
Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS
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Abstract
In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in
periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously
on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a
more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we
demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the
contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite
dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend
our results to equations of arbitrary nth order.

Keywords . Semigroups theory, third-order equation, dissipative property of problem, nth order equation, Periodic
Sobolev spaces, Fourier Theory.

1. Introduction. We will begin studying the following problem:

(P1) : ut + uxxx + au = 0 in Hs−3
per with u(0) = φ ∈ Hs

per ,

considering a > 0, s a real number and denoting Hs
per as the periodic Sobolev space. We will prove that

(P1) problem is well-posed. Note that, by perturbing the third-order conservative system studied in [3] we
will obtain that (P1) is a dissipative system. In addition, we will give a family of operators that becomes
a semigroup, achieving beautiful results through operators and differential calculus in Banach spaces. To
deepen and enrich our study, we will investigate the infinite-dimensional space in which differentiability
occurs and its connection to the initial data. Finally, we will generalize the results to the nth-order equation.

We can cite [3], where we find some results related to the conservative part of model (P1). And we cite
[1] for being a source of inspiration for this work. We also mention some works on existence of solutions
by semigroups [4], [5], [6] and take support in some results of [7] and [8]. The structure of our article
is as follows. In section 2, we outline the methodology used and provide the citations for the references
consulted. In section 3, we prove that problem (P1) is well posed. Moreover, we introduce a family of
operators that form a semigroup of class Co to state the result Theorem 3.3 and prove it in an abstract
version. In section 4, we study the generalization to n-th order equation. Here we use the semigroups
theory of contraction, and obtain important results of approximation, existence and regularity. In section
5, we obtain other results related to the dissipative property of (P1) and some estimates of it, through the
use of differential calculus on Hs

per. Also, we get their generalization and some remarks. In section 6, to
deepen and enrich our study, we investigate the infinite-dimensional space in which differentiability occurs
and its connection to the initial data. Finally, in section 7, we present the conclusions of our study.
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2. Methodology . In this article, we mainly employ [9] as the theoretical framework. In addition,
we use the references [3], [1], [10] and [2] for the Fourier theory in Hs

per, and differential and integral
calculus in Banach spaces. We’ll quickly present some definitions and results to make it easier to read. Let
be

P := C∞
per([−π, π]) and

P ′ := the Topological Dual of P .

For s ∈ R we define

Hs
per([−π, π]) :=

{
f ∈ P ′ such that

+∞∑
k=−∞

(1 + k2)s|f̂(k)|2 <∞

}
.

Then Hs
per is a Hilbert space with inner product

< f, g >s= 2π

+∞∑
k=−∞

(1 + k2)sf̂(k)ĝ(k) for f, g ∈ Hs
per .

So, Hs
per is known as the periodic Sobolev space and satisfies the following result.

Proposition 2.1. Let s, r ∈ R such that s ≥ r then Hs
per ⊂ Hr

per. That is , Hs
per is imbedded

continuously and densely in Hr
per and ∥u∥r ≤ ∥u∥s, ∀u ∈ Hs

per. In particular, if s ≥ 0 then Hs
per ⊂

L2([−π, π]). Moreover, it is valid the “isometrically isomorphic” identication, that is (Hs
per)

′ ≡ H−s
per

∀s ∈ R, where the duality is implemented by the pair

< f, g >∗= 2π

+∞∑
k=−∞

f̂(k)ĝ(k) ,∀f ∈ H−s
per, ∀g ∈ Hs

per .

Proof: We cite [1]. □

3. The (P1) problem is well-posed. We will prove that (P1) is well-posed. Also, we will introduce a
family of operators that form a contraction semigroup of class Co, as we will make it in Theorem 3.2.

Finally, we will state Theorem 3.3 whose content is a fine version of Theorem 3.1 based on the semi-
group {S(t)}t≥0.

Theorem 3.1. Let s be a fixed real number, a > 0 and

(P1)

∣∣∣∣∣∣∣∣∣
u ∈ C([0,+∞), Hs

per),

∂tu+ ∂3xu+ au = 0 ∈ Hs−3
per ,

u(0) = ψ ∈ Hs
per .

then (P1) is globally well-posed, that is, ∃u ∈ C([0,∞), Hs
per) ∩ C((0,∞), Hs−3

per ) satisfying equation
(P1) so that the application: ψ → u, which to every initial data ψ assigns the solution u of the IVP (P1),
is continuous. That is, for ψ and ψ̃ initial data close in Hs

per, their corresponding solutions u and ũ,
respectively, are also close in the solution space.

In addition,

∥u(t)− ũ(t)∥s ≤ ∥ψ − ψ̃∥s , ∀t ∈ [0,+∞),

and

sup
t>0

∥u(t)− ũ(t)∥s ≤ ∥ψ − ψ̃∥s,

are verified.
Moreover, the solution u satisfies u(t) ∈ Hr

per , ∀t ≥ 0 , ∀r ≤ s with ∥u(t)∥s ≤ ∥ψ∥s and ∥u(t)∥r ≤
∥ψ∥r, ∀r < s, ∀t ≥ 0.

Also, the application: ψ → ∂tu, which to every initial data ψ assigns the derivate of solution u of the
IVP (P1), is continuous. That is, for ψ and ψ̃ initial data close in Hs

per, their corresponding ∂tu and ∂tũ,
respectively, are also close in the solution space.

Additionally, the following inequalities are satisfied

∥∂tu(t)− ∂tũ(t)∥s−3 ≤
√
max{1, a2}∥ψ − ψ̃∥s , ∀t ∈ (0,+∞),
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and

sup
t>0

∥∂tu(t)− ∂tũ(t)∥s−3 ≤
√

max{1, a2}∥ψ − ψ̃∥s .

Moreover, ∥∂tu(t)∥s−3 ≤
√
max{1, a2}∥ψ∥s , ∀t > 0.

Proof: We have organized the demonstration in the following way:
1. First, we will obtain the candidate for the solution. To achieve this, we apply the Fourier transform

to

∂tu = −∂3xu− au

and obtain

∂tû = −(ik)3û− aû = (ik3 − a)û ,

which for every k ∈ Z is an ODE with initial data û(k, 0) = ψ̃(k).
Therefore, solving the IVP’s

(Ωk)

∣∣∣∣∣∣∣∣∣
u ∈ C([0,+∞), l2s(Z)),

∂tû(k, τ) = ik3û(k, τ)− aû(k, τ),

û(k, 0) = ψ̂(k),

we obtain

û(k, τ) = eik
3τe−aτ ψ̂(k) ,

from which we get our candidate for the solution:

u(τ) =

+∞∑
k=−∞

û(k, τ)φk =

+∞∑
k=−∞

eik
3τe−aτ ψ̂(k)φk ; (3.1)

here we are denoting φk(x) = eikx for x ∈ R.

2. Second, we will prove

u(τ) ∈ Hs
per and ∥u(τ)∥s ≤ ∥ψ∥s , ∀τ ≥ 0 . (3.2)

Indeed, let τ > 0, ψ ∈ Hs
per, using |eik3τ | = 1 and 0 < e−2aτ < 1, we have

∥u(τ)∥2s = 2π

+∞∑
k=−∞

(1 + k2)s · |eik
3τe−aτ ψ̂(k)|2,

= 2π

+∞∑
k=−∞

(1 + k2)se−2aτ |ψ̂(k)|2 <∞, (3.3)

≤ ∥ψ∥2s .

It is evident that (3.2) is satisfied for τ = 0.

3. We will prove that u(·) is continuous in [0,+∞). Indeed, let t′, t ∈ (0,∞), we obtain

∥u(t)− u(t′)∥2s = 2π

+∞∑
k=−∞

(1 + k2)s · |(eik
3te−at − eik

3t′e−at′)ψ̂(k)|2,

= 2π

+∞∑
k=−∞

(1 + k2)s|H(t)|2|ψ̂(k)|2, (3.4)

where H(t) := eik
3te−at − eik

3t′e−at′ .
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We see that limt→t′ H(t) = 0.
To ensure the interchange of limits we need the uniform convergence of series (3.4). For this we
will bound the k-th term of the series, that is

Ik,t : = 2π(1 + k2)s|ψ̂(k)|2
∣∣∣eik3te−at − eik

3t′e−at′
∣∣∣2

≤ 8π(1 + k2)s|ψ̂(k)|2 ,

where we have used the triangle inequality, the equality |eiθ| = 1 for θ ∈ R and 0 < e−at ≤ 1 for
a > 0, t ∈ [0,∞). Thus,

+∞∑
k=−∞

Ik,t ≤ 4∥ψ∥2s <∞ ,

and using the Weierstrass M-Test, we obtain that the series (3.4) converges uniformly. So, we can
interchange limits and get

lim
t→t′

∥u(t)− u(t′)∥2s =

+∞∑
k=−∞

lim
t→t′

Ik,t︸ ︷︷ ︸
=0

= 0,

and then we conclude

lim
t→t′

∥u(t)− u(t′)∥s = 0 .

It is evident that u is continuous to the right of zero. To prove this, we use the same technique,
considering t′ = 0.

4. Let t > 0 and t+ h > 0, we will prove∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥
s−3

−→ 0 when h→ 0 .

Indeed, let t+ h > 0,∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥2
s−3

,

= 2π

+∞∑
k=−∞

(1 + k2)s−3|ψ̂(k)|2
∣∣∣∣∣eik

3(t+h)e−a(t+h) − eik
3te−at

h
+ [(ik)3 + a]eik

3te−at

∣∣∣∣∣
2

,

= 2π

+∞∑
k=−∞

(1 + k2)s−3|ψ̂(k)|2|eik
3te−at.M(h)|2, (3.5)

where M(h) :=
{

eik
3he−ah−1

h − ik3 + a
}

.
Applying L’Hôpital’s rule we obtain M(h) → 0 when h→ 0.
To ensure the interchange of limits, we need the uniform convergence of the series (3.5). For this
we will bound the k-th term of the series. Previously, for h > 0, we analyse

eik
3he−ah − 1

h
=

∫ h

0

1

h

∂

∂r
{eik

3re−ar}dr,

=

∫ h

0

1

h
[ik3 − a]eik

3re−ardr,

and taking norm, we have∣∣∣∣∣eik
3he−ah − 1

h

∣∣∣∣∣ ≤ 1

h
|ik3 − a|

∫ h

0

|eik
3r|e−ardr

≤ 1

h
(|k|6 + a2)

1
2h

= (|k|6 + a2)
1
2 . (3.6)
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Using the inequality (3.6), we are going to bound |M(h)|2 in the following way:

|M(h)|2 ≤ 4max{1, a2}(k6 + 1),

= 4max{1, a2}(1 + (k2)3),

≤ 4max{1, a2}(1 + k2)3 . (3.7)

For h < 0 such that 0 < t+ h we analyse

eik
3te−at − eik

3(t+h)e−a(t+h)

h
=

∫ t

t+h

1

h

∂

∂r
{eik

3re−ar}dr,

=

∫ t

t+h

1

h
[ik3 − a]eik

3re−ardr,

and taking norm, we have∣∣∣∣∣eik
3te−at − eik

3(t+h)e−a(t+h)

h

∣∣∣∣∣ ≤ 1

|h|
|ik3 − a|

∫ t

t+h

|eik
3r|e−ardr,

≤ 1

|h|
(k6 + a2)

1
2 (−h) = (k6 + a2)

1
2 ,

≤
√

2max{1, a2} · (1 + k2)
3
2 . (3.8)

Let us bound the k-th term of the series (3.5) using estimations (3.7) for h > 0 and (3.8) for h < 0,
and denoting 8max{1, a2} by Ca :

(1 + k2)s−3|ψ̂(k)|2e−2at|M(h)|2 ≤ (1 + k2)s−3|ψ̂(k)|2Ca(1 + k2)3

= Ca(1 + k2)s|ψ̂(k)|2 .

Therefore, since

2π

+∞∑
k=−∞

(1 + k2)s|ψ̂(k)|2 = ∥ψ∥2s <∞,

for ψ ∈ Hs
per and using the Weierstrass M-Test we get that the series (3.5) converges uniformly.

So, it is possible to interchange of limits and obtain∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥2
s−3

−→ 0 when h→ 0 . (3.9)

5. We will demonstrate the continuous dependence of the solution with respect to the initial data, that
is, let ψ and ψ̃ be close data in Hs

per, then their corresponding solutions u and ũ, respectively, are
also close in the solution space. Let t > 0,

∥u(t)− ũ(t)∥2s = 2π

+∞∑
k=−∞

(1 + k2)s
∣∣∣eik3te−at

{
ψ̂(k)− ̂̃

ψ(k)
}∣∣∣2 ,

≤ 2π

+∞∑
k=−∞

(1 + k2)s
∣∣∣ψ̂(k)− ̂̃

ψ(k),
∣∣∣2

= ∥ψ − ψ̃∥2s . (3.10)

Taking supremum over (0,∞) we have

sup
t∈(0,∞)

∥u(t)− ũ(t)∥s ≤ ∥ψ − ψ̃∥s . (3.11)

Hence, we have: if ψ → ψ̃ then u→ ũ.
6. Uniqueness of solution. - Inequalities (3.11) or (3.10) will enable us to demonstrate that the solu-

tion is unique. Effectively, let ψ ∈ Hs
per and suppose there are two solutions u and ũ, then using

(3.11) we have,

∥u(τ)− ũ(τ)∥s ≤ sup
t∈(0,∞)

∥u(t)− ũ(t)∥s ≤ ∥ψ − ψ∥s = 0 , ∀τ > 0 .
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from where we conclude that u = ũ.
Thus, the (P1) problem is well-posed, and its unique solution is

u(t) =

+∞∑
k=−∞

eik
3te−atψ̂(k)φk,

which depends continuously on the initial data.
7. Now, we analyse the case r < s. Under this condition we have Hs

per ⊂ Hr
per and since the initial

data ψ ∈ Hs
per, then ψ ∈ Hr

per and satisfies

∥ψ∥r ≤ ∥ψ∥s . (3.12)

From (3.3) for r and using (3.12) we get

∥u(t)∥2r ≤ ∥ψ∥2r ≤ ∥ψ∥2s <∞ .

That is,

u(t) ∈ Hr
per , ∀r ∈ (−∞, s) . (3.13)

The case r = s has already been proved in item 2.
Therefore, from (3.2) and (3.13), we conclude for t ∈ [0,+∞) that

u(t) ∈ Hr
per , ∀r ∈ (−∞, s] .

8. We will demonstrate that ∂tu(·) is continuous in (0,+∞). Let t > 0 and t′ > 0, using the
inequality ∥∂mx u(t)∥s−m ≤ ∥u(t)∥s and continuity of u(·) we obtain

∥∂tu(t)− ∂tu(t
′)∥s−3 = ∥ − ∂3xu(t)− au(t) + ∂3xu(t

′) + au(t′)∥s−3,

≤ ∥∂3x[u(t)− u(t′)]∥s−3 + a∥u(t)− u(t′)∥s−3,

≤ (1 + a)∥u(t)− u(t′)∥s → 0, (3.14)

when t→ t′. That is, ∂tu ∈ C((0,∞), Hs−3
per ).

9. Let ψ ∈ Hs
per, if we define

W (t)ψ =

+∞∑
k=−∞

(k3i− a)eik
3te−atψ̂(k)φk,

then W (t)ψ ∈ Hs−3
per and ∥W (t)ψ∥s−3 ≤ [max{1, a2}] 12 ∥ψ∥s, ∀t > 0. That is, W (t) ∈

L(Hs
per, H

s−3
per ) with ∥W (t)∥ ≤ [max{1, a2}] 12 .

In effect, using, |k3i− a|2 = (k6 + a2) ≤ max{1, a2}(k6 +1) ≤ max{1, a2}(1+ k2)3, ∀k ∈ Z,
the equality |eiθ| = 1, ∀θ ∈ R and 0 < e−at < 1, for a > 0, t > 0, we have

∥W (t)ψ∥2s−3 = 2π

+∞∑
k=−∞

(1 + k2)s−3|(k3i− a)eik
3te−atψ̂(k)|2,

≤ 2π

+∞∑
k=−∞

(1 + k2)s−3|k3i− a|2|ψ̂(k)|2,

≤ max{1, a2}2π
+∞∑

k=−∞

(1 + k2)s|ψ̂(k)|2 <∞,

= max{1, a2}∥ψ∥2s .

10. By considering items 4 and 9, we conclude ∂tu(t) =W (t)ψ.
□

An immediate consequence is the following Corollary.
Corollary 3.1. The unique solution of (P1) is

u(t) =

+∞∑
k=−∞

eik
3te−atψ̂(k)φk

where φk(x) = eikx for x ∈ R.
Also, we obtain the following result.
Corollary 3.2. Based on the hypothesis of the previous Theorem, we obtain
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1. u ∈ C([0,∞), Hr
per) ∩ C1((0,∞), Hr−3

per ), ∀r < s.
2. u satisfies

∥u(t)∥r ≤ ∥ψ∥s , ∀t ≥ 0 , ∀r < s . (3.15)

∥∂tu(t)∥r−3 ≤
√

max{1, a2}∥ψ∥s , ∀t > 0 , ∀r < s . (3.16)

3. That is,

∥u(t)− ũ(t)∥r ≤ ∥ψ − ψ̃∥s , ∀t ≥ 0 , ∀r < s ,

sup
t∈(0,∞)

∥u(t)− ũ(t)∥r ≤ ∥ψ − ψ̃∥s , ∀r < s .

4. Moreover

∥∂tu(t)− ∂tũ(t)∥r−3 ≤
√

max{1, a2}∥ψ − ψ̃∥s , ∀t > 0 , ∀r ≤ s ,

sup
t∈(0,∞)

∥∂tu(t)− ∂tũ(t)∥r−3 ≤
√

max{1, a2}∥ψ − ψ̃∥s , ∀r < s .

Proof: Through the use of the continuous Sobolev embedding, we obtain the inequality (3.15). We
will use the continuous Sobolev embedding and item 9 for prove that if ψ ∈ Hs

per thenW (t)ψ ∈ Hr−3
per and

∥W (t)ψ∥r−3 ≤
√
max{1, a2}∥ψ∥s , ∀t > 0 , ∀r < s . That is, W (t) ∈ L(Hs

per, H
r−3
per ) with ∥W (t)∥ ≤√

max{1, a2}, ∀r < s.
In effect, using |k3i− a|2 ≤ max{1, a2}(1 + k2)3, ∀k ∈ Z and |eiθ| = 1, ∀θ ∈ R we have

∥W (t)ψ∥2r−3 = 2π

+∞∑
k=−∞

(1 + k2)r−3|(k3i− a)eik
3te−atψ̂(k)|2

≤ 2π

+∞∑
k=−∞

(1 + k2)r−3|k3i− a|2|ψ̂(k)|2

≤ max{1, a2}2π
+∞∑

k=−∞

(1 + k2)r|ψ̂(k)|2

≤ max{1, a2}2π
+∞∑

k=−∞

(1 + k2)s|ψ̂(k)|2 <∞

= max{1, a2}∥ψ∥2s . (3.17)

□
In this point, we will introduce a family of operators which will meet the requirement of being a

contraction semigroup of class Co.
Theorem 3.2. Let s ∈ R and a > 0. The application

S : [0,∞) → L(Hs
per),

t → S(t),

such that S(t) = e−(∂3
x+aI)t, that is, applies

S(t)φ =

[(
e(ik

3−a)tφ̂(k)
)
k∈Z

]∨
, φ ∈ Hs

per ,

then {S(t)}t≥0 is a contraction semigroup of class Co on Hs
per.

Additionally, the following statements hold:
1. If φ ∈ Hs

per then S(·)φ ∈ C([0,∞), Hs
per).

2. The application: φ→ S(·)φ is continuous and verifies:

∥S(t)ψ1 − S(t)ψ2∥s ≤ ∥ψ1 − ψ2∥s ,∀t ∈ [0,∞),

and

sup
t∈[0,∞)

∥S(t)ψ1 − S(t)ψ2∥s ≤ ∥ψ1 − ψ2∥s

with ψj ∈ Hs
per for j ∈ {1, 2}.
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3. If φ ∈ Hs
per then ∂tS(t)φ ∈ Hs−3

per and ∥∂tS(t)φ∥s−3 ≤
√

max{1, a2}∥φ∥s, ∀t ∈ (0,∞). That
is, ∂tS(t) ∈ L(Hs

per, H
s−3
per ), ∀t ∈ (0,∞), where

∂tS(t)φ =

[(
(ik3 − a)e(ik

3−a)tφ̂(k)
)
k∈Z

]∨
∈ Hs−3

per , ∀φ ∈ Hs
per .

4. If φ ∈ Hs
per then ∂tS(·)φ ∈ C((0,∞), Hs−3

per ).
5. The application: ψ → ∂tS(·)ψ is continuous and verifies:

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥s−3 ≤
√

max{1, a2}∥ψ1 − ψ2∥s ,∀t ∈ (0,∞)

and

sup
t∈[0,∞)

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥s−3 ≤
√

max{1, a2}∥ψ1 − ψ2∥s

with ψj ∈ Hs
per for j ∈ {1, 2}.

Proof: Initially, we observe S(0)φ =
[
(φ̂(k))k∈Z

]∨
= [φ̂]∨ = φ , ∀φ ∈ Hs

per; that is, S(0) = I .
From the linearity of the Fourier transform and its inverse, we obtain the linearity of S(t). Indeed, let
σ ∈ C, φ,ψ ∈ Hs

per, we have

S(t)(σφ+ ψ) =

[(
e(ik

3−a)t[σφ+ ψ]∧(k)
)
k∈Z

]∨
=

[(
e(ik

3−a)t
[
σφ̂(k) + ψ̂(k)

])
k∈Z

]∨
=

[
σ
(
e(ik

3−a)tφ̂(k)
)
k∈Z

+
(
e(ik

3−a)tψ̂(k)
)
k∈Z

]∨
= σ

[(
e(ik

3−a)tφ̂(k)
)
k∈Z

]∨
+

[(
e(ik

3−a)tψ̂(k)
)
k∈Z

]∨
,

= σS(t)(φ) + S(t)(ψ) ,

for t > 0.
If φ ∈ Hs

perand t > 0, we will demonstrate that S(t)φ ∈ Hs
per and ∥S(t)φ∥s ≤ ∥φ∥s; that is

∥S(t)∥ ≤ 1.
In effect, similar to (3.3) we have

∥S(t)φ∥2s = 2π

+∞∑
k=−∞

(1 + k2)s
∣∣∣e(ik3−a)tφ̂(k)

∣∣∣2 ,
≤ 2π

+∞∑
k=−∞

(1 + k2)s |φ̂(k)|2 ,

= ∥φ∥2s <∞ .

Then S(t)φ ∈ Hs
per and ∥S(t)φ∥s ≤ ∥φ∥s, ∀t ≥ 0.

Therefore,

∥S(t)φ∥s ≤ ∥φ∥s, ∀t ≥ 0, ∀φ ∈ Hs
per . (3.18)

That is,

S(t) ∈ L(Hs
per) with ∥S(t)∥ ≤ 1,∀t ∈ [0,∞) . (3.19)

At this point, we will demonstrate that S(t + r) = S(t) ◦ S(r), ∀t, r ∈ [0,∞). Indeed, let f ∈ Hs
per

and t, r ∈ (0,∞),

S(t+ r)f =

[(
e(ik

3−a)(t+r)f̂(k)
)
k∈Z

]∨
,

=

[(
e(ik

3−a)te(ik
3−a)rf̂(k)

)
k∈Z

]∨
. (3.20)
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We know that if f ∈ Hs
per then f̂ ∈ l2s , that is

+∞∑
k=−∞

(1 + k2)s|f̂(k)|2 <∞ . (3.21)

We affirm that (
e(ik

3−a)rf̂(k)
)
k∈Z

∈ l2s ,∀r ∈ [0,∞) . (3.22)

In effect, when r is zero, it is obvious that the statement is true. Thus, we will demonstrate the case
r > 0. For this, using (3.21) we obtain

+∞∑
k=−∞

(1 + k2)s|e(ik
3−a)rf̂(k)|2 =

+∞∑
k=−∞

(1 + k2)s |ei2k
3r|︸ ︷︷ ︸

=1

e−2ar︸ ︷︷ ︸
<1

|f̂(k)|2,

≤
+∞∑

k=−∞

(1 + k2)s|f̂(k)|2 <∞ .

Therefore, from (3.22) and taking the inverse Fourier transform, we have[(
e(ik

3−a)rf̂(k)
)
k∈Z

]∨
∈ Hs

per , ∀r ∈ [0,∞) .

This motivates us to define

gr :=

[(
e(ik

3−a)rf̂(k)
)
k∈Z

]∨
∈ Hs

per .

That is,

gr = S(r)f . (3.23)

Taking the Fourier transform to gr, we get

ĝr =
(
e(ik

3−a)rf̂(k)
)
k∈Z

,

that is,

ĝr(k) = e(ik
3−a)rf̂(k) , ∀k ∈ Z . (3.24)

Using (3.24) in (3.20) and from (3.23) we have

S(t+ r)f =

[(
e(ik

3−a)tĝr(k)
)
k∈Z

]∨
,

= S(t)gr,
= S(t){S(r)f},
= {S(t) ◦ S(r)}f , ∀t > 0 , r > 0 .

Thus,

S(t+ r) = S(t) ◦ S(r) , ∀t > 0 , r > 0 . (3.25)

If t or r is zero, then the equality (3.25) is also true. Thus, we have demonstrated:

S(t+ r) = S(t) ◦ S(r) , ∀t ≥ 0 , r ≥ 0 . (3.26)

At this point, we will demonstrate the continuity of t→ S(t)φ, that is, for t > 0

∥S(t+ h)φ− S(t)φ∥s −→ 0 when h→ 0 . (3.27)

and ∥S(h)φ− φ∥s −→ 0 when h→ 0+ .
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Indeed, by applying item 3 from the proof of the previous theorem, we obtain

∥S(t+ h)φ− S(t)φ∥2s = 2π

+∞∑
k=−∞

(1 + k2)s
∣∣∣(e(ik3−a)(t+h) − e(ik

3−a)t
)
· φ̂(k)

∣∣∣2
= 2π

+∞∑
k=−∞

(1 + k2)s |φ̂(k)|2 |H̃(t+ h)|2 (3.28)

where t+ h > 0 and H̃(t+ h) := e(ik
3−a)(t+h) − e(ik

3−a)t.
We observe that lim

h→0
H̃(t+ h) = 0.

To ensure the interchange of limits, we need the uniform convergence of the series (3.28). For this we will
bound the k-th term of the series, that is,

Ik,t,h := 2π(1 + k2)s |φ̂(k)|2
∣∣∣e(ik3−a)(t+h) − e(ik

3−a)t
∣∣∣2

≤ 8π(1 + k2)s |φ̂(k)|2 ,

where we have employed the triangle inequality, the equality |eiθ| = 1 for θ ∈ R and 0 < e−at ≤ 1 for
t ∈ [0,∞).
Thus,

+∞∑
k=−∞

Ik,t,h ≤ 4∥φ∥2s <∞ , (3.29)

and using the Weierstrass M-Test, we obtain that the series (3.29) converges uniformly. So, it is possible to
interchange of limits and obtain

lim
h→0

∥S(t+ h)φ− S(t)φ∥2s =

+∞∑
k=−∞

lim
h→0

Ik,t,h︸ ︷︷ ︸
=0

= 0 ;

that is,

lim
h→0

∥S(t+ h)φ− S(t)φ∥s = 0 .

Remark 3.1. It is verified

lim
h→0+

∥S(h)φ− φ∥s = 0 , ∀φ ∈ Hs
per .

To prove this, we use the same technique, considering h > 0 and t = 0.
Remark 3.2. With the remark 3.1 we would have that {S(t)}t≥0 is a semigroup of class Co.
Let ψ1 and ψ2 be close data in Hs

per, then we will prove that their corresponding S(·)ψ1 and S(·)ψ2

respectively, are also close. Indeed, since {S(t)}t≥0 is a contraction semigroup, we have

∥S(t)ψ1 − S(t)ψ2∥s = ∥S(t)(ψ1 − ψ2)∥s ≤ ∥ψ1 − ψ2∥s .

Taking the supremum over (0,∞) we have

sup
t∈(0,∞)

∥S(t)ψ1 − S(t)ψ2∥s ≤ ∥ψ1 − ψ2∥s . (3.30)

From here we have that if ψ1 → ψ2 then S(·)ψ1 → S(·)ψ2.
We will prove: If φ ∈ Hs

per then ∂tS(t)φ ∈ Hs−3
per and ∥∂tS(t)φ∥s−3 ≤

√
max{1, a2}∥φ∥s.

In effect, using |k3i − a|2 ≤ max{1, a2}(1 + k2)3, ∀k ∈ Z, the equality |eiθ| = 1, ∀θ ∈ R and
0 < e−at < 1 for t > 0, we have

∥∂tS(t)φ∥2s−3 = 2π

+∞∑
k=−∞

(1 + k2)s−3
∣∣∣(k3i− a)e(ik

3−a)tφ̂(k)
∣∣∣2 ,

≤ 2π

+∞∑
k=−∞

(1 + k2)s−3|k3i− a|2 |φ̂(k)|2 ,

≤ 2π ·max{1, a2}
+∞∑

k=−∞

(1 + k2)s |φ̂(k)|2 <∞

= max{1, a2}∥φ∥2s .
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That is, ∥∂tS(t)φ∥s−3 ≤
√
max{1, a2}∥φ∥s. From this inequality, we obtain

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥s−3 ≤
√

max{1, a2}∥ψ1 − ψ2∥s ,

with ψj ∈ Hs
per for j ∈ {1, 2}.

So, taking supremum over (0,∞) we have

sup
t∈(0,∞)

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥s−3 ≤
√
max{1, a2}∥ψ1 − ψ2∥s .

Finally, if φ ∈ Hs
per we will demonstrate the continuity of t→ ∂tS(t)φ. That is,

∥∂tS(t+ h)φ− ∂tS(t)φ∥s−3 −→ 0 when h→ 0 .

Indeed, by applying item 3 from the proof of the previous Theorem, we proceed

∥∂tS(t+ h)φ− ∂tS(t)φ∥2s−3 = 2π

+∞∑
k=−∞

(1 + k2)s−3
∣∣∣(e(ik3−a)(t+h) − e(ik

3−a)t
)
· (k3i− a)φ̂(k)

∣∣∣2 ,
= 2π

+∞∑
k=−∞

(1 + k2)s−3
∣∣∣(e(ik3−a)h − 1

)
e(ik

3−a)t · (k3i− a)φ̂(k)
∣∣∣2 ,

= 2π

+∞∑
k=−∞

(1 + k2)s−3
∣∣∣e(ik3−a)h − 1

∣∣∣2 ∣∣∣eik3t
∣∣∣2 · e−2at|k3i− a|2 |φ̂(k)|2 ,

= 2π

+∞∑
k=−∞

(1 + k2)s−3|β(h)|2 · e−2at|k3i− a|2 |φ̂(k)|2 , (3.31)

where β(h) := e(ik
3−a)h − 1.

We observe that lim
h→0

β(h) = 0.

To ensure the interchange of limits, we need the uniform convergence of the series (3.31). For this, we
will bound the k-th term of the series, that is,

Ik,t,h = 2π(1 + k2)s−3|β(h)|2 · e−2at|k3i− a|2 |φ̂(k)|2 ,
≤ 8π ·max{1, a2}(1 + k2)s |φ̂(k)|2 ,

where we have employed the triangle inequality, |k3i− a|2 ≤ max{1, a2}(1 + k2)3, ∀k ∈ Z, the equality
|eiθ| = 1, ∀θ ∈ R and 0 < e−2at < 1 for t > 0.

Thus,

+∞∑
k=−∞

Ik,t,h ≤ 4 ·max{1, a2}∥φ∥2s <∞ , (3.32)

and using the Weierstrass M-Test, we obtain that the series (3.32) converges uniformly. So, it is possible to
interchange of limits and obtain

lim
h→0

∥∂tS(t+ h)φ− ∂tS(t)φ∥2s−3 =

+∞∑
k=−∞

lim
h→0

Ik,t,h︸ ︷︷ ︸
=0

= 0,

hence, we conclude

lim
h→0

∥∂tS(t+ h)φ− ∂tS(t)φ∥s−3 = 0 .

□
We will provide some additional properties of {S(t)}t≥0.
Corollary 3.3. Based on the hypothesis of the previous Theorem, the following statements hold

1. If ϕ ∈ Hs
per then S(t)ϕ ∈ Hr

per and ∥S(t)ϕ∥r ≤ ∥ϕ∥s, ∀t ≥ 0, ∀r < s. That is, S(t) ∈
L(Hs

per, H
r
per), ∀t ≥ 0, ∀r < s.

2. If ϕ ∈ Hs
per then S(·)ϕ ∈ C([0,∞), Hr

per), ∀r < s.
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3. The application: ϕ→ S(·)ϕ is continuous and verifies

∥S(t)ϕ1 − S(t)ϕ2∥r ≤ ∥ϕ1 − ϕ2∥s, ∀t ∈ [0,∞), ∀r < s ,

sup
t∈(0,∞)

∥S(t)ϕ1 − S(t)ϕ2∥r ≤ ∥ϕ1 − ϕ2∥s, ∀r < s,

with ϕj ∈ Hs
per for j = 1, 2.

4. If ϕ ∈ Hs
per then ∂tS(t)ϕ ∈ Hr−3

per and ∥∂tS(t)ϕ∥r−3 ≤
√

max{1, a2}∥ϕ∥s, ∀t > 0, ∀r < s.
That is, ∂tS(t) ∈ L(Hs

per, H
r−3
per ), ∀t > 0, ∀r < s, where

∂tS(t)φ =

[(
(ik3 − a)e(ik

3−a)tφ̂(k)
)
k∈Z

]∨
∈ Hr−3

per , ∀φ ∈ Hs
per ,∀r < s .

5. If φ ∈ Hs
per then ∂tS(·)φ ∈ C((0,∞), Hr−3

per ), ∀r < s
6. The application: ψ → ∂tS(·)ψ is continuous and verifies:

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥r−3 ≤
√
max{1, a2}∥ψ1 − ψ2∥s ,∀t ∈ (0,∞), ∀r < s ,

and

sup
t∈[0,∞)

∥∂tS(t)ψ1 − ∂tS(t)ψ2∥r−3 ≤
√

max{1, a2}∥ψ1 − ψ2∥s , ∀r < s,

with ψj ∈ Hs
per for j ∈ {1, 2}.

Proof: Its proof is similar to the proof of the second Corollary of Theorem 3.1, in which we use the
continuous Sobolev embedding. □

Next, we state Theorem 3.1 in terms of the semigroup {S(t)}t≥0.
Theorem 3.3. Let s ∈ R, a > 0 and {S(t)}t≥0 the semigroup of class Co from Theorem 3.2, then

S(·)ψ is the unique solution of∣∣∣∣∣∣∣∣∣
u ∈ C([0,+∞), Hs

per) ∩ C1((0,+∞), Hs−3
per ),

∂tu = Au ∈ Hs−3
per ,

u(0) = ψ ∈ Hs
per .

in the sense that

lim
h→0

∥∥∥∥S(t+ h)ψ − S(t)ψ
h

−AS(t)ψ
∥∥∥∥
s−3

= 0, (3.33)

where A := −∂3x − aI , and if ψ1 ∼ ψ2 then S(·)ψ1 ∼ S(·)ψ2.
In addition, the following regularity holds: if ψ ∈ Hs

per then S(t)ψ ∈ Hr
per, ∀r ≤ s, ∀t ≥ 0 and

∥S(t)ψ∥r ≤ ∥ψ∥s, ∀t ≥ 0, ∀r ≤ s.
Also, ∥∂tS(t)ψ∥r−3 ≤

√
max{1, a2}∥ψ∥s, ∀t > 0, ∀r ≤ s.

Proof: The proof of (3.33) is similar to item 4 of the proof of Theorem 3.1. And the proof of the
remaining statement follows in a similar way to the proof of Theorem 3.1 and as a consequence of Theorem
3.2. □

4. Generalization of results to n-th order equation. In this section, we will generalize the results
obtained in the previous section.

Theorem 4.1. Let s be a fixed real number, a > 0, n a natural number such that n − 1 is an even
number which is not divisible by four and

(PΣ)

∣∣∣∣∣∣∣∣∣
u ∈ C([0,+∞), Hs

per),

∂tu+ ∂nxu+ au = 0 ∈ Hs−n
per ,

u(0) = ψ ∈ Hs
per .

then (PΣ) is globally well-posed, that is, ∃g ∈ C([0,∞), Hs
per) ∩ C((0,∞), Hs−n

per ) verifying equation
(PΣ) so that the application: ψ → g, which to every initial data ψ assigns the solution g of the IVP (PΣ),
is continuous.

Moreover, the solution g satisfies g(t) ∈ Hr
per , ∀t ≥ 0 , ∀r ≤ s with ∥g(t)∥s ≤ ∥ψ∥s and ∥g(t)∥r ≤

∥ψ∥s, ∀r < s, ∀t ≥ 0.
Also, ∥∂tg(t)∥r−n ≤

√
max{1, a2}∥ψ∥s , ∀r ≤ s , ∀t > 0.
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Proof: Its proof is similar to the proof of Theorem 3.1. □
Consequently, we obtain the following outcome.
Corollary 4.1. The unique solution of (PΣ) is

u(t) =

+∞∑
k=−∞

eik
nte−atψ̂(k)φk,

where φk(x) = eikx for x ∈ R.
Next, we define a family of operators which will verify the conditions of being a contraction semigroup

of class Co.
Theorem 4.2. Let s ∈ R, a > 0, n a natural number such that n − 1 is an even number not multiple

of four. The application

Tn : [0,∞) → L(Hs
per),

t → Tn(t),

such that Tn(t) = e−(∂n
x+aI)t, that is, applies

Tn(t)φ =

[(
e(ik

n−a)tφ̂(k)
)
k∈Z

]∨
, φ ∈ Hs

per ,

then {Tn(t)}t≥0 is a contraction semigroup of class Co on Hs
per. Thus, {Tn}n∈M is a family of semigroups

on Hs
per where

M := {n ∈ N/n− 1 is an even number not multiple of four } .

And for simplicity we will denote to Tn as T .
Additionally, the following statements hold:

1. If φ ∈ Hs
per then T (·)φ ∈ C([0,∞), Hs

per).
2. The application: φ→ T (·)φ is continuous and verifies:

∥T (t)ψ1 − T (t)ψ2∥s ≤ ∥ψ1 − ψ2∥s ,∀t ∈ [0,∞),

and

sup
t∈(0,∞)

∥T (t)ψ1 − T (t)ψ2∥s ≤ ∥ψ1 − ψ2∥s,

with ψj ∈ Hs
per for j ∈ {1, 2}.

3. T (t) ∈ L(Hs
per) and ∥T (t)Θ∥s ≤ ∥Θ∥s , ∀Θ ∈ Hs

per, ∀t ∈ [0,∞).
4. If φ ∈ Hs

per then ∂tT (t)φ ∈ Hs−n
per and ∥∂tT (t)φ∥s−n ≤

√
max{1, a2}∥φ∥s, ∀t ∈ [0,∞). That

is, ∂tT (t) ∈ L(Hs
per, H

s−n
per ), ∀t ∈ (0,∞), where

∂tT (t)φ =

[(
(ikn − a)e(ik

n−a)tφ̂(k)
)
k∈Z

]∨
∈ Hs−n

per , ∀φ ∈ Hs
per .

5. If φ ∈ Hs
per then ∂tT (·)φ ∈ C((0,∞), Hs−n

per ).
6. The application: ψ → ∂tT (·)ψ is continuous and verifies:

∥∂tT (t)ψ1 − ∂tT (t)ψ2∥s−n ≤
√
max{1, a2}∥ψ1 − ψ2∥s ,∀t ∈ (0,∞),

and

sup
t∈(0,∞)

∥∂tT (t)ψ1 − ∂tT (t)ψ2∥s−n ≤
√
max{1, a2}∥ψ1 − ψ2∥s,

with ψj ∈ Hs
per for j ∈ {1, 2}.

Proof: Its proof is similar to the proof of Theorem 3.2 □
We will provide some additional properties of the family {T (t)}t≥0.
Corollary 4.2. Based on the hypothesis of the previous Theorem, the following statements hold

1. If ϕ ∈ Hs
per then T (·)ϕ ∈ C([0,∞), Hr

per), ∀r < s.
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2. The application: ϕ→ T (·)ϕ is continuous and verifies

∥T (t)ϕ1 − T (t)ϕ2∥r ≤ ∥ϕ1 − ϕ2∥s, ∀t ∈ [0,∞), ∀r < s ,

sup
t∈(0,∞)

∥T (t)ϕ1 − T (t)ϕ2∥r ≤ ∥ϕ1 − ϕ2∥s, ∀r < s

with ϕj ∈ Hs
per for j = 1, 2.

3. T (t) ∈ L(Hs
per, H

r
per) and ∥T (t)θ∥r ≤ ∥θ∥s, ∀r < s, ∀t ≥ 0 ,∀θ ∈ Hs

per.
4. If ϕ ∈ Hs

per then ∂tT (t)ϕ ∈ Hr−n
per and ∥∂tT (t)ϕ∥r−n ≤

√
max{1, a2}∥ϕ∥s, ∀t > 0, ∀r < s.

That is, ∂tT (t) ∈ L(Hs
per, H

r−n
per ), ∀t > 0, ∀r < s where

∂tT (t)φ =

[(
(ikn − a)e(ik

n−a)tφ̂(k)
)
k∈Z

]∨
∈ Hr−n

per , ∀φ ∈ Hs
per ,∀r < s .

5. If φ ∈ Hs
per then ∂tT (·)φ ∈ C((0,∞), Hr−n

per ), ∀r < s
6. The application: ψ → ∂tT (·)ψ is continuous and satisfies:

∥∂tT (t)ψ1 − ∂tT (t)ψ2∥r−n ≤
√
max{1, a2}∥ψ1 − ψ2∥s ,∀t ∈ (0,∞), ∀r < s ,

and

sup
t∈(0,∞)

∥∂tT (t)ψ1 − ∂tT (t)ψ2∥r−n ≤
√

max{1, a2}∥ψ1 − ψ2∥s , , ∀r < s,

with ψj ∈ Hs
per for j ∈ {1, 2}.

Proof: Its proof is similar to the proof of Corollary 3.3. □
Now, we state another version of Theorem 4.1 in terms of the semigroup {T (t)}t≥0.
Theorem 4.3. Let s ∈ R, a > 0, n a natural number such that n − 1 is an even number not multiple

of four and {T (t)}t≥0 the semigroup of class Co from Theorem 3.2, then T (·)ψ is the unique solution of∣∣∣∣∣∣∣∣∣
u ∈ C([0,+∞), Hs

per) ∩ C1((0,+∞), Hs−n
per ),

∂tu = AΣu ∈ Hs−n
per ,

u(0) = ψ ∈ Hs
per .

in the sense that

lim
h→0

∥∥∥∥T (t+ h)ψ − T (t)ψ

h
−AΣT (t)ψ

∥∥∥∥
s−n

= 0, (4.1)

where AΣ := −∂nx − aI , and if ψ1 ∼ ψ2 then S(·)ψ1 ∼ S(·)ψ2.
In addition, the following regularity holds: if ψ ∈ Hs

per then T (t)ψ ∈ Hr
per, ∀r ≤ s, ∀t ≥ 0 and

∥T (t)ψ∥r ≤ ∥ψ∥s, ∀t ≥ 0, ∀r ≤ s.
Also, ifψ ∈ Hs

per then ∂tT (t)ψ ∈ Hr−n
per , ∀r ≤ s , ∀t ∈ (0,∞) and ∥∂tT (t)ψ∥r−n ≤

√
max{1, a2}∥ψ∥s,

∀t > 0, ∀r ≤ s.
Proof: Its proof is similar to the proof of Theorem 3.3. □
Below we state some additional results that can be obtained.
Remark 4.1. Analogous results to Theorem 4.1 are obtained when n is a natural number such that

n− 1 is a multiple of four, where the solution would be

v(t) =

[(
e−(ikn+a)tφ̂(k)

)
k∈Z

]∨
,

for the initial data φ ∈ Hs
per.

Remark 4.2. Similar results to Theorem 4.2 and Corollary 4.2 are obtained when n is a natural number
such that n− 1 is a multiple of four, where the family of operators introduced is

T (t)φ =

[(
e−(ikn+a)tφ̂(k)

)
k∈Z

]∨
, ∀φ ∈ Hs

per .

Therefore, the analogous version to Theorem 4.3 is valid.
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Remark 4.3. When n is a number multiple of four, the problem (PΣ) has a solution and the associated
family of operators

Γ(t)φ =

[(
e−(kn+a)tφ̂(k)

)
k∈Z

]∨
, ∀φ ∈ Hs

per,

forms a contraction semigroup of class Co.
Finally,
Remark 4.4. When n is an even number which is not divisible by four, the problem (PΣ) has no

solution.

5. Dissipative property of (P1) and (PΣ). The properties that will be obtained in this section do not
depend on the explicit form of the solution.

5.1. Dissipative property of (P1). Let s be a fixed real number, a > 0 and the problem

(P1)

∣∣∣∣∣∣∣∣∣
w ∈ C([0,+∞), Hs

per) ∩ C1((0,∞), Hs−3
per ),

∂tw + ∂3xw + aw = 0 ∈ Hs−3
per ,

w(0) = ψ ∈ Hs
per .

Theorem 5.1. Let w the solution of (P1) with initial data ψ ∈ Hs
per then we get the following results:

1. ∂t∥w(t)∥2s−3 = −2a∥w(t)∥2s−3 ≤ 0.
2. ∥w(t)∥s−3 = e−at∥ψ∥s−3 ≤ e−at∥ψ∥s ≤ ∥ψ∥s , t ≥ 0.
3. lim

t→+∞
∥w(t)∥s−3 = 0 .

Proof: As Hs
per ⊂ Hs−3

per then the following expressions: < ∂tw,w >s−3 and < w, ∂tw >s−3 are
well-defined.
So we have

∂t∥w(t)∥2s−3 = ∂t < w(t), w(t) >s−3

= < ∂tw(t), w(t) >s−3 + < w(t), ∂tw(t) >s−3

= 2Re < ∂tw(t), w(t) >s−3 . (5.1)

Also, we obtain

< ∂3xw,w >s−3 = 2π

+∞∑
k=−∞

(1 + k2)s−3∂̂3xw(k) · ŵ(k)

= 2π

+∞∑
k=−∞

(1 + k2)s−3(ik)3ŵ(k) · ŵ(k)

= −i2π
+∞∑

k=−∞

(1 + k2)s−3k3ŵ(k) · ŵ(k)

= −i 2π
+∞∑

k=−∞

(1 + k2)s−3k3|ŵ(k)|2︸ ︷︷ ︸
δ:=

. (5.2)

At this point, we will prove the convergence of the series (5.2). Indeed, using the inequality: |k|3 ≤
|k|6 = (|k|2)3 ≤ (1 + k2)3 , ∀k ∈ Z and w(t) ∈ Hs

per, we obtain∣∣∣∣∣
+∞∑

k=−∞

(1 + k2)s−3k3|ŵ(k)|2
∣∣∣∣∣ ≤

+∞∑
k=−∞

(1 + k2)s−3|k|3|ŵ(k)|2

≤
+∞∑

k=−∞

(1 + k2)s−3(1 + |k|2)3|ŵ(k)|2

=

+∞∑
k=−∞

(1 + k2)s|ŵ(k)|2 =
1

2π
∥w(t)∥2s <∞ .
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Then the series (5.2) is convergent, that is,

< ∂sxw(t), w(t) >s−3= −iδ with δ ∈ R . (5.3)

From (5.1), using ∂tw = −∂3xw − aw and the equality (5.3) we get

∂t∥w(t)∥2s−3 = 2Re < ∂tw(t), w(t) >s−3

= 2Re{< −∂3xw(t), w(t) >s−3 −a < w(t), w(t) >s−3}
= −2Re < ∂3xw(t), w(t) >s−3︸ ︷︷ ︸

=0

−2a∥w(t)∥2s−3

= −2a∥w(t)∥2s−3 ≤ 0 .

Therefore, ∥w(t)∥2s−3 is not incressing. Then ∥w(t)∥2s−3 ≤ ∥w(0)∥2s−3 , ∀t ≥ 0.
As

(∥w(t)∥s−3 − ∥w(0)∥s−3)(∥w(t)∥s−3 + ∥w(0)∥s−3) ≤ 0 ,

we have

∥w(t)∥s−3 ≤ ∥w(0)∥s−3 ≤ ∥w(0)∥s , ∀t ≥ 0 .

That is,

∥w(t)∥s−3 ≤ ∥ψ∥s−3 ≤ ∥ψ∥s , ∀t ≥ 0 .

To be exact, solving the equation we obtain ∥w(t)∥2s−3 = e−2at∥w(0)∥2s−3.
That is

∥w(t)∥s−3 = e−at∥w(0)∥s−3 ≤ e−at∥w(0)∥s ≤ ∥w(0)∥s , ∀t ≥ 0.

Taking limit to ∥w(t)∥s−3 = e−at∥w(0)∥s−3 when t→ +∞, we obtain lim
t→+∞

∥w(t)∥s−3 = 0. □

Corollary 5.1 (Continuous dependence of the solution of (P1)). Let u and v be solutions of (P1) with
initial data ψ1 and ψ2 in Hs

per, respectively. Then the following statements hold

∂t∥u(t)− v(t)∥2s−3 = −2a∥u(t)− v(t)∥2s−3 ≤ 0,

and

∥u(t)− v(t)∥s−3 = e−at∥ψ1 − ψ2∥s−3 ≤ ∥ψ1 − ψ2∥s , t ≥ 0 . (5.4)

Proof: Define w := u− v then w satisfies:∣∣∣∣∣∣ ∂tw + ∂3xw + aw = 0,

w(0) = ψ1 − ψ2 .

We conclude using Theorem 5.1. □
Corollary 5.2 (Uniqueness of solution of (P1)). The (P1) problem has a unique solution.
Proof: Indeed, let u and v be solutions of (P1) with the same initial data, that is, ψ1 = ψ2 = ψ.

From (5.4) we obtain ∥u(t)− v(t)∥s−3 ≤ ∥0∥s = 0. Then ∥u(t)− v(t)∥s−3 = 0. So, u(t) = v(t), ∀t ≥ 0,
that is, u = v. □

5.2. Dissipative property of (PΣ). Let s be a fixed real number, a > 0 and the problem

(PΣ)

∣∣∣∣∣∣∣∣∣
w ∈ C([0,+∞), Hs

per) ∩ C1((0,∞), Hs−n
per ),

∂tw + ∂nxw + aw = 0 ∈ Hs−n
per ,

w(0) = φ ∈ Hs
per .

Theorem 5.2. Let n be a natural number such that n− 1 is an even number not multiple of four and w
the solution of (PΣ) with initial data φ ∈ Hs

per then we obtain the following results:
1. ∂t∥w(t)∥2s−n = −2a∥w(t)∥2s−n ≤ 0.
2. ∥w(t)∥s−n = e−at∥φ∥s−n ≤ e−at∥φ∥s ≤ ∥φ∥s , t ≥ 0.
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3. lim
t→+∞

∥w(t)∥s−n = 0 .

Proof: It is analogous to the proof of Theorem 5.1, noting (ik)n = −ikn when n is a natural number
such that n− 1 is an even number not multiple of four. □

Corollary 5.3 (Continuous dependence of the solution of (PΣ)). Let u and v be solutions of (PΣ)
with initial data ψ1 and ψ2 in Hs

per, respectively. Then the following statements hold

∂t∥u(t)− v(t)∥2s−n = −2a∥u(t)− v(t)∥2s−n ≤ 0

and

∥u(t)− v(t)∥s−n = e−at∥ψ1 − ψ2∥s−n ≤ ∥ψ1 − ψ2∥s , t ≥ 0 . (5.5)

Proof: Define w := u− v then w satisfies:∣∣∣∣∣∣ ∂tw + ∂nxw + aw = 0,

w(0) = ψ1 − ψ2 .

From Theorem 5.2 we conclude the proof. □
Corollary 5.4 (Uniqueness of solution of (PΣ)). The Cauchy problem (PΣ) possesses uniqueness of

solution.
Proof: Indeed, let u and v be solutions of (PΣ) with the same initial data, that is, ψ1 = ψ2 = ψ.

From (5.5) we obtain ∥u(t)−v(t)∥s−n ≤ ∥0∥s = 0. Then ∥u(t)−v(t)∥s−n = 0. So, u(t) = v(t), ∀t ≥ 0,
that is, u = v. □

Below we state some additional results that can be obtained.
Remark 5.1. Similar results to Theorem 5.2, Corollaries 5.3 and 5.4 are also obtained when n is a

natural number such that n− 1 is a number multiple of four, in this case, note that (ik)n = ikn.
Remark 5.2. The dissipative property of (PΣ) is also obtained when n is multiple of four, in this case,

note that (ik)n = kn.

6. Differentiability analysis versus initial data of (P1) and (PΣ). In order to deepen and enrich our
study, we will investigate the infinite-dimensional space in which differentiability occurs and its connection
to the initial data.

6.1. Differentiability analysis versus initial data of (P1). In this subsection, we will analyze the
solution of (P1).

Theorem 6.1. Let s ∈ R and a > 0. If t > 0 and u is the solution of (P1) with initial data ψ ∈ Hs
per

then for all r ≤ s− 3 it holds

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥
r

= 0.

This means that differentiability occurs in Hr
per, ∀r ≤ s − 3. That is, ∂tu(t) = −∂3xu(t) − au(t) in

Hr
per, ∀r ≤ s− 3, ∀t > 0.

Proof: Let t > 0, t+ h > 0 and ψ ∈ Hs
per∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥2
r

= 2π

+∞∑
k=−∞

(1 + k2)re−2at

∣∣∣∣∣∣∣∣
e(ik

3−a)h − 1

h
− ik3 + a︸ ︷︷ ︸

M(h):=

∣∣∣∣∣∣∣∣
2 ∣∣∣ψ̂(k)∣∣∣2 . (6.1)

Using L’Hôpital’s rule we have M(h) → 0 when h→ 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.1). For this, we will
bound the k-th term of the series. First, for h > 0, from (3.6) we obtain∣∣∣∣∣e(ik

3−a)h − 1

h

∣∣∣∣∣ ≤ (k6 + a2)
1
2 ≤

√
max{1, a2}(k6 + 1)

1
2 . (6.2)

Using the inequality (6.2), we are going to bound |M(h)|2 in the following way:

|M(h)|2 ≤ 8max{1, a2}(1 + k2)3 . (6.3)
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For h < 0 such that 0 < t+ h, from (3.8) we have that there exists ξ ∈ (h, 0) such that∣∣∣∣∣e(ik
3−a)t − e(ik

3−a)(t+h)

h

∣∣∣∣∣ ≤ √
max{1, a2}(k6 + 1)

1
2 . (6.4)

Using the inequality (6.4), we are going to bound |M(h)|2 in the following way:

e−2at|M(h)|2 ≤ 4max{1, a2}(1 + k6) ≤ 8max{1, a2}(1 + k2)3 . (6.5)

Therefore, for h ∈ R− {0} and t+ h > 0,

e−2at|M(h)|2 ≤ 8max{1, a2}(1 + k2)3 . (6.6)

Thus, we bound the k-th term of the series, where we use inequality (6.6)

Jk,t,r := (1 + k2)re−2at|M(h)|2|ψ̂(k)|2

≤ 8max{1, a2}︸ ︷︷ ︸
Ca:=

|ψ̂(k)|2(1 + k2)r+3 .

On the other hand, we know that the series converges

2π

+∞∑
k=−∞

(1 + k2)s|ψ̂(k)|2 = ∥ψ∥2s <∞,

since ψ ∈ Hs
per.

Then, using continuous immersion in periodic Sobolev spaces, that is Hs
per ⊂ Hr+3

per for r ≤ s− 3, we
obtain

2π · Ca

+∞∑
k=−∞

(1 + k2)r+3|ψ̂(k)|2 = Ca∥ψ∥2r+3 ≤ Ca∥ψ∥2s <∞ , ∀r ≤ s− 3 .

Thus, using the Weierstrass M-Test, we have that the series (6.1) converges uniformly and consequently
it is possible to exchange limits and obtain∥∥∥∥u(t+ h)− u(t)

h
+ ∂3xu(t) + au(t)

∥∥∥∥2
r

→ 0,

when h→ 0. □
Theorem 6.2. Let s ∈ R and a > 0. If u is the solution of (P1) with initial data ψ ∈ Hs

per then for all
r ≤ s− 3 it holds

lim
h→0+

∥∥∥∥u(h)− ψ

h
+ ∂3xu(0) + au(0)

∥∥∥∥
r

= 0 .

This means that differentiability occurs in Hr
per, ∀r ≤ s− 3. That is, ∂t+u(0) = −∂3xu(0)− au(0) in

Hr
per, ∀r ≤ s− 3.

Proof: Let h > 0,∥∥∥∥u(h)− ψ

h
+ ∂3xu(0) + au(0)

∥∥∥∥2
r

= 2π

+∞∑
k=−∞

(1 + k2)r

∣∣∣∣∣∣∣∣
e(ik

3−a)h − 1

h
− ik3 + a︸ ︷︷ ︸

M(h):=

∣∣∣∣∣∣∣∣
2 ∣∣∣ψ̂(k)∣∣∣2 . (6.7)

Using L’Hôpital’s rule, we have M(h) → 0 when h→ 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.7). For this, we

will bound the k-th term of the series. Thus, using inequality (6.3) we obtain

Lk,r = (1 + k2)r|M(h)|2|ψ̂(k)|2 ≤ 8max{1, a2}(1 + k2)r+3|ψ̂(k)|2,
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On the other hand, we know that the series converges

2π

+∞∑
k=−∞

(1 + k2)s|ψ̂(k)|2 = ∥ψ∥2s <∞,

since ψ ∈ Hs
per.

Then, using continuous immersion in periodic Sobolev spaces, that is, Hs
per ⊂ Hr+3

per for r ≤ s − 3,
we obtain

16π·max{1, a2}
+∞∑

k=−∞

(1+k2)r+3|ψ̂(k)|2 = 8max{1, a2}∥ψ∥2r+3 ≤ 8max{1, a2}∥ψ∥2s <∞ , ∀r ≤ s−3 .

Thus, using the Weierstrass M-Test, we have that the series (6.7) converges uniformly and consequently
it is possible to exchange limits and obtain∥∥∥∥u(h)− u(0)

h
+ ∂3xu(0) + au(0)

∥∥∥∥2
r

−→ 0,

when h→ 0+. □
Theorem 6.3. Let s ∈ R, a > 0 and ψ ∈ Hs

per then the following statements are equivalent

1. There exists lim
h→0+

(
S(h)−I

h

)
ψ in

(
Hs

per, ∥ · ∥s
)
.

2. ψ ∈ Hs+3
per .

Proof: Suppose that item 1 holds, then A = −∂3x − aI is the infinitesimal generator of the contraction
semigroup {S(t)}t≥0. Thus, Aψ = −∂3xψ − aψ ∈ Hs

per, from which we obtain

(1 + i∂3x)ψ = ψ + i∂3xψ ∈ Hs
per . (6.8)

Applying the Fourier transform to (6.8) we have(
(1 + k3)ψ̂(k)

)
k∈Z

∈ l2s . (6.9)

Using that the | · |p p-norms, with p ∈ [1,∞], are equivalent in R2, we have |(1, k)|2 ≤
√
2|(1, k)|3,

∀k ∈ Z; then

|(1, k)|62 ≤ 8|(1, k)|63, ∀k ∈ Z .

That is,

(1 + k2)3 ≤ 8(1 + k3)2 , ∀k ∈ Z . (6.10)

Using (6.10) we get

∥ψ∥2s+3 = 2π

+∞∑
k=−∞

(1 + k2)s+3
∣∣∣ψ̂(k)∣∣∣2

= 2π

+∞∑
k=−∞

(1 + k2)s(1 + k2)3
∣∣∣ψ̂(k)∣∣∣2

≤ 16π

+∞∑
k=−∞

(1 + k2)s(1 + k3)2
∣∣∣ψ̂(k)∣∣∣2

= 16π

+∞∑
k=−∞

(1 + k2)s
∣∣∣(1 + k3)ψ̂(k)

∣∣∣2
= 8 · ∥(1 + i∂3x)ψ∥2s <∞ .

Then ψ ∈ Hs+3
per .

Reciprocally, if ψ ∈ Hs+3
per ,

∥∥∥∥S(h)ψ − ψ

h
+ ∂3xψ + aψ

∥∥∥∥2
s

= 2π

+∞∑
k=−∞

(1 + k2)s

∣∣∣∣∣∣∣∣
e(ik

3−a)h − 1

h
− ik3 + a︸ ︷︷ ︸

M(h)=

∣∣∣∣∣∣∣∣
2 ∣∣∣ψ̂(k)∣∣∣2 . (6.11)
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Using L’Hôpital’s rule we have M(h) → 0 when h→ 0.
To ensure the interchange of limits, we need the uniform convergence of the series (6.11). For this, we

will bound the k-th term of the series. Thus, using inequality (6.3) we obtain

Lk,s = (1 + k2)s |M(h)|2
∣∣∣ψ̂(k)∣∣∣2 ≤ 8max{1, a2}(1 + k2)s+3

∣∣∣ψ̂(k)∣∣∣2 .
On the other hand, we know that the series converges

2π

+∞∑
k=−∞

(1 + k2)s+3
∣∣∣ψ̂(k)∣∣∣2 = ∥ψ∥2s+3 <∞,

since ψ ∈ Hs+3
per .

Thus, using the Weierstrass M-Test, we have that the series (6.11) converges uniformly and consequently it
is possible to exchange limits and obtain∥∥∥∥S(h)ψ − ψ

h
+ ∂3xψ + aψ

∥∥∥∥2
s

−→ 0,

when h→ 0+. □

6.2. Differentiability analysis versus initial data of (PΣ). In this subsection, we will analyze the
solution of (PΣ).

Theorem 6.4. Let n be a natural number such that n− 1 is an even number not multiple of four, a > 0
and s ∈ R. If t > 0 and u is the solution of (PΣ) with initial data ψ ∈ Hs

per then for all r ≤ s− n it holds

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
+ ∂nxu(t) + au(t)

∥∥∥∥
r

= 0.

This means that differentiability occurs in Hr
per, ∀r ≤ s − n. That is, ∂tu(t) = −∂nxu(t) − au(t) in

Hr
per, ∀r ≤ s− n, ∀t > 0.

Proof: Its proof is analogous to the proof of Theorem 6.1. □
Theorem 6.5. Let n be a natural number such that n− 1 is an even number not multiple of four, a > 0

and s ∈ R. If u is the solution of (PΣ) with initial data ψ ∈ Hs
per then for all r ≤ s− n it holds

lim
h→0+

∥∥∥∥u(h)− ψ

h
+ ∂nxu(0) + au(0)

∥∥∥∥
r

= 0.

This means that differentiability occurs in Hr
per, ∀r ≤ s− n. That is, ∂t+u(0) = −∂nxu(0)− au(0) in

Hr
per, ∀r ≤ s− n.

Proof: Its proof is analogous to the proof of Theorem 6.2. □
Theorem 6.6. Let n be a natural number such that n−1 is an even number not multiple of four, a > 0,

s ∈ R, and ψ ∈ Hs
per then the following statements are equivalent

1. There exists lim
h→0+

(
T (h)−I

h

)
ψ in

(
Hs

per, ∥ · ∥s
)
.

2. ψ ∈ Hs+n
per .

Proof: Its proof is analogous to the proof of Theorem 6.3. □
Below we state some additional results that can be obtained.
Remark 6.1. Similar results to Theorems 6.4, 6.5 and 6.6 are obtained when n is a natural number

such that n− 1 is a number multiple of four.
Remark 6.2. Analogous results to Theorems 6.4, 6.5 and 6.6 are obtained when n is a number multiple

of four.

7. Conclusions. Based on Fourier theory, we rigorously demonstrated the existence and uniqueness of
solution to the (P1) model, along with the continuous dependence of the solution with respect to the initial
data. Subsequently, we introduced the semigroup theory to rewrite the solution of the (P1) problem using
this theory, rendering it much more fine. We used semigroups theory and got important results of existence
and approximation. We generalised the results for the n-th order equation when n is a natural number such
that n− 1 is an even number not multiple of four. And we have analyzed the other cases of n.

We also proved the dissipative property of (P1), which enabled us to deduce the continuous dependence
(with respect to the initial data) and uniqueness solution of (P1), without using the explicit form of the
solution. We obtained results analogous to Theorem 5.1, Corollary 5.1 and Corollary 5.2 for the n-th order
equation when n is a natural number such that n− 1 is multiple of four. Also, we gave some remarks about
the n-th order equation when n is a multiple of four. Finally, to deepen and enrich our study, we analized
the infinite-dimensional space in which differentiability occurs and its connection to the initial data.
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Funding. This research received no external funding

Conflicts of interest. The author declare no conflict of interest.

ORCID and License
Yolanda Silvia Santiago Ayala https://orcid.org/0000-0003-2516-0871

This work is licensed under the Creative Commons - Attribution 4.0 International (CC BY 4.0)

References
[1] Iorio Jr. RJ., Iorio V. de M, Fourier analysis and partial differential equation. Cambridge University; 2001.
[2] Santiago Y., Rojas, S. Uniqueness solution of the heat equation in Sobolev Periodic Spaces. Selecciones Matemáticas. 2020;
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