rate by fish 1/(day·individual)
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Parameter Description Units
α2 Fraction of fish harvested from region one that are introduced dimensionless

into region two

mv Mosquito competition coefficient 1/(day.individual)

mh Human competition coefficient 1/(day.individual)

ρ Recovery rate in humans 1/day

µ Malaria-induced mortality 1/day

q Catchability coefficient of fish dimensionless

γ Conversion efficiency from consumed larval biomass dimensionless
to fish biomass

E Harvesting effort of larvivorous fish from region one 1/day

3. Basic qualitative properties.
Theorem 3.1 (Positivity of solutions). Let U ⊂ R6 be the biologically feasible region defined

by

U =
{
(L,Nv, P, Iv, Ih, Nh) ∈ R6 : L ≥ 0, P ≥ 0, Nv ≥ 0, Iv ≥ 0, Ih ≥ 0, Nh > 0

}
.

If the initial conditions of system (2.1)–(2.6) are

L(0) = L0 ≥ 0, Nv(0) = N0
v ≥ 0, P (0) = P 0 ≥ 0,

Iv(0) = I0v ≥ 0, Ih(0) = I0h ≥ 0, Nh(0) = N0
h > 0,

then the solutions of the system belong to the set U .
Proof: We first prove that L(t) ≥ 0, ∀t ≥ 0. By contradiction, suppose there exists t1 ≥ 0

and exists δ1 > 0 such that

L(t1) = 0 and L′(t) < 0, ∀t ∈ [t1, t1 + δ1],

and furthermore Nv(t) ≥ 0, ∀t ∈ [t1, t1 + δ1]. Then we have:

dL(t1)

dt
= gNv(t1)− dL(t1)− d1L(t1)

2 − λvL(t1)

− α1vL(t1)P (t1)− α1α2(1− v)L(t1)qeP (t1)

= gNv(t1) ≥ 0,

which is a contradiction. Now, we must prove that Nv(t) ≥ 0, ∀t ≥ 0. By contradiction, suppose
there exist t2 ≥ 0 and δ2 > 0 such that

Nv(t2) = 0 and N ′
v(t) < 0, ∀t ∈ [t2, t2 + δ2],

and furthermore L(t) ≥ 0, ∀t ∈ [t2, t2 + δ2]. Then we have:

dNv(t2)

dt
= λvL(t2)− dvNv(t2)−mvNv(t2)

2

= λvL(t2) ≥ 0,

which is again a contradiction. Similarly, the result can be verified for each of the remaining
variables. □

Theorem 3.2 (Boundedness and biological feasibility of solutions). The system (2.1)–(2.6)
has a unique bounded solution with initial value

x0 = (L0, N0
v , P

0, I0v , I
0
h, N

0
h) ∈ W = {(L,Nv, P, Iv, Ih, Nh) ∈ U : Iv ≤ Nv, Ih ≤ Nh} .

Moreover, the compact set

Ω =



(L,Nv, P, Iv, Ih, Nh) ∈ W :

L ≤ gλv

d1dv
, P ≤ K

r

(
γα1v

gλv

d1dv
+ (r − qE)

)
,

Nv ≤ g

d1

(
λv

dv

)2

, Nh ≤ Γ

dh
, Ih ≤ Nh, Iv ≤ Nv


,
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attracts all positive solutions with initial conditions in W .
Proof: For any x = (x1, x2, x3, x4, x5, x6) ∈ W , since f ∈ C1(int(U)), it follows that

the system (2.1)–(2.6) has a unique solution u(t, x) defined over its maximal interval of existence
(a, b), with 0 ∈ (a, b) and u(0) = x, by Theorem 1 (Section 2.4) in Perko [6].

Let u(t, x) =
(
u1(t, x), u2(t, x), u3(t, x), u4(t, x), u5(t, x), u6(t, x)

)
∈ R6

+, for all t ∈ (a, b).
By contradiction, it can be shown that

u5(t, x) ≤ u6(t, x) and u4(t, x) ≤ u2(t, x),

hence u(t, x) ∈ W for all t ∈ (a, b).
We now prove that the solution u(t, x) is bounded for all t ∈ (a, b), given the differential

equations:
du1
dt

= gu2 − d1u
2
1,

du2
dt

= λvu1 − dvu2.

We define the function:

h(u1, u2) =
(
gu2 − d1u

2
1, λvu1 − dvu2

)
.

Then

Dh(u1, u2) =

(
−2d1u1 g

λv −dv.

)
• The function h is cooperative on R2

+; that is,

∂hi
∂uj

≥ 0, for 1 ≤ i, j ≤ 2, i ̸= j.

• The Jacobian matrix Dh(u1, u2) is irreducible for all (u1, u2) ∈ R2
+.

• h(0, 0) = (0, 0) and hi(u1, u2) ≥ 0, ∀(u1, u2) ∈ R2
+ with ui = 0; i = 1, 2.

• h is strictly subhomogeneous on R2
+; that is, h(p(u1, u2)) > ph(u1, u2) for any p ∈ (0, 1)

and (u1, u2) ∈ Int(R2
+).

Evaluating the Jacobian matrix at (0, 0):

Dh(0, 0) =

(
0 g

λv −dv

)
.

The spectral radius of Dh(0, 0) is defined as ρ(Dh(0, 0)) = max{Reλ : det(λI −Dh(0, 0)) =
0}. Thus, the characteristic equation is:

x2 + xdv − λvg = 0 ⇒ x =
−dv ±

√
d2v + 4λvg

2
⇒ ρ(Dh(0, 0)) > 0.

Therefore, by Corollary 3.2 of Zhao and Jing [7], the system has an equilibrium point(
gλv

dvd1
,

g

d1

(
λv

dv

)2
)
,

which is globally asymptotically stable with respect to all initial values in R2
+ \ {(0, 0)}.

Now, we observe that:

dL

dt
≤ gNv − d1L

2,
dNv

dt
≤ λvL− dvNv.

By the comparison principle, there exist positive constants M1 and M2 such that:

L(t) ≤ M1, Nv(t) ≤ M2, ∀t ∈ [0, σx).

dP

dt
= rP

(
1− P

K

)
+ γα1vLP − qEP
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K
dP

dt
≤ (Kγα1vM1 +K(r − qE)− rP )P.

First, suppose that:

0 ≤ Kγα1vM1 +K(r − qE)− rP ⇒ P ≤ K

r
(γα1vM1 + r − qE).

From which we directly obtain:

P ≤ K

r

(
γα1v

gλv

dvd1
+ r − qE

)
.

Now, suppose that:

0 > Kγα1vM1 +K(r − qE)− rP ⇒ P >
K

r
(γα1vM1 + r − qE) .

K
1

(rP −Kγα1vM1 −K(r − qE))P

dP

dt
≤ −1.

Then, we have:

rP −Kγα1vM1 −K(r − qE)

P
≤ exp (−t(γα1vM1 + r − qE))·rP (0)−Kγα1vM1 −K(r − qE)

P (0)
.

When t → ∞, it follows that:

rP −Kγα1vM1 −K(r − qE)

P
≤ 0 ⇒ rP ≤ K

(
γα1v

gλv

dvd1
+ r − qE

)
.

Thus, in all cases we conclude that:

P ≤ K

r

(
γα1v

gλv

dvd1
+ r − qE

)
.

From the previous arguments we have:

lim sup
t→∞

(Lv(t), Nv(t)) ≤
(

gλv

dvd1
,
g

d1

(
λv

dv

)2
)
.

Moreover

lim sup
t→∞

P (t) ≤ K

r

(
γα1v

gλv

dvd1
+ (r − qE)

)
dNh(t)

dt
= Γ− dhNh − µh −mh(Nh)

2 ≤ Γ− dhNh.

Hence

Nh ≤ Γ

(
1

dh
− e−dht

dh

)
+Nh(0)e

−dht.

When t → ∞, we obtain Nh ≤ Γ
dh

. Therefore, Ω is globally attractive, and since the solution
u(t, x) is bounded on [0, b), we have b = ∞ by Corollary 2(Section 2.4) in Perko [6]. □

4. Existence of equilibria and the basic number R0.

Theorem 4.1 (Disease-Free Equilibrium). The system (2.1)–(2.6) admits a unique disease-
free equilibrium point

D = (L∗, N∗
v , P

∗, 0, 0, N∗
h) with N∗

v ̸= 0, P ∗ ̸= 0,

under the conditions:

dvr(d+ λv +AK)

AKqEdv + rgλv
< 1,

dvN
∗
v +mv(N

∗
v )

2 >
(qE − r)λv

γα1v
,
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where N∗
v is the positive root of the cubic equation:

a3x
3 + a2x

2 + a1x+ a0 = 0,

with:

A = α1v + α1α2(1− v)qE,

a3 = d1m
2
v +

AK

r
γα1vm

2
v,

a2 = 2d1dvmv + 2
AK

r
γα1vmvdv,

a1 = d1d
2
v + (d+ λv)λvmv +AKλvmv +

AK

r
γα1vd

2
v −

AK

r
α1qEmv,

a0 = −gλ2
v + dλvdv + λ2

vdv +AKλvdv −
AK

r
λvqEdv.

The expressions for the other variables in the disease-free equilibrium are:

P ∗ =
K

r
(r + γα1vL

∗ − qE) , L∗ =
dvN

∗
v +mv(N

∗
v )

2

λv
, N∗

h =
−dh +

√
d2h + 4mhΓ

2mh
.

Proof:
Setting Ih = 0 and Iv = 0 in the system (2.1)–(2.6) and equating the right-hand sides to zero,

we obtain the expressions for P ∗, L∗ and N∗
h .

In addition, we obtain the equation:

q(x) = a3x
3 + a2x

2 + a1x+ a0 = 0,

whose positive real solution is N∗
v .

It can be noted that:
q′′(x) > 0, ∀x ∈ [0,∞),

that is, the polynomial is convex on [0,∞). For the polynomial q(x) to have a positive real root,
the condition q(0) < 0 must hold, which is equivalent to:

dvr(d+ λv +AK)

AKqedv + rgλv
< 1

□

4.1. Basic Reproduction Number R0.
The subsystem describing the dynamics of the infected compartments is given by:

dIv(t)

dt
= cβ(Nv − Iv)

Ih
Nh

− dvIv −mvIvNv,

dIh(t)

dt
= bβ(Nh − Ih)

Iv
Nh

− (dh + ρ+ µ)Ih −mhIhNh.

The basic reproduction number, following the epidemiological definition in Basáñez and Rodrı́guez
[3], is defined as the number of secondary infections generated by a typical infected individual in
a disease-free population.

Following the next-generation matrix approach [8], where F represents the rate of appearance
of new infections, and V represents the rate of transitions and removals:

F =

cβ(Nv − Iv)
Ih
Nh

bβ(Nh − Ih)
Iv
Nh

 , V =

(
dvIv +mvIvNv

(dh + ρ+ µ)Ih +mhIhNh

)
.

Matrices F and V are the Jacobians of F and V with respect to Iv and Ih, respectively, evalu-
ated at the disease-free equilibrium D:

F =

 0
cβN∗

v

N∗
h

bβ 0

 , V =

(
dv +mvN

∗
v 0

0 dh + ρ+ µ+mhN
∗
h

)
.
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The next-generation matrix is given by:

FV −1 =

 0
cβN∗

v

(dh + ρ+ µ+mhN
∗
h)N

∗
h

bβ

dv +mvN∗
v

0

 .

Then, the spectral radius of the matrix FV −1 is the basic reproduction number R0:

R0 =

√
bcβ2N∗

v

(dv +mvN∗
v )(dh + ρ+ µ+mhN

∗
h)N

∗
h

. (4.1)

Theorem 4.2 (Endemic Equilibrium). The system (2.1)–(2.6) has at least one endemic equi-
librium point

EE = (L̂, N̂v, P̂ , Îv, Îh, N̂h),

with N̂v ̸= 0 and P̂ ̸= 0, under the following conditions:

dvr(d+ λv +AK)

AKqEdv + rgλv
< 1,

dvN̂v +mv(N̂v)
2 >

(qE − r)λv

γα1v
,

and

−(dh + µ) +
√
(dh + µ)2 + 4mhΓ

2mh
< N̂v ≤

−dh +
√
d2h + 4mhΓ

2mh
.

The variable N̂v is the unique positive root of the cubic equation:

a3x
3 + a2x

2 + a1x+ a0 = 0,

and N̂h is one of the positive roots of the quartic equation:

b4x
4 + b3x

3 + b2x
2 + b1x+ b0 = 0.

The coefficients are defined as:

A = α1v + α1α2(1− v)qE,

a3 = d1m
2
v +

AK

r
γα1vm

2
v,

a2 = 2d1dvmv + 2
AK

r
γα1vmvdv,

a1 = d1d
2
v + (d+ λv)λvmv +AKλvmv +

AK

r
γα1vd

2
v −

AK

r
α1qemv,

a0 = −gλ2
v + dλvdv + λ2

vdv +AKλvdv −
AK

r
λvqEdv,

b4 = cβm2
h,

b3 = mhcβ(dh + ρ+ µ) + dhcβmh −mhµ(dv +mvN̂v),

b2 = mhbcβ
2N̂v + dhcβ(dh + ρ+ µ)− µ(dv +mvN̂v)(dh + ρ+ µ)− Γcβmh,

b1 = µbcβ2N̂v + dhbcβ
2N̂v − Γcβ(dh + ρ+ µ),

b0 = −Γbcβ2N̂v

The expressions for the other variables at the endemic equilibrium are:

L̂ =
dvN̂v +mvN̂

2
v

λv
, P̂ =

K

r
(r − qE + γα1vL̂), Îv =

(dh + ρ+ µ+mhN̂h)ÎhN̂h

bβ(N̂h − Îh)
,
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and Îh = Γ−dhN̂h−mhN̂2
h

µ .

Moreover, if R0 > 1 and

3c2β2(dh + ρ+ µ)2 + 3µ2(dv +mvN̂v)
2 + 3c2β2d2h + 2c2β2dh(dh + ρ+ µ)

+ 4mhΓc
2β2 < 2cβµ(dh + ρ+ µ)(dv +mvN̂v) + 4mhbc

2β3N̂v

+ 2cβµdh(dv +mvN̂v)mh,

then, N̂h has a unique positive real value; that is, EE is unique.
Proof:
The differential system (2.1)–(2.6), when each equation is set to zero, yields the expressions

for L̂, P̂ , Îv, and Îh.
From the expression for Îv, its positivity requires N̂v to satisfy the following bounds:

0 <
−(dh + µ) +

√
(dh + µ)2 + 4mhΓ

2mh
< N̂h ≤

−dh +
√
d2h + 4mhΓ

2mh
= N∗

h .

Furthermore, the equation:

q(x) = a3x
3 + a2x

2 + a1x+ a0 = 0,

has the unique positive root N̂v, and the equation:

p(x) = b4x
4 + b3x

3 + b2x
2 + b1x+ b0 = 0,

where N̂h is one of its positive real roots.
Since N̂h ∈ (0, N∗

h ], evaluating p(x) gives:

p(0) = −Γbcβ2N̂v = b0 < 0, p(N∗
h) = µN∗

h(R
2
0 − 1),

As p(0) < 0, the following cases may occur:
- If R0 ≥ 1, then p(N∗

h) ≥ 0. Therefore, the polynomial p(x) intersects the x-axis at some
N̂h ∈ (0, N∗

h ].
- If R0 < 1, then p(N∗

h) < 0, implying that there is no positive root of p(x) in [0, N∗
h ], and the

solution would be found for x > N∗
h .

To guarantee the uniqueness of the positive real root of p(x) in the first case, the graph of p(x)
must be convex on (0,∞), which holds if:

p′′(x) > 0, ∀x ∈ (0,∞).

The second derivative of the polynomial is:

p′′(x) = 12cβ(mh)
2x2 + 6

[
mhcβ(2dh + ρ+ µ)−mhµ(dv +mvN̂v)

]
x

+
[
mhbcβ

2N̂v + dhcβ(dh + ρ+ µ)− µ(dv +mvN̂v)(dh + ρ+ µ)− Γcβmh

]
.

Since p′′(x) is a quadratic polynomial, to be strictly positive on (0,∞) its discriminant ∆ must
be negative. That is, the following must hold:

3c2β2(dh + ρ+ µ)2 + 3µ2(dv +mvN̂v)
2 + 3c2β2d2h + 2c2β2dh(dh + ρ+ µ) + 4mhΓc

2β2

< 2cβµ(dh + ρ+ µ)(dv +mvN̂v) + 4mhbc
2β3N̂v + 2cβµdh(dv +mvN̂v)mh.

This condition ensures the uniqueness of the positive real root of the polynomial p(x).
□

Remark 1. It is observed that at the disease-free equilibrium D, the densities of larvae,
fish, and mosquito population coincide with those at the endemic equilibrium EE , that is, L∗ =

L̂, P ∗ = P̂ , N∗
v = N̂v and N̂h ≤ N∗

h .
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5. Stability.

5.1. Local Stability.
If x = (x1, x2, x3, x4, x5, x6) and we define the vector function f as

f(x) = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x)),

where

f1(x) = gx2 − dx1 − d1x
2
1 − λvx1 − α1vx1x3 − α1α2(1− v)qEx1x3,

f2(x) = λvx1 − dvx2 −mvx
2
2,

f3(x) = rx3

(
1− x3

K

)
+ γα1vx1x3 − qEx3,

f4(x) = β
(x2 − x4)x5

x6
− dvx4 −mvx4x2,

f5(x) = bβ
(x6 − x5)x4

x6
− (dh + ρ+ µ)x5 −mhx6x5,

f6(x) = Γ− dhx6 − µx5 −mhx
2
6.

Thus, the system (2.1)–(2.6) can be written as

dx

dt
= f(x) (5.1)

Theorem 5.1. The disease-free equilibrium D is locally asymptotically stable if R0 < 1 and
locally unstable if R0 > 1, where N∗

v ̸= 0 and P ∗ ̸= 0.
Proof: From the equivalent system (5.1), the characteristic polynomial of the Jacobian matrix

Jf(D) is:
P (x) = P1(x)P2(x)P3(x),

where:

P1(x) = −dv − 2N∗
vmv − x,

P2(x) = (bβ)

(
−cβN∗

v

N∗
h

)
+ (dh + ρ+ µ+mhN

∗
h + x)(dv +N∗

vmv + x),

P3(x) is the characteristic polynomial of the matrix J3,

with:

J3 =


−d− 2d1L

∗ − λv −AP ∗ −AL∗ g

γα1vP
∗ r

(
1− 2P ∗

K

)
+ γα1vL

∗ − qe 0

λv 0 −dv − 2mvN
∗
v

 .

We observe that P1(x) has a negative real root. Now, expanding P2(x), we obtain:

P2(x) = x2+(dh+ρ+µ+mhN
∗
h+dv+N∗

vmv)x+(dh+ρ+µ+mhN
∗
h)(dv+N∗

vmv) [1−R2
0].

• If R0 < 1, then P2(x) has two negative real roots.

• If R0 > 1, then P2(x) has one positive real root (instability).

As for P3(x), all its coefficients are positive, which implies that all its roots are negative real
numbers.

□
Theorem 5.2. The endemic equilibrium EE is locally asymptotically stable if R0 > 1 and

Γ
µ ≥ N̂h, with N̂v ̸= 0, P̂ ̸= 0.

Proof:
The characteristic polynomial of the Jacobian matrix in EE is

P (x) = P1(x)P2(x).
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Here P2(x) is the characteristic polynomial of the matrix
−d− 2d1L̂− λv −AP̂ −AL̂ g

γα1vP̂ r

(
1− 2P̂

K

)
+ γα1vL̂− qE 0

λv 0 −dv − 2mvN̂v


previously analyzed in the proof of the disease-free equilibrium, which determined that it always
has three negative solutions.

Now we analyze the polynomial

P1(x) = x3 + a1x
2 + a2x+ a3,

where:

a1 =

(
dv +mvN̂v +

cβÎh

N̂h

)
+
(
dh + 2mhN̂h

)
+

(
dh + ρ+ µ+ N̂hmh +

bβÎv

N̂h

)
,

a2 = −bcβ2(N̂v − Îv)(N̂h − Îh)

N̂2
h

+
(
dh + 2mhN̂h

)(
dv +mvN̂v +

cβÎh

N̂h

)

+

(
dv +mvN̂v +

cβÎh

N̂h

)(
dh + ρ+ µ+ N̂hmh +

bβÎv

N̂h

)

+

(
dh + ρ+ µ+ N̂hmh +

bβÎv

N̂h

)(
dh + 2mhN̂h

)
+ µ

(
bβÎv Îh

N̂2
h

−mhÎh

)
,

a3 = −
(
dh + 2mhN̂h

) bcβ2(N̂v − Îv)(N̂h − Îh)

N̂2
h

+

(
dh + ρ+ µ+ N̂hmh +

bβÎv

N̂h

)(
dv +mvN̂v +

cβÎh

N̂h

)(
dh + 2mhN̂h

)
+ µ

(
dv + N̂vmv +

cβÎh

N̂h

)(
bβÎv Îh

N̂2
h

−mhÎh

)

− µ
bcβ2(N̂v − Îv)(N̂h − Îh)Îh

N̂3
h

.

Applying the Routh–Hurwitz criterion given in Kiseliov et al. [9] to the polynomial P1, for
it to have three roots with negative real part (two complex conjugate roots and one real root) the
following must hold:

∆1 = a1 > 0, ∆2 = a1a2 − a3 > 0, and a3 > 0.

Using that Γ/µ ≥ N̂h and R0 > 1, the required conditions are satisfied. This completes the
proof.

□

5.2. Global stability of the disease-free equilibrium.
Theorem 5.3. If R00 ≤ R0 ≤ 1, then the disease-free equilibrium D is globally asymptotically

stable for the system (2.1)–(2.6) in int(W ).
Moreover, the epidemiological threshold R00 is given by:

R00 =

√
dh bc β2N∗

v

dv Γ (dh + ρ+ µ)
.

The complete proof of Theorem 5.3 is provides by Tamariz [10] in Theorem 4.6.3, but it follows
from the decomposition of the full system into two invariant subsystems and the application of
global stability results from the literature:
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• First three equations of (2.1)-(2.6). Global stability is established via the Lyapunov stabil-
ity theorem (Perko [6], Barreira [11]).

• Last three equations. Global stability is obtained by combining the threshold R00 with
Corollary 3.2 of Zhao [7], Lemma 1.2.1’ of Zhao [12], and Theorem 3.2 with Remark 4.6
of Hirsch et al. [13].

6. Numerical Simulations.
Recall that the vector (L,Nv, P, Iv, Ih, Nh) represents, respectively, the populations of larvae, fish,
infected mosquitoes, total mosquito population, infected humans, and total human population for
each component of the vector.

6.1. Population Evolution when R0 < 1 and R0 > 1. We analyze the evolution of the pop-
ulations L, P , Nv, and Nh for the cases R0 < 1 and R0 > 1. The parameter values given in
Table 6.1 correspond to a disease-free equilibrium point D. All parameter values are taken from
Ghosh et al.[5], except for the intra-specific competition coefficients mh and mv, which are pro-
posed in this study.

Table 6.1: Parameter values for the disease-free equilibrium D.

Parameter Value Parameter Value

g 60 K 2000
d 0.05 c 0.3
d1 0.02 β 0.2
λv 0.0625 dh 0.00003913
v 0.2 dv 0.05
α1 0.2 ρ 0.005
α2 0.5 µ 0.00005
q 0.3 b 0.3
e 0.5 Γ 0.8
r 0.2 mv 0.002
γ 0.1 mh 0.004

From these values, we obtain R0 ≈ 0.79 < 1 (R00 ≈ 0.09) and the disease-free equilibrium
point D = (12.46, 10.86, 998.53, 0, 0, 14.14), which is locally asymptotically stable. Fig-
ure 6.1 shows the evolution, according to the model, of the involved populations over a period of
50 days. It is observed that both the infected human and infected mosquito populations decrease
and tend toward the disease-free equilibrium. Initially, a larger quantity of larvivorous fish is re-
quired so that, by consuming larvae, this population ceases to grow. Subsequently, as the larval
population decreases, a smaller number of larvivorous fish will be needed.

Figure 6.1: Population evolution with R0 < 1.
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In Figure 6.2, the phase planes Nh–Ih, Nv–Iv, and P–L are shown, where the direction fields
for each case and the location of the equilibrium point (in red) can be observed. In each phase
plane of system (2.1)–(2.6), for the parameter values given in Table 6.1, the asymptotic stability of
the infection-free equilibrium point D is illustrated.

(a) L-Iv plane (b) Iv-Ih plane (c) Ih-P plane

Figure 6.2: Phase planes showing convergence to the disease-free equilibrium (R0 < 1).

We now consider the parameter values given in Table 6.2, which correspond to the endemic
equilibrium point EE . All parameter values are taken from Ghosh et al. [5], except for the param-
eters mh and mv, which are specific to this study.

Table 6.2: Parameter values for the endemic equilibrium point E.

Parameter Value Parameter Value

g 60 K 2000

d 0.05 c 0.5

d1 0.02 β 0.3

λv 0.0625 dh 0.00003913

v 0.2 dv 0.05

α1 0.2 ρ 0.005

α2 0.5 µ 0.00005

q 0.3 b 0.5

e 0.5 Γ 0.3

r 0.2 mv 0.000002

γ 0.1 mh 0.000004

We obtain R0 ≈ 2.8 > 1, and the endemic equilibrium point is

EE(23.24, 29.01, 1429.53, 19.03, 168.76, 265.14),

which is locally asymptotically stable. Figure 6.3 shows the evolution, according to the model, of
the populations involved over a 50-day period. It can be observed that both the infected human and
infected mosquito populations decrease and converge to the endemic equilibrium at a slower rate
than in the case of the disease-free equilibrium. Consequently, a larger initial number of larvivorous
fish will be required to consume the larvae and halt their population growth, after which the larval
population will decrease, reducing the required number of larvivorous fish.
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Figure 6.3: Population evolution in the endemic regime (R0 > 1).

Figure 6.4 shows the phase planes Nh−Ih, Nv−Iv, and P−L, where the direction field for
each and the location of the equilibrium point, marked in red, can be observed. In each phase plane
of system (2.1)–(2.6), for the values given in Table 6.2, the asymptotic stability of the endemic
equilibrium point EE is shown.

(a) L-Iv plane (b) Iv-Ih plane (c) Ih-P plane

Figure 6.4: Trajectories towards the endemic equilibrium in different phase planes (R0 > 1).

6.2. of the Infected Populations Iv and Ih Varying mv and/or mh. In this analysis, the
parameters of system (2.1)–(2.6) take the same values as those given in Table 6.2, except for mv
and mh, which vary within the interval [0.000001, 0.1].

Figures 6.5 display the curves for the populations of infected humans and infected mosquitoes,
respectively, when varying the intraspecific competition coefficient among mosquitoes, mv, while
keeping the intraspecific competition coefficient among humans, mh, constant. Results indicate
that as mv increases—that is, as competition among mosquitoes becomes stronger—the infected
mosquito population decreases, and the infected human population also decreases. This suggests
that intraspecific competition among mosquitoes limits the growth of the vector population, thereby
reducing the spread of the parasite.

The Ih curve exhibits a much steeper decline than the Iv curve, indicating that the dynamics of
transmission to humans are more sensitive to changes in mv. This is possibly because even a small
change in the mosquito population has a large impact on the rate of infectious bites to humans.
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(a) Evolution of Ih (b) Evolution of Iv

Figure 6.5: Evolution of Ih and Iv under variations in mv.

Figures 6.6 show the curves for the infected mosquito population and the infected human pop-
ulation, respectively, when varying the intraspecific competition coefficient among humans while
keeping constant the intraspecific competition coefficient among mosquitoes. It can be observed
that as mh increases, the infected human population does not decrease abruptly when mh = 10−6;
however, for successive larger values of mh, the decline in the infected human population be-
comes much more pronounced, tending towards the endemic equilibrium. This may be interpreted
as higher competition among humans for treatments, medical care, hospital beds, and related re-
sources, which could prolong the infection period, increase malaria-induced mortality, or raise
vulnerability. In contrast, the infected mosquito population decreases smoothly for smaller values
of mh, but as mh becomes larger, the number of infected mosquitoes exhibits growth peaks within
the first 30 days before declining, due to the reduction in the infected human population, ultimately
approaching the endemic equilibrium.

(a) Evolution of Ih (b) Evolution of Iv

Figure 6.6: Evolution of Ih and Iv under variations in mh.

Subsequently, by varying mv and mh simultaneously, with mv = mh, Figure 6.7 shows that
increasing both coefficients leads to a concurrent decrease in the populations of infected humans
and infected mosquitoes, with both tending toward extinction.

(a) Evolution of Ih (b) Evolution of Iv

Figure 6.7: Evolution of Ih and Iv for simultaneous variations in mh and mv.

6.3. Evolution of R0 by varying mv and/or mh.
In this analysis, the parameters of (2.1)–(2.6) take the same values as those given in Table 6.2,

except for mv and mh, which will vary. Figure 6.8 shows the behavior of R0 when the values
of mh vary while mv remains constant. Results indicate that greater competition among humans
leads R0 to approach a value greater than 1, implying that the disease will become endemic. This
indicates the importance of implementing public policies that reduce competition for consumption
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resources among humans, such as improving access to healthcare facilities and medications for
malaria treatment.

Figure 6.8: Relationship between R0 and mh.

In Figure 6.9, the behavior of R0 is shown when the values of mv vary while the value of mh
remains constant. It can be observed that greater competition among vectors causes R0 to tend
toward a value less than one, which implies that the disease will tend to disappear. In this case,
public policies aimed at increasing competition among vectors would lead to the disappearance
of the infection in the human population. Examples of such policies include the elimination of
mosquito breeding sites, the use of bed nets, and similar measures.

Figure 6.9: Relationship between R0 and mv.

In the figure 6.10 the surface of R0 as a function of mv and mh reveals an inverse relationship
of R0 with mv, where higher vector intraspecific competition (or mortality) reduces R0 and thus
the transmission potential. In contrast, the effect of mh is nonlinear: initial increases in human
intraspecific competition raise R0, but this effect slows down and may stabilize at higher levels of
mh. Biologically, these results indicate that malaria dynamics depend on the joint interaction of
both human and vector competition, suggesting that effective control strategies must integrate both
components to limit disease spread.
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Figure 6.10: 3D surface of R0 as a function of mv and mh.

6.4. Evolution of R0 and Ih at the Equilibrium Point by Varying β. Figure 6.11 presents
the plot of the equilibrium values of Ih for system (2.1)–(2.6) as the parameter β varies, show-
ing a forward bifurcation from the disease-free point at R0 = 1. This result indicates that, for
instance, if public policies are implemented to keep the intraspecific competition parameters fa-
vorably controlled, it will be sufficient for the infection to converge to the disease-free equilibrium
when R0 < 1.

Figure 6.11: Forward bifurcation at R0 = 1.

7. Conclusions.
Based on the results, the following conclusions were reached:

• The model with biological control and intraspecific competition presents feasible equilib-
rium points (disease-free and endemic), whose existence and uniqueness depend on the
system parameters and the basic reproduction number R0.

• To ensure the local and global stability of the disease-free equilibrium point, it is necessary
that the basic reproduction number satisfies R0 < 1. Furthermore, to guarantee the local
stability of the endemic equilibrium point, it is necessary that R0 > 1.
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• Numerical simulations show that if competition among humans increases (e.g., competi-
tion for treatments, medical care, hospital beds, etc.), while competition among mosquitoes
remains constant, then the disease will become endemic.

• Numerical simulations show that if competition among vectors increases (e.g., competi-
tion for food, mating, etc.), while competition among humans remains constant, then the
disease will be eradicated.

• In scenarios where both intraspecific competition among humans (mh) and vectors (mv)
increase, the simulations suggest a complex dynamic in which the disease may undergo
a transient expansion phase within the population, and subsequently, under certain con-
ditions of high competition, tend either to stabilize (endemic state) or to die out. This
highlights the importance of integrated control strategies that address both types of com-
petition.
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