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Abstract

In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in
periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously
on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a
more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we
demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the
contributions of lorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite
dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend
our results to equations of arbitrary nth order.

Keywords . Semigroups theory, third-order equation, dissipative property of problem, nth order equation, Periodic
Sobolev spaces, Fourier Theory.

1. Introduction. We will begin studying the following problem:

(P1): g+ gy +au = 0in H3, 3 with u(0) = ¢ € H}

per per s

considering a > 0, s a real number and denoting H_, as the periodic Sobolev space. We will prove that
(P) problem is well-posed. Note that, by perturbing the third-order conservative system studied in [3] we
will obtain that (P) is a dissipative system. In addition, we will give a family of operators that becomes
a semigroup, achieving beautiful results through operators and differential calculus in Banach spaces. To
deepen and enrich our study, we will investigate the infinite-dimensional space in which differentiability
occurs and its connection to the initial data. Finally, we will generalize the results to the nth-order equation.

We can cite [3], where we find some results related to the conservative part of model (P;). And we cite
[1] for being a source of inspiration for this work. We also mention some works on existence of solutions
by semigroups [4], [5], [6] and take support in some results of [7] and [8]. The structure of our article
is as follows. In section 2, we outline the methodology used and provide the citations for the references
consulted. In section 3, we prove that problem (P;) is well posed. Moreover, we introduce a family of
operators that form a semigroup of class C, to state the result Theorem 3.3 and prove it in an abstract
version. In section 4, we study the generalization to n-th order equation. Here we use the semigroups
theory of contraction, and obtain important results of approximation, existence and regularity. In section
5, we obtain other results related to the dissipative property of (P;) and some estimates of it, through the
use of differential calculus on H;er' Also, we get their generalization and some remarks. In section 6, to
deepen and enrich our study, we investigate the infinite-dimensional space in which differentiability occurs
and its connection to the initial data. Finally, in section 7, we present the conclusions of our study.
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2. Methodology . In this article, we mainly employ [9] as the theoretical framework. In addition,
we use the references [3], [1], [10] and [2] for the Fourier theory in H. ;m,, and differential and integral
calculus in Banach spaces. We’ll quickly present some definitions and results to make it easier to read. Let

be

P = Cpx.([-m, 7])and
P’ := the Topological Dual of P .

For s € R we define

+o0o
Hy. ([-m ) = {f € P’ such that Z (14 K25 f(k))? < o0 } .
k=—oc0
Then H,, is a Hilbert space with inner product
+oo o
<fig>=2m S L+ K F(k)GR) for f.g€ H,, .
k=—oc0

So, H?

per 18 known as the periodic Sobolev space and satisfies the following result.

Proposition 2.1. Let s,r € R such that s > r then HS.. C H That is , H? . is imbedded

per per* per
continuously and densely in H} ., and ||u|. < [lulls, Vu € H,,,. In particular; if s > 0 then H,., C

per:
L?([—=,7]). Moreover, it is valid the “isometrically isomorphic” identication, that is (H?,,.)" = H .}

per per
Vs € R, where the duality is implemented by the pair

+oo
< fig>=2r Y [f(k)g(k),Yf € Hyp, Vg € Hy,, .

k=—oc0
Proof: Wecite [1]. U

3. The (P;) problem is well-posed. We will prove that (P;) is well-posed. Also, we will introduce a
family of operators that form a contraction semigroup of class C,, as we will make it in Theorem 3.2.
Finally, we will state Theorem 3.3 whose content is a fine version of Theorem 3.1 based on the semi-

group {S(t)}¢>o.
Theorem 3.1. Let s be a fixed real number, a > 0 and

u € C([0,+00), HS,,),

per
(P1) | Qu+Butau=0 € H3 3,
u(0) =19 € Hp,, .

then (Py) is globally well-posed, that is, Ju € C([0,00), H5,,) N C((0,00), H3.?) satisfying equation
(P1) so that the application: 1 — u, which to every initial data v assigns the solution u of the IVP (Py),
is continuous. That is, for ¢ and 1 initial data close in H;,,, their corresponding solutions u and 1,
respectively, are also close in the solution space.

In addition,
Ju(t) — @()|ls < Iy —b|ls, Vt € [0,+00),
and

sup [[u(t) — a(t)lls < [l¢ — |,
>0
are verified.

Moreover, the solution u satisfies u(t) € Hy,, , YVt >0, Vr < swith [[u(t)[|s < [[¢[|s and |lu(?)|. <
)l Vr < s, ¥t > 0.

Also, the application: 1 — Ogu, which to every initial data <) assigns the derivate of solution u of the
IVP (P), is continuous. That is, for 1 and 1) initial data close in H,,,, their corresponding Oyu and 0,1,
respectively, are also close in the solution space.

Additionally, the following inequalities are satisfied

100u(t) — Bea(t)lls—s < Vmax{L,a?} ¢ — |5, V¢ € (0,+00),
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and

sup [[dyu(t) = () ls—s < Vmax{l, a*}{|y — Plls -

Moreover, ||Oyu(t)]|s—3 < y/max{1,a?}||¢|s, Vt > 0.

Proof: We have organized the demonstration in the following way:
1. First, we will obtain the candidate for the solution. To achieve this, we apply the Fourier transform
to

Opu = —02u — au
and obtain
0yt = —(ik)*u — au = (ik® — a)u,

which for every k € Z is an ODE with initial data @i(k, 0) = ¥ (k).
Therefore, solving the IVP’s

u € C([0,+00),13(2)),
(%) ok, ) = ik3ﬂ(k, 7) —au(k, 1),
ik, 0) = ¥(k),
we obtain

Uk, 7) = ' Te (k)

from which we get our candidate for the solution:

+oo “+oo
ur) = Y alk,ner =Y. €* e (k) 3.1
k=—00 k=—o0

here we are denoting oy, () = e** for z € R.

2. Second, we will prove

u(r) € H3,, and ||u(7)|ls < ||¢|ls, VT > 0. 3.2)

per

Indeed, let 7 > 0, ¢ € H},,, using e?**7| = 1 and 0 < e~297 < 1, we have

+oo
5 ik3r _—ar T
lu(Dl} = 27 Y (1+F)°-[e* e Ty (k)%
k=—o0

“+oo
= 21 > (L+K)e 7 |(k)? < o0, (3.3)

k=—o0

IN

11z

It is evident that (3.2) is satisfied for 7 = 0.

3. We will prove that u(-) is continuous in [0, +00). Indeed, let ¢/, ¢ € (0, c0), we obtain

+oo
o Z (1+ k2)s . ‘(eikste—at _ eik3t/€_atl)¢(k)‘2,

k=—o00

lu(t) — u(®)]13

+oo
= 2r Y (L+E)HE)POR)P, G4

k=—oc0

.3 3,0 ’
where H (t) := eF te0t — ikt g—at’,
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We see that lim;_,4 H(t) = 0.
To ensure the interchange of limits we need the uniform convergence of series (3.4). For this we
will bound the k-th term of the series, that is

;12

2’/T(]. + k2)s|,l)’/;(k)|2 eik‘gtefat . eik‘gt'efat

8m(1+ k)% (k)|?,

Ik,t .

IN

where we have used the triangle inequality, the equality |¢?®| = 1 for# € Rand 0 < e~ < 1 for
a>0,t € [0,00). Thus,

+o0
> I < 4lIYIE < oo,

k=—o0

and using the Weierstrass M-Test, we obtain that the series (3.4) converges uniformly. So, we can
interchange limits and get

lim [|u(t) — u(t)|? = Z lim, Iy, =0,

t—t’
k=—o00 W_/
and then we conclude

lim ||u(t) — u(t’)||s = 0.

t—t’
It is evident that u is continuous to the right of zero. To prove this, we use the same technique,
considering ¢’ = 0.
. Lett > 0andt+ h > 0, we will prove

w —s 0Owhenh — 0
h .

+ O3u(t) + au(t)

s—3
Indeed, lett + h > 0,

ut+h) —ut) Ou(t) + au(t) i

h 5737
too N ik (t4h) p—a(t+h) _ ikt ,—at . 2
—9 14 k25731 (k) |2 € )3 k3t _—at
Wk;m( + k)l (k)| - + [(tk)” + ale™ "e ;
=3 ~ 1.3
=21 Y (L+ k) P |ok)Ple™ et M (h))%, (3.5)

k=—o0

3.
ik°h ah 1

where M (h) := {% —ik3 + a}.
Applying L'Hopital’s rule we obtain M (h) — 0 when h — 0.

To ensure the interchange of limits, we need the uniform convergence of the series (3.5). For this
we will bound the k-th term of the series. Previously, for h > 0, we analyse

6iki“hefah -1 _ /h lg{ei]&refar}dr
h o hor ’

hg . 2.3
= / E[lkd —ale?* e dr,
0

and taking norm, we have

eikghe—ah -1
h

IN

1 -1.3 h ik3r| _—ar
—|ik® — af e " |e= " dr
h 0

IN

1 1
E(|k|6 +a®)zh

= (|k|°+a®)>. (3.6)
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Using the inequality (3.6), we are going to bound |M (h)|? in the following way:

IM(R)]? < 4max{1,a®}(k®+1),
4max{1,a?}(1+ (k*)?),
< dmax{1,a®}(1+ k?)3. (3.7)

For i < 0 such that 0 < ¢ + h we analyse

eik3te—at _ eikS(t+}L)e—a(t+h)

ZkST‘ —ar}d,r

%‘Qj

’Lk‘3 _ a zk Te ardr7

: [
[

U‘M—‘ b\»—*

and taking norm, we have

etk to—at _ ik®(t+h) p—a(t+h)

h

t
.. 3 _
< |h|| ]CS _ CL| |ezk T|€ ardr,
t+h

< |h|(l<;6+a) (=h) = (kS + a?)3,
< 2max{1,a®} - (1+ k)%, (3.8)

Let us bound the k-th term of the series (3.5) using estimations (3.7) for h > 0 and (3.8) for h < 0,
and denoting 8 max{1,a?} by C,, :

1+ K2 2|0 (k) 2Ca(1 + k)3
Ca(1 + E2)*[P(k)[.

(L+ K2 [D(k)Pe> | M ()

IN

Therefore, since

400
21 3 (L+ B bk = [[]2 < oo,

k=—oc0

for ¢ € Hp,, and using the Weierstrass M-Test we get that the series (3.5) converges uniformly.
So, it is possible to interchange of limits and obtain

2
®) + O3u(t) + au(t) — Owhenh — 0. (3.9)

u(t+h) —u(t
h s—3

. We will demonstrate the continuous dependence of the solution with respect to the initial data, that

is, let ¢ and ¢ be close data in H,,., then their corresponding solutions u and u, respectively, are

also close in the solution space. Let ¢ > 0,

+00
lu(t) —a@®? = 2r > (1+k%)°

k=—oc0
+oo N ~ 2

< o 3 (LR Bk - k),

k=—o0
= lly -9l (3.10)

Taking supremum over (0, c0) we have
sup Ju(t) —a()lls < |l = Plls - 3.11)

t€(0,00)

Hence, we have: if ¢ — 12) then u — .

. Uniqueness of solution. - Inequalities (3 11) or (3.10) will enable us to demonstrate that the solu-

tion is unique. Effectively, let ) € Hp,, and suppose there are two solutions u and @, then using
(3.11) we have,

[u(T) —a(r)l[s < sup lu(t) —a(@)lls < (¢ —¢lls =0, v7r > 0.
te(0,00)
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from where we conclude that u = .
Thus, the (P;) problem is well-posed, and its unique solution is

+oo
u(t) = Z eikate_at{b\(k)gak,

k=—o00

which depends continuously on the initial data.
. Now, we analyse the case < s. Under this condition we have H> . C H_ . and since the initial

per per
datay € Hg, ., thenty € H , and satisfies
19l < [l - (3.12)
From (3.3) for r and using (3.12) we get
a7 < lI7 < 9] < oo
That is,
u(t) € Hy,, , Yr € (=00, 5). (3.13)

The case = s has already been proved in item 2.
Therefore, from (3.2) and (3.13), we conclude for ¢ € [0, 400) that
u(t) € H),

per

Vr € (—oo, 5] .

. We will demonstrate that d;u(-) is continuous in (0, +o0). Let ¢ > 0 and ¢ > 0, using the
inequality |07 u(t)|ls—m < ||u(t)||s and continuity of u(-) we obtain

10vu(t) — Oru(t)s—s | = 0Fu(t) — au(t) + Rju(t’) + au(t')||s—s,

< llogfu() = u)ll-s + allu(t) — u(t)lls-s,
< (I+a)llult) —u)ls =0, (3.14)
when t — t'. That is, dyu € C((0, 00), H3.?).
. Lety € Hp,,, if we define
I .. 3 -~
Wty = (ki—a)e™ e " bk)pr,
k=—oc0

L(Hp,,, Hy.,?) with |[W(#)]] < [max{1,a?}]3.

In effect, using, |k%i — a|? = (k5 + a?) < max{1,a?}(k +1) < max{1,a?}(1 +k?)3,Vk € Z,
the equality [e?’| =1, V0 € Rand 0 < e~% < 1, fora > 0, > 0, we have

then W (t)y € H3.® and |[W(t)y]ls—s < [max{l,a?}]2|ly)||s, ¥¢ > 0. Thatis, W(t) €

—+o0
IW@wlis = 2r 37 (1487 |(k% —a)e™ e g ()P,
k=—oc0
+o0 —~
< 2w Y (L+ R TOR — aP (k)
k=—oc0
+oo R
< max{l,a*}2r Z (14 k) [(k)]* < oo,
k=—oc0

max{L, a®}||¢f3 .

10. By considering items 4 and 9, we conclude d;u(t) = W (t).

An immediate consequence is the following Corollary.
Corollary 3.1. The unique solution of (P;) is

“+o0
uty = Y e tem M (k)py

k=—o0

where o (x) = e™** for x € R.
Also, we obtain the following result.
Corollary 3.2. Based on the hypothesis of the previous Theorem, we obtain
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1. uwe C([0,00), Hy,,.) NC((0,00), HyZ?), Vr < s.
2. u satisfies

[u@®ll: < [[¥lls, VE=0, Vr<s. (3.15)
J0u®ll,—s < max{L,a}¢ll,, VE>0, Vr <. (3.16)
3. That is,
Jut) —a(t)llr < |l —lls, V>0, Vr<s,
sup |lu(t) —a()ll- < v —9ls, Vr<s.
te(0,00)

4. Moreover

[0u(t) — Ovu(t)|lr—s

sup [|Opu(t) — Oyu(t)||r—s
te(0,00)

Vmax{1,a2}|[¢) — |5, ¥t >0, Vr <s,
Vmax{1,a2}|[¢p —b||s, Vr <s.

[VARVAN

Proof: Through the use of the continuous Sobolev embedding, we obtain the inequality (3.15). We
will use the continuous Sobolev embedding and item 9 for prove thatif ¢) € H?,, then W (t)y € H”.,3 and

per per

W (8)]l,—s < /max{L, a2} |[¢)]ls, VE > 0, Vr < 5. Thatis, W(t) € L(HS,,, H55?) with [[W(#)]| <

/max{1, a2}, Vr < s.

In effect, using |k%i — a|? < max{1,a?}(1 + k2)3,Vk € Z and |e?’| = 1, V0 € R we have

—+oo

IWEI2 s = 20 > (1+k) 73|k — a)e™ e (k)
k=—o00
+o00 .
< o Y (L+ K TR — ally (k)
k=—o00
+oo .
< max{lLa’}2r > (1+K)"|o(k)?
k=—o0
+oo N
< max{l,a’}2r Y (1+k*)*|¢(k)* < oo
k=—o0
= max{1,a’}||y[?. (3.17)

]
In this point, we will introduce a family of operators which will meet the requirement of being a
contraction semigroup of class C.
Theorem 3.2. Let s € R and a > 0. The application
S§:[0,00) — L(Hp,,),

t — S),

such that S(t) = e~ @2+aDt  that is, applies

\Y
_ (ik3—a)t ~, s
sp= | rew), | oe

then {S(t)}i>0 is a contraction semigroup of class C, on Hp,,..
Additionally, the following statements hold:
1. Ifp € Hy,, then S(-)p € C([0,00), Hp..).

2. The application: ¢ — S(-)¢p is continuous and verifies:

[S@®)Y1 = SH)¢ells < b1 — 2, VE € [0,00),

and

sup [[S(t)ihr — S(E)alls < [lt1 — alls

te[0,00)

with; € HS,,. forj € {1,2}.

per
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3. Ifp € Hp,, then 0;S (t)p Hje,?’ and 1 0:S(t)¢||s—3 < y/max{1, a?}||¢
is, 0;S(t) € L(H?,,, H5.3), Vt € (0,00), where

per> *Eper

s Vt € (0,00). That

\Y
os(the = (- e rp0) | e vpe ..

4. If € H3,, then 9,S(-)p € C((0,00), H3.?).

per

5. The application: ¢ — 0;S(-) is continuous and verifies:

[0:S()1h1 — 0:S (D)2 ||s—3 < Vmax{l,a?}[¢h1 — 2|5, Vt € (0, 00)

and

sup [|8:S(t)1h1 — S()2ls—3 < y/max{1, a2}t — ol

te[0,00)

with; € HS,,. for j € {1,2}.

per

o~

Proof: Tnitially, we observe S(0)p = [(3(k))ez]” = [2]Y = ¢, Vo € HS,,; that is, S(0) =

per’
From the linearity of the Fourier transform and its inverse, we obtain the linearity of S(¢). Indeed, let
oce€C, 9,9 € Hp,,, we have
o v
SO@p+v) = (ol m),_
i kez
vV
_ (zkfa)t|:/\k Ak:l)
( (k) +5(0)])
[ 3 3 v
— (ik 7a)t’\ k ) ( (ik®—a)t ] k )
I ( ()kEZ+ ‘ ¢()kez
3 v 3 v
— (itk®—a)t ~ k ) ( (ik®—a)t ] k )
U[(e @ (k) kez} +[ ¢ v(k) kez|
= oS(t)(p)+SB)(¥),
fort > 0.
If o € Hy,,and t > 0, we will demonstrate that S(t)¢ € Hp,, and [|S(t)¢[ls < [lo]s; that is
SO < 1.

In effect, similar to (3.3) we have

2
IS@Mell; = 2r Z (14 k)" |G ()|

k=—o0

IN

+oo
2 Y (1+K)° |3k,

k=—o00

= el <oo.

Then S(t)p € Hy., and [|S(t)ells < [lolls, Yt = 0.
Therefore,

ISt)ells < lllls, ¥t >0, Vo € H,,. . (3.18)
That is,
S(t) € L(H,,,) with [|S(t)|| < 1,Vt € [0,00) . (3.19)

At this point, we will demonstrate that S(t + r) = S(t) o S(r), V¢, € [0,00). Indeed, let f € H
and t,r € (0,00),

per

\2
S(t+7‘)f _ |:(e(ik3a)(t+r)f(k))kez] 7

\
_ (ik®—a)t (ik>—a)r 7y
- {(e e f(k)) kez} : (3.20)
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We know that if f € H5,, then f € 12, thatis

er

+oo
S A+E) (k) < 0. (3.21)
k=—o0
We affirm that
(e<i’f3—a)’"f(k)) €12,Vr € [0,00). (3.22)
keZ

In effect, when r is zero, it is obvious that the statement is true. Thus, we will demonstrate the case
r > 0. For this, using (3.21) we obtain

+00 iy
2ys | (ik*—a)r Fr1y12 2\s | i2k3r | _—2ar | 7712
,;_ (1+K2)fe (&) ,;_ (1+K2)* 257 2 | (k)P
=—00 =—00 =1 <1
+o00o =R
< D AHRIFR)P < oo,
k=—o0

Therefore, from (3.22) and taking the inverse Fourier transform, we have

\
|:(e(ik;3a)7‘f(]g))k€Z:| € Hp,,., Vr € 0,00).

This motivates us to define

v
— (ik:g—a)r Y s
gr: {(e f(k))kez} €H,.,.
That is,
gr=S8(r)f. (3.23)

Taking the Fourier transform to g,, we get

~ (ik®—a)r 7 k
gr (6 f( ))k:eZ )
that is,
Go(k) = =0 F(k) Yk e Z. (3.24)

Using (3.24) in (3.20) and from (3.23) we have

St+r)f = {(e(i’“s‘”tg?(k))kezr?

= {S{t)oS(M)}f, ¥t >0,r>0.
Thus,
St+r)=8t)oS(r), Vt>0,r>0. (3.25)
If t or r is zero, then the equality (3.25) is also true. Thus, we have demonstrated:
St+r)=8(t)oS(r), Vt>0,7r>0. (3.26)
At this point, we will demonstrate the continuity of ¢ — S(t), thatis, for t > 0
IS+ h)p —S(t)plls — Owhen h — 0. (3.27)

and ||S(h)¢ — ¢|ls — O when h — 07 .
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Indeed, by applying item 3 from the proof of the previous theorem, we obtain
“+oo
or Y (14K
k=—oc0
+oo

= 2 Y (L+K)*|@k)]* [H(t+ h)? (3.28)

k=—oc0

1S(t + k) — S(t)p 2 :

(e(ikta)(urh) _ e(ikta)t) ~$(k)‘

where ¢+ h > 0 and H (t + h) := e(iF° ~0)(t+h) _ o(ik°—a)t,
We observe that }lin%) H(t+h)=0.
—
To ensure the interchange of limits, we need the uniform convergence of the series (3.28). For this we will
bound the k-th term of the series, that is,

D ik®—a ik®—a 2
I = 2m(1+ k%) [B(k)[° [elF ) (t+h) _ ik —a)t

< 8L+ k)" (k)

where we have employed the triangle inequality, the equality |e?’| = 1 for§ € Rand 0 < e~ < 1 for

t € ]0,00).
Thus,
—+o00
> Luen < 4fle)? < oo, (3.29)
k=—o0

and using the Weierstrass M-Test, we obtain that the series (3.29) converges uniformly. So, it is possible to
interchange of limits and obtain

hm||S(t—|—h)gp S(t)p|? = Z hmIktth
k—fooxw_/
=0

that is,
lim [[S(t + h)p = S(t)ells =0.
h—0
Remark 3.1. It is verified
li S s=0,V
Jim {IS(R)e — ¢ ¢ € Hp, .

To prove this, we use the same technique, considering h > 0 and ¢t = 0.

Remark 3.2. With the remark 3.1 we would have that {S(t) }1>0 is a semigroup of class C.,.

Let 1)1 and 1), be close data in ngr, then we will prove that their corresponding S(-)t; and S(+)12
respectively, are also close. Indeed, since {S(¢)}:>0 is a contraction semigroup, we have

IS@) 1 = S()lls = ISE) (%1 = v2)lls < [l = alls -

Taking the supremum over (0, co) we have

sup HS( Jibr = S@)alls <1 — alls- (3.30)
te(0,00
From here we have that if 11 — )9 then S(-)Y1 — S(+)2.

We will prove: If ¢ € H,, then 0,S(t)p € H3.? and [|9,S(t)¢lls—3 < /max{1,a?}|¢|s.
In effect, using |k%i — a|?> < max{1,a?}(1 + k2)3, Vk € Z, the equality |¢®| = 1,V € R and
0 < e < 1fort> 0, we have

2

)

o 3 (14K 73| (K% — a)el 0 G(k)

10:S(£)ll3

k=—oc0
+oo
< om0 (L RATIRR - al? 1Bk,
k=—
+oo
< 2memax{la®} 3 (14K |50k < oo
k=—oc0

= max{1,a’}ol.
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That is, || 0:S(t)¢||ls—3 < v/max{1l,a?}||¢|s. From this inequality, we obtain

10:S(t) )1 — 0:S(t)a]|s—3 < V/max{l,a?} |1 — Y2s,

with ¢; € H?,, for j € {1,2}.

per
So, taking supremum over (0, c0) we have

sup [|0:S(t)1h1 — 0 S(t)2lls—3 < v/max{1,a?}|[¢1 — Pal|s -

te(0,00)
Finally, if ¢ € H,,, we will demonstrate the continuity of ¢ — 9;S(t). That is,

10:S(t + h)p — HS(t)p|s—3 —> 0 whenh — 0.

Indeed, by applying item 3 from the proof of the previous Theorem, we proceed

. ) 2
0S4 g~ BSOplEy = 2 S (1R ) 15—
k=—o00
= § .3 .3 R 2
- o Z (1_,'_]{/,2)5—3 (e(zk —a)h_l) e(lk _“)t~(k3i—a)go(k) ,
k=—o00
- 92 Z 2\s—3 | (ik®—a)h _ 2| ike]? —oat 3. 1217102
= 2 1+ k%) e 1] le ce k% — al® |o(k)|7,
k=—o00
= 2m Y (L+E) 3B - e 2 k% — al? |B(R)|? (3.31)
k=—o0

where B(h) := e(ik°—a)h _ 1.
We observe that lim 5(h) = 0.
h—0

To ensure the interchange of limits, we need the uniform convergence of the series (3.31). For this, we
will bound the k-th term of the series, that is,

2r(1+ K2 (B - e |k — ol [B(R)P,
8 - max{L,a®} (1 + ¥)° |B(K)[? ,

Iien

N

where we have employed the triangle inequality, [k%i — a|? < max{1,a?}(1 + k?)3, Vk € Z, the equality
le?] =1,¥0 € Rand 0 < e~2% < 1fort > 0.
Thus,

+oo
> Iien <4-max{1,a’}e|? < oo, (3.32)

k=—o0

and using the Weierstrass M-Test, we obtain that the series (3.32) converges uniformly. So, it is possible to
interchange of limits and obtain

—+o0
1 —_ 2 = 1 =
,{gr}JllatS(Hh)w ahS(t)elli—s Z }lLl_%Ik,t,h 0,
k= — 00 et
=0

hence, we conclude

h—0

We will provide some additional properties of {S(¢) };>0.
Corollary 3. 3 Based on the hypothesis of the previous Theorem, the following statements hold
L. If $ € Hp,, then S(t)¢p € H,,, and ||S(t)9|l. < [|¢lls, V& > 0, Vr < s. That is, S(t) €
L(H? YVt >0, Vr <s.

per> per)

2. Ifp € Hy,, then S(-)¢ € C([0,00), H},,.), Vr < s.

per
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3. The application: ¢ — S(-)¢ is continuous and verifies

S(t)p1 — S(t)p2llr < || b1 — P2lls, VE € [0,00), Vr <s,
sup [|S(t)p1 —S(t)pallr < |1 — d2lls, Vr <,

A

t€(0,00)
with ¢; € Hp,, for j =1,2.
4. If ¢ € Hj,, then 0,S(t)¢ € H}2* and ||0,S(t)¢|lr—s < v/max{1,a?}|¢[s, Vt > 0, Vr < s.

That is, 0:S(t) € L(HS,,., H..?), Yt > 0, Vr < s, where

per> ~~per

v
_ .3 (ik:g—a)t’\ r—3 s
O S(t)p [((zk a)e go(k)) keZ] € Hy.,”, Vo € Hp,, ,Vr <s.

o

If o € HS,, then 0,S(-)p € C((0,00), H'3), Vr < s

per per

6. The application: 1) — 0,S(-)v is continuous and verifies:

10:S @)1 = 0:S()¢llr—s < vmax{l,a?} |ty — ¢olls,VE € (0,00), ¥r <'s,

and

sup ||O:S(#)1 — xS (t)a|lr—3 < /max{l,a?}|1p1 — Palls, Vr < s,
te[0,00)
with; € Hp,, for j € {1,2}.

Proof: 1ts proof is similar to the proof of the second Corollary of Theorem 3.1, in which we use the
continuous Sobolev embedding. g

Next, we state Theorem 3.1 in terms of the semigroup {S(¢)}+>o0.

Theorem 3.3. Let s € R, a > 0 and {S(t)}1>0 the semigroup of class C, from Theorem 3.2, then
S(-) is the unique solution of

u e C([0,400), Hy.,.) N C'((0,+00), HSZ?),
Ou = Au € Hs:3

per >

u(0) = ¢ € Hy,,.

in the sense that

L[]S+ By = Sty
h—0 h

—AS(t|| =0, (3.33)

s—3

where A := =03 — al, and if 1 ~ 1o then S(-)1b1 ~ S(-)o.

In addition, the following regularity holds: if 1 € H,,, then S(t)¢ € Hy,,, Vr < s, Vt > 0 and
IS@Yllr < [ lls, ¥t >0, Vr < s.

Also, |0:S(#)W|lr—3 < /max{1,a?}||¢]s ¥Vt >0, Vr < s.

Proof: The proof of (3.33) is similar to item 4 of the proof of Theorem 3.1. And the proof of the
remaining statement follows in a similar way to the proof of Theorem 3.1 and as a consequence of Theorem
3.2. ]

4. Generalization of results to n-th order equation. In this section, we will generalize the results
obtained in the previous section.

Theorem 4.1. Let s be a fixed real number, a > 0, n a natural number such that n — 1 is an even
number which is not divisible by four and

u € C([0, +o0), Hp.,.),
(Ps) Ou+0ju+au=0 € Hpom,
u(0) = v € Hy,,.

then (Ps) is globally well-posed, that is, 3g € C([0,00), H;,,.) N C((0,00), H;™) verifying equation
(Ps) so that the application: 1) — g, which to every initial data v assigns the solution g of the IVP (Px),
is continuous.

Moreover; the solution g satisfies g(t) € H},, ,
s Vr <s, Vt > 0.

lr—n < /max{1,a?}||¥|s, Vr < s, Vit > 0.

Vt =0, Vr < swith[lg(t)[s < [[¢]s and |lg(t)]|» <

1
Also, ||0:g(t)
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Proof: 1ts proof is similar to the proof of Theorem 3.1. (|
Consequently, we obtain the following outcome.
Corollary 4.1. The unique solution of (Px) is

Z e e (k) pr,

k=—o0

where pi(x) = €% for x € R.
Next, we define a family of operators which will verify the conditions of being a contraction semigroup
of class C,,.

Theorem 4.2. Let s € R, a > 0, n a natural number such that n — 1 is an even number not multiple
of four. The application

Tn :[0,00) — L(H;.,),
%

per
t

Tu (1),

such that T, (t) = e~ +teDt that is, applies

\%
_ | (Em—ayt s
Tothe = | (" aw), | o e i,

then {T,(t) }+>0 is a contraction semigroup of class C, on H,,,.. Thus, {T,,}nen is a family of semigroups

on Hg., where

M := {n € N/n — 1 is an even number not multiple of four } .

And for simplicity we will denote to T,, as T.
Additionally, the following statements hold:
1. If ¢ € H,, then T()p € C([0,00), H,,)
2. The application: @ — T (-)p is continuous and verifies:

||T(t)¢1 - T(t)w2”9 S H"/)l - 1;[}2"8 7Vt € [05 00)7

and

sup || T(8)r — T(t)dalls < 11 — talls,

t€(0,00)

with ; € Hp,, for j € {1,2}.

3. T e L(H;eT) and ||[T(£)O]ls < |1O]ls, V@ € Hp,,, vVt €0,00).
4. If o € Hp,, then O, T (t)p € Hy," and |0, T (t)pl|s—n < /max{l,a?}|¢|ls, Vt € [0,00). That

is, 0, T (t) € L(HS,,., H5.™), Vt € (0,00), where

pers ~“per

\%
aff(t)so—[((z‘k”—a)e“’“"‘”t@(k))kez] € Hi Vo € H,.

5. Ifp € H,, then 9T () € C((0,00), Hip,™.

per

6. The appllcanon. Y — 0T () is continuous and verifies:

10:T ()¢ (O)2]ls—n < Vmax{1,a}|¢r — a5, vt € (0,00),

and

sup HatT(t)wl - 8tT(t)w2‘|s—n < V max{l,aZ}Hlbl - ,(/}2”87

te(0,00)

withy; € H,,. for j € {1,2}.
Proof: 1Tts proof is similar to the proof of Theorem 3.2 (]
We will provide some additional properties of the family {7 (¢) }+>o.

Corollary 4. 2 Based on the hypothesis of the previous Theorem, the following statements hold

1. If¢p € Hp,, then T (-)¢ € C([0,00), Hp,,.), ¥r < s.
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2. The application: ¢ — T (-)¢ is continuous and verifies

IT@)¢1 =T ¢2llr < d1— d2lls, Yt €[0,00), Vr <,
sup |[[T()o1 = T(D)gallr < lldr = ¢2lls, Vr <s

te(0,00)

with ¢; € Hp,, for j =1,2.
3. T()EL(HS Hr. ) and || T(6)0]] < [|0||s, Vr < s, YVt >0,V0 € HS

pers ““per per*

4. If ¢ € Hp,, then O, T (t)p € Hy" and |0, T (£)¢|lr—n < \/W||¢
That is, O, T (t) € L(HS,,., H)_,™), ¥t > 0, Vi < s where

pers *Lper

& VE >0, Vr < s.

Vv
_ S (k™ —a)t ~ r—n
Tt = | (14" — e 50), | e o e g v <.

5. If ¢ € H,, then ;T (-)p € C((0,00), Hii,"), Vr < s

per

6. The application: 1p — 0,T () is continuous and satisfies:

10:T ()1 ) 2llr—n < v/max{1,a?}||v1 — 2|5, Vt € (0,00), Vr < s,

and

sup |0:T ()1 = T (W) allr—n < Vmax{l, a}|y — olls,, Vr <s,

te(0,00)

with; € Hy,,. for j € {1,2}.
Proof: 1ts proof is similar to the proof of Corollary 3.3. (]
Now, we state another version of Theorem 4.1 in terms of the semigroup {7 (¢) }+>o0.

Theorem 4.3. Let s € R, a > 0, n a natural number such that n — 1 is an even number not multiple

of four and {T (t) }+>0 the semigroup of class C,, from Theorem 3.2, then T (-)y is the unique solution of

u € ([0, +00), Hj,,) N CH((0, +00), Hyo,"),
Owu = Asu € Hp,",
( ) w €H per .
in the sense that
lim TE+AY-TOY AsT () =0, 4.1)
h—0 h s—mn

where As, := =07 — al, and if Y ~ 1) then S(-)ipy ~ S( Y.

In addition, the following regularity holds: if ¢ € H.,, then T (t)y) € H,
1T @)l < [¥lls, V¢ 20, ¥r < s.

Also, ifp € Hy,, then 0;T (t)y) € H)Z™, Yr < s, Vt € (0,00) and ||0;T (t)i]|,—n < y/max{1,a?}
Vt >0, Vr <s.

Proof: 1ts proof is similar to the proof of Theorem 3.3. ]

Below we state some additional results that can be obtained.

Remark 4.1. Analogous results to Theorem 4.1 are obtained when n is a natural number such that
n — 1 is a multiple of four, where the solution would be

o0 = [ oram),

Vr <s, Vt > 0 and

per’

for the initial data p € H?

per:*
Remark 4.2. Similar results to Theorem 4.2 and Corollary 4.2 are obtained when n is a natural number

such that n — 1 is a multiple of four, where the family of operators introduced is

\%
_ | (.~ rayt 5
T0p = (), | voe

Therefore, the analogous version to Theorem 4.3 is valid.
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Remark 4.3. When n is a number multiple of four, the problem ( Ps;) has a solution and the associated
family of operators

Vv
_ —(E™+a)t ~ s
L(t)e {(6 w(k))kez} , Vo € Hy,,,

forms a contraction semigroup of class C.,.
Finally,
Remark 4.4. When n is an even number which is not divisible by four, the problem (Ps) has no

solution.

5. Dissipative property of (P;) and (Px). The properties that will be obtained in this section do not
depend on the explicit form of the solution.

5.1. Dissipative property of (P;). Let s be a fixed real number, a > 0 and the problem

w € C([0,+00), Hy.,.) N C((0,00), HyZ?),
(Py) dw+ Bw+aw =0 € H3?,
w(0) = € Hy,, .

Theorem 5.1. Let w the solution of (P, ) with initial data vy € H,,, then we get the following results:
1. 3t||w( MEs = —t2aH@U( MEs < =0
2. JJw(t)[[s—3 = e™"||¢plls—3 < e™*[|Ylls < [[¥[ls, £ =0
3. lim lw(t)]ls—3 =0.

Proof As per C Hjer?’ then the following expressions: < Jyw,w >4 3 and < w, Jyw >4_3 are
well-defined.
So we have
Oilw®2_s = 9 <w(t),w(t) >3
= < ow(t),w(t) >s_3 + < w(t),dw(t) >s_3
= 2Re < Qpw(t),w(t) >s—3 . 5.1

Also, we obtain

+oo
<Bww>c3 = 2m Y (1+k)*0Bw(k) - d(k)
k=—oc0
= 27 Z (1 + k2)*=3(ik)3w(k) - w(k)
k=—oc0
+oo 7
= —i2r Y (L+ k)P Kak) - o k)
k=—o00
+oo
= —i2r Y (L+E) PR a(k)) . (5.2)
k=—o00
6:=

At this point, we will prove the convergence of the series (5.2). Indeed, using the inequality: |k|® <
|k|® = (|k]*)® < (14 k*)*, Vk € Z and w(t) € H},,, we obtain

+oo —+oo
Yo AHETREP] < Y @R TRk
k=—o0 k=—o00
+oo
< D AR R @k
k=—o00
+o0 1
= Y @+E)ylak)P = - lw@IlE < oo

k=—oc0
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Then the series (5.2) is convergent, that is,
< Jw(t), w(t) >s_3= —id withd € R. (5.3)
From (5.1), using ;w = —d3w — aw and the equality (5.3) we get

Aw®)|?_s = 2Re < duw(t),w(t) >4 3
= 2Re{< —3w(t),w(t) >s_3 —a < w(t),w(t) >s_ 3}
= —2Re < w(t),w(t) >s_3 —2alw(t)]?_s
=0
= —2allw(t)|i_5 <0.

Therefore, ||w(t)||%_5 is not incressing. Then |Jw(¢)]|2_5 < [|w(0)|?_5, Vt > 0.
As

(lw(@®)[ls—3 = [lw(0)[|s=3)([[w(#)[[s—s + [[w(0)[s—3) < O,
we have
Jw(t)]ls—3 < lw(0)||s—3 < lw(0)]s , ¥t >0.
That is,

lw(®)[ls—3 < [[¥lls—3 < [¥]ls , V¢ =0.

To be exact, solving the equation we obtain ||w(t)||%_5 = e=2%¢||w(0)||%_5.
That is

[w(®)lls—3 = e~ lw(0)[|s—3 < e=[w(0)[ls < [[w(0)]ls, VYt > 0.

Taking limit to ||w(t)|s—3 = e~ **||w(0)||s_3 when t — +0c0, we obtain , li+m lw(t)||s—3 = 0. O
[— 00

Corollary 5.1 (Continuous dependence of the solution of (Py)). Let u and v be solutions of (Py) with
initial data vy and o in H,,,,, respectively. Then the following statements hold

Allu(t) —v(t)17_5 = —2allu(t) — v(t)||2_5 <0,
and

u(t) = v(t)|ls—s = e lt1 — th2|ls—3 < |lv1 —talls, ¢t>0. (5.4)

Proof: Define w := u — v then w satisfies:

Oyw + 3w + aw = 0,
w(0) =1 — s

We conclude using Theorem 5.1. O
Corollary 5.2 (Uniqueness of solution of (Py)). The (P, ) problem has a unique solution.
Proof: Indeed, let u and v be solutions of (P;) with the same initial data, that is, 17 = ¥y = .
From (5.4) we obtain ||u(t) — v(t)||s—3 < ||0]|s = 0. Then ||u(t) — v(¢)||s—3 = 0. So, u(t) = v(t), Vt > 0,
that is, u = v. O

5.2. Dissipative property of (Px). Let s be a fixed real number, a > 0 and the problem

w € C([0,+00), Hy,,.) N C*((0,00), Hy™),
(Ps) dw + pw +aw =0 € Hy..",
w(0) =¢ € HS

per *

Theorem 5.2. Let n be a natural number such that n — 1 is an even number not multiple of four and w
the solution of (Px) with initial data ¢ € Hp,, then we obtain the following results:
1 9lw®)|-, = —2allw(®)[Z_, <0.

2. Jw@®)lls—n = e [lplls—n < e l@lls < llolls, t = 0.
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3. limOo lw(®)]|s—n =0.

t——+
Proof: 1t is analogous to the proof of Theorem 5.1, noting (ik)"™ = —ik™ when n is a natural number
such that n — 1 is an even number not multiple of four. ]

Corollary 5.3 (Continuous dependence of the solution of (Ps)). Let u and v be solutions of (Px)
with initial data vy and o in H,,,,, respectively. Then the following statements hold

Ollu(t) —v(®)IZ_, = —2allu(t) —v(t)|?_, <O
and

w(t) — v(t)||s—n = € ||t)1 — Yolls—n < ||t1 — Yalls, t>0. (5.5)

Proof: Define w := u — v then w satisfies:

Orw + 0w + aw = 0,
w(0) =91 — 2.

From Theorem 5.2 we conclude the proof. (|

Corollary 5.4 (Uniqueness of solution of (Px)). The Cauchy problem ( Ps,) possesses uniqueness of
solution.

Proof: Indeed, let u and v be solutions of (Px) with the same initial data, that is, 1, = ¥y = .
From (5.5) we obtain ||u(t) — v(t)||s—n < ||0]|s = 0. Then ||u(t) — v(t)||s—n = 0. So, u(t) = v(t), Vt > 0,
that is, u = v. O

Below we state some additional results that can be obtained.

Remark 5.1. Similar results to Theorem 5.2, Corollaries 5.3 and 5.4 are also obtained when n is a
natural number such that n — 1 is a number multiple of four, in this case, note that (ik)" = ik™.

Remark 5.2. The dissipative property of (Ps) is also obtained when n is multiple of four, in this case,
note that (ik)"™ = k™.

6. Differentiability analysis versus initial data of (7;) and (Px). In order to deepen and enrich our
study, we will investigate the infinite-dimensional space in which differentiability occurs and its connection
to the initial data.

6.1. Differentiability analysis versus initial data of (P;). In this subsection, we will analyze the
solution of (Py).

Theorem 6.1. Let s € R and a > 0. If t > 0 and w is the solution of (Py) with initial data ) € H,
then for all r < s — 3 it holds

er

=0.

s

Vr < s — 3. That is, Oyu(t) = —d3u(t) — au(t) in

lim + 3u(t) + au(t)

u(t 4+ h) — u(t)
ol R

This means that differentiability occurs in H,,,,
ngr, Vr <s—3 Vt>0.
Proof: Lett > 0,1+ h>0andv € H;

er

2
W + O3u(t) + au(t)
' 2
too (ik*—a)h _ 1 2
_ 2\r _—2at | € _ 3
= 27rk:z_:oo(1—|—k )'e . ik’ +a ’w(k;)‘ . (6.1)

Using L’Hopital’s rule we have M (h) — 0 when h — 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.1). For this, we will
bound the k-th term of the series. First, for A > 0, from (3.6) we obtain

ik3—a)h _ 1
h

el

< (K +a?)7 < /max{1,a®}(kS + 1)z . (6.2)

Using the inequality (6.2), we are going to bound | M (h)|? in the following way:

|IM(R)* < 8max{1,a?}(1 + k?)>. (6.3)
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For h < 0 such that 0 < ¢ + h, from (3.8) we have that there exists £ € (h, 0) such that

e(ik®—a)t _ (k> —a)(t+h)

‘ < /a1 a7} (K + 1)} | (6.4)

Using the inequality (6.4), we are going to bound | M (h)|? in the following way:
e 2 M(h)|* < dmax{1,a?}(1 + &%) < 8max{1,a*}(1 + k?)*. (6.5)
Therefore, for h € R — {0} and t + h > 0,
e 2 M(R)]> < 8max{1,a®}(1 + k%)3. (6.6)
Thus, we bound the k-th term of the series, where we use inequality (6.6)

Tewr = (L+E) e 2 MR (k)
8max{1, a2} [ (k)[>(1 + k*)"t3 .
N————

Co:=

A

On the other hand, we know that the series converges

+oo
2 Y (L+ R [ (R) = )12 < oo,

k=—o0

since ¢ € Hp,,..
Then, using continuous immersion in periodic Sobolev spaces, thatis H5... C H. ™3 forr < s — 3, we

per per
obtain
“+oo =R
21-Co S (L+ K G()P = Culldl?1s < Call]2 < 00, Vr < s—3.
k=—oc0

Thus, using the Weierstrass M-Test, we have that the series (6.1) converges uniformly and consequently
it is possible to exchange limits and obtain

2
— 0,

T

w + O2u(t) + au(t)

when h — 0. O
Theorem 6.2. Let s € R and a > 0. If w is the solution of (Py) with initial data ¢ € H,,, then for all
r < s—3itholds

er

lim
h—0t

“(h)T”/’ + 93u(0) + au(0)|| =0.

r

This means that differentiability occurs in H ., Vr < s — 3. That is, 9+ u(0) = —03u(0) — au(0) in
H;;er, Vr <s-—3.
Proof: Let h > 0,

2

“(}L)T_w + 0%u(0) + au(0)
2
+oo e(ikta)h N . 2
—or 3 (14K - — ik +a ‘w(k)’ 6.7)
k=—o0
M(h):=

Using L'Hopital’s rule, we have M(h) — 0 when h — 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.7). For this, we
will bound the k-th term of the series. Thus, using inequality (6.3) we obtain

Ly = (1+ k) IMR)P[§ (k) < 8max{1,a”}(1+ k) [d(k) [,
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On the other hand, we know that the series converges

“+o0
2 Y (L+E) [k = [[¢lI7 < oo,

k=—o0
since ¢ € H per
Then, using continuous immersion in periodic Sobolev spaces, that is, Hy,, C H;jf’ forr <s-—3,
we obtain
+o0 N
16rmax{la®} S (1K) 300k = 8max{1,a?}[¢]2,; < Smax{1,a?}[¥[? < o0, Vr < s—3.
k=—oc0

Thus, using the Weierstrass M-Test, we have that the series (6.7) converges uniformly and consequently
it is possible to exchange limits and obtain

2

h) —u(0
w + 83u(0) + au(0)| — 0,
when h — 0. O
Theorem 6.3. Let s € R, a > 0 and yp € H,, then the following statements are equivalent
S(h)—1 s
1. There exists IH& (T) Y in ( pers |- Hs)
2. ¢y e Hy, s
Proof: Suppose that item 1 holds, then A = —d3 — al is the infinitesimal generator of the contraction
semigroup {S(t)}:>0. Thus, AY = —93¢ — ay) € H},,, from which we obtain
(1+i02) = +id € Hy,, . (6.8)
Applying the Fourier transform to (6.8) we have
((1 + kB)zZ(k)) ez, 6.9)
kez

Using that the | - |, p-norms, with p € [1, oc], are equivalent in R?, we have |(1,k)|> < v/2|(1, k)]s,
Vk € Z; then

(1, k)8 <8(1,k)I3, Vke Z.

That is,
(1+K)><8(1+k*?, Vke Z. (6.10)
Using (6.10) we get
+oo . 2
lel2s = 20 > L+ k)3 [G(k)|
k=—oc0
—+oo
= 2 3 (LR L+ AP ’w ‘
k=—oc0
+oo . 2
Y (1+k2)5(1+k3)2‘w(k)’
k=—o0
400 N 2
— 16r Y (1442 (1+k3)w(k)‘
k=—oc0

= 8- (1 +id)p]: < oo

Then ¢ € H3 13,

per

Reciprocally, if v € H51?,
2
_ 2 (ik®—a)h 1 ~ 2
Hs(h);warangraw - Z (14 k) | = ik* +a| [5(h) 61D
s k=—oc0

M(h)=
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Using L’ Hopital’s rule we have M (h) — 0 when h — 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.11). For this, we
will bound the k-th term of the series. Thus, using inequality (6.3) we obtain

Lo = (14 2 LM [B08)|” < Bmax(1,a2} 1+ 47+ i)

On the other hand, we know that the series converges

—+o0

o 3o @+ B[ = )2 < oo,

k=—o0

since ¢ € H313.
Thus, using the Weierstrass M-Test, we have that the series (6.11) converges uniformly and consequently it

is possible to exchange limits and obtain

HS(h)w—w
h

when h — 0. O

2

+ 03 +arp|| — 0,

S

6.2. Differentiability analysis versus initial data of (Px). In this subsection, we will analyze the
solution of (Ps).

Theorem 6.4. Let n be a natural number such that n — 1 is an even number not multiple of four, a > 0
and s € R. If t > 0 and u is the solution of (Ps) with initial data v) € H,, then for all r < s — n it holds

er

u(t + h) — u(t)

li
1m A

h—0

+ OZu(t) + au(t)|| =0.

This means that differentiability occurs in H),,., Vr < s —n. That is, Qyu(t) = —0yu(t) — au(t) in
H[,er, Vr <s—mn,Vt>0.

Proof: Tts proof is analogous to the proof of Theorem 6.1. (]

Theorem 6.5. Let n be a natural number such that n — 1 is an even number not multiple of four, a > 0
and s € R. If u is the solution of (Ps,) with initial data ¢ € H_,, then for all v < s — n it holds

u(h) = ¢
h

er

lim

h—0t

=0.

+ 92u(0) + au(0)

-
This means that differentiability occurs in Hy,,, ¥r < s —n. That is, Op+u(0) = —0;u(0) — au(0) in
Hp.,, Vr <s—n.
Proof: 1Tts proof is analogous to the proof of Theorem 6.2. ]
Theorem 6.6. Let n be a natural number such that n — 1 is an even number not multiple of four, a > 0,
s € R, and ) € H,,, then the following statements are equivalent

1. There exists hlinol+ (%) bin (Hpep | - [ls)-
2. ¢ e H5Em

er
Proof: 1ts groof is analogous to the proof of Theorem 6.3. (]
Below we state some additional results that can be obtained.
Remark 6.1. Similar results to Theorems 6.4, 6.5 and 6.6 are obtained when n is a natural number
such that n — 1 is a number multiple of four.

Remark 6.2. Analogous results to Theorems 6.4, 6.5 and 6.6 are obtained when n is a number multiple

of four.

7. Conclusions. Based on Fourier theory, we rigorously demonstrated the existence and uniqueness of
solution to the (P;) model, along with the continuous dependence of the solution with respect to the initial
data. Subsequently, we introduced the semigroup theory to rewrite the solution of the (P;) problem using
this theory, rendering it much more fine. We used semigroups theory and got important results of existence
and approximation. We generalised the results for the n-th order equation when n is a natural number such
that n — 1 is an even number not multiple of four. And we have analyzed the other cases of n.

We also proved the dissipative property of (P ), which enabled us to deduce the continuous dependence
(with respect to the initial data) and uniqueness solution of (P;), without using the explicit form of the
solution. We obtained results analogous to Theorem 5.1, Corollary 5.1 and Corollary 5.2 for the n-th order
equation when 7 is a natural number such that n — 1 is multiple of four. Also, we gave some remarks about
the n-th order equation when n is a multiple of four. Finally, to deepen and enrich our study, we analized
the infinite-dimensional space in which differentiability occurs and its connection to the initial data.
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