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Abstract

The concept of eigenvalues is associated with the linearity one, through the structure of vectorial
space. The multiplicative linear algebra is a structure in which an expression such as x3y2 can
be considered a linear combination of variables x and y. This article is reserved to show the cor-
responding analogues for an Eigenvalue Theory. We exemplify its applications by introducing a
connection with the analysis of a nonlinear dynamical system in the standard sense, although a
linear recurrence in the multiplicative one.
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Resumen

El concepto de valores propios está asociado al de linealidad, a través de la estructura del espa-
cio vectorial. El álgebra lineal multiplicativa es una estructura en la que una expresión como x3y2

puede ser considerada una combinación lineal de las variables x y y. Este artı́culo está destina-
do a mostrar los análogos correspondientes para una teorı́a de valores propios en este contexto.
Se ejemplifican sus aplicaciones mediante la introducción de una conexión con el análisis de un
sistema dinámico no lineal en el sentido estándar, aunque con una recurrencia lineal en el marco
multiplicativo.

Palabras clave. Concepto de linealidad, álgebra lineal multiplicativa, aplicaciones lineales multiplicati-
vas.

1. Introduction. The concept of linearity is not independent of the underlying arithmetic struc-
ture, where the expressions make sense. So, in the standard linearity algebraic term, ax + by is a
linear combination of the variables x and y with real parameters a and b. Here we observe the
concurrence of the addition operation and the multiplication,i.e., we have the action of the complete
ordered field (R,+, ·). However, an expression such as xayb could also be considered linear in an
appropriate arithmetic context. In fact, it is the case when we consider the complete ordered field
(R+, ·, ∗), where R+ is the set of positive real numbers, with the usual product as the first operation
and a type of exponentiation ∗ as the second. Specifically, in [1, 2] this numeric field is presented
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Córdova-Lepe F. et al.- Selecciones Matemáticas. 2025; Vol.12(1):142-154 143

in the framework of a non-Newtonian calculus construction, one of multiplicative type in the sense
that the respective derivative of a product of functions is the product of the derivative of the factors
[3]. This is an isomorphic calculus in relation to the standard one, but with some direct applications
[4] that justified its development [5, 6].

In [7], the concepts of m-vectorial space are introduced, m-linear transformations, and the ele-
ments of a respective m-matrix theory as its representations, where (R+, ·, ∗) is the base numerical
field. The idea of a matrix raised to a matrix is another interesting construction, with several applica-
tions appearing to have many potentialities. Nevertheless, the basic conceptual elements to introduce
a respective spectral theory, with its multiple applications, for example, in the qualitative analysis of
dynamic systems, are a debt.

In order to further explore m-linear transformations and advance the m-matrix theory for a wide
range of applications, we will introduce the concept of the pair of m-eigenvector and its correspond-
ing m-eigenvalue, and demonstrate its main properties. Moreover, we present specific examples of
its determinations and meanings. Although, behind our matrix multiplicative theory, there is the
action of an isomorphism with the classic matrices, to install a general operative view or perspec-
tive of the linearity concept, we think it necessary to show explicitly the involved objects and their
properties.

Intending to facilitate reading and understanding for the reader, it has generally been privileged
to work, particularly in the exemplifications, in dimension two, as well as to avoid back-to-detail
the most classic and well-known demonstrations of the standard linear algebra. In Section 1, we
review one by one the mathematical preliminaries necessary to propose and develop an introduction
to the theory of m-eigen-(vector, value). Section 2 is reserved to present the corresponding spectral
concepts. Finally, in Section 3, we explore some possibilities for applications, in particular to the
theory of dynamical systems. The article concludes with a discussion of this new perspective and its
projections.

2. Preliminaries concepts.

2.1. The field of real positives. Just as multiplication shares a conceptual relationship with
addition, by repetition (for example, adding three times two is multiplying three by two), we see that
raising to a power is related to multiplication. However, in contrast to the product, working with
exponentiation has the difficulty of not being a commutative operation. Despite that, the existing
difference between 23 and 32 could be avoided (not without paying a cost) if we introduce some
appropriate function, for example the natural logarithm function, so that 2ln(3) = 3ln(2). So, consid-
ering the domain of the natural logarithm function, the positive real numbers R+, we can consider
the triadic (R+, ·, ∗) where, to the multiplication operation, we add the commutative exponentiation
a ∗ b = aln(b). In this way, we obtain the positive real numbers as an isomorphic copy of the field of
the real numbers (R,+, ·).

Regarding this field of positive numbers, it is important to remember some notations and prop-
erties derived from axiomatic:

• Concerning the algebraic: The neutral element for the operation ∗ is the Euler number, e.
So, if a ∈ R+ and a ̸= 1, the associated inverse element of a will be denoted a≺−1≻ which
corresponds to e1/ ln(a). In fact, we have a ∗ a≺−1≻ = a1/ ln(a) = e. In general, given
a ∈ R+ and a ̸= 1, we denote a ∗ a ∗ · · · ∗ a (n times) and a≺−1≻ ∗ a≺−1≻ ∗ · · · ∗ a≺−1≻ by
a≺n≻ and a≺−n≻ respectively. Moreover, a≺0≻ will be another representation of e. Using
this notation, we have

a≺n≻ ∗ a≺m≻ = a≺n+m≻ and (a≺n≻)≺m≻ = a≺nm≻,

for all n, m ∈ Z.

• Concerning the order: If we consider R+ = P− ∪ {1} ∪ P+, with P− = (0, 1) and P+ =
(1,∞), then for a ∈ R+ there are three mutually exclusive possibilities: a ∈ P−, a = 1
or a ∈ P+. Moreover, a ∈ P+ if only if a−1 ∈ P−. In the set P+, both multiplication and
exponentiation are closed operations. With this, P+ is called the set of e-positives numbers.
A key function is the relative value of a number [a], which for a ∈ R+ is defined by a−1 if
a ∈ P− and a, if a ∈ P+∪{1}. Additionally, introducing the distance [a/b] in R+, we have
the positive real number set as a relative metric space.



144 Córdova-Lepe F. et al.- Selecciones Matemáticas. 2025; Vol.12(1):142-154

• Concerning completeness: Given a bounded subset A of R+ and ε > 1, there exists
a⊖, a⊕ ∈ A, such that a⊖ < ε · inf(A) and sup(A) /ε < a⊕. By A as a bounded
set, we understand the existence of p ∈ P+ such that 1/p < a < p for all a ∈ A.

Other properties can be found in references [1, 2].

2.2. Multiplicative vector spaces. Given a not empty set W , we use the field R+ to call a pair
(W, (R+, ·, ∗)) a m-vector space, if there are:

• A product in W , that to each pair (u, v) ∈ W × W associates some u · v ∈ W , which
implies that (W, ·) forms an Abelian group. The null element will be denoted 1⃗. Moreover,
given u ∈ W , the vector u−1 ∈ W is the associated inverse.

• A scalar product, that to each (a, v) ∈ R+ ×W corresponds a ∗ v ∈ W , such that we have:

(a) Compatibility of scalar product ∗ with the commutative exponentiation in the field: For
scalars α, β ∈ R+ and a vector v ∈ W , it is satisfied

(α ∗ β) ∗ v = α ∗ (β ∗ v).

(b) Distributivity of scalar product ∗ regarding vector · product: For a scalar α ∈ R+ and
vectors v and w in W , we have

α ∗ (v · w) = (α ∗ v) · (α ∗ w).

(c) Distributivity of vector multiplication · regarding scalar product ∗: For scalars α, β ∈
R+, and a vector v ∈ W , we have

(α · β) ∗ v = (α ∗ v) · (β ∗ v).

(d) Regularity in the sense that e ∗ v = v, for each v ∈ W .

2.3. Multiplicative Euclidean space. An example of multiplicative vector space, that has the
obvious extension to higher dimensions, is the multiplicative Euclidean space R2

+ := R+ × R+

defined by the operations:

(x1, y1) · (x2, y2) = (x1x2, y1y2), and

a ∗ (x1, y1) = (a ∗ x1, a ∗ y1) = (x
ln(a)
1 , y

ln(a)
1 ),

for any (x1, y1), (x2, y2) ∈ R2
+ and a ∈ R+.

Regarding the idea of what we are going to understand by a m-linear combination, let us note
that

(x, y) = (x ∗ ê1) · (y ∗ ê2),

where ê1 = (e, 1) and ê2 = (1, e), which are denominated the m-canonical vectors, that form the
B = {ê1, ê2} an m-base, the canonical one. In Figure 2.1, the canonical vectors êi, i ∈ {1, 2},
defining the coordinate axes, are represented, which intersect in the neutral element 1⃗ := (1, 1) of
the product.
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Figure 2.1: Representation of the canonical m-base, B = {ê1, ê2}. In addition, we highlight three
elements of the vector space ⟨(2, 3/2)⟩. Note the convenience of considering the coordinate axes,
which are ⟨ê1⟩ and ⟨ê2⟩, intersecting at the proper origin (1, 1).

It is well known that in the standard Euclidean space R2 := R × R the addition of vectors has
a geometric interpretation through the parallelogram rule, that is, if two vectors u and v are located
having the same initial point at the center of coordinates (0, 0), and by parallel translation of them a
parallelogram is completed, then u + v can be represented by the diagonal arrow that begins at the
point of origin (0, 0) and ends at its opposite vertex. Parallelism has to do with the notion of parallel
straight lines. In this sense, first, let us agree that a m-straight line in R2

+ through the origin (1, 1) is
given by a vector ω = (a, b), a, b > 0, and all points (x, y) ∈ R× R such that x ∗ ω, with x ∈ R+.
The equation for this m-straight-line is

L : y = {b ∗ a≺−1≻} ∗ x = xln(b)/ ln(a), x ∈ R+.

The term b ∗ a≺−1≻ corresponds to the m-slope. Associated with L we have the straight line

L′ : y/y0 = {b ∗ a≺−1≻} ∗ (x/x0) = (x/x0)
ln(b)/ ln(a), x ∈ R+,

which is the m-affine-straight-line that passes through the point (x0, y0). Notice that if (x0, y0) /∈ L,
then L ∩ L′ = ∅.

Consequently, if u = (5/2, 2) and v = (2, 5/2), we can associate the m-lines

L1 : y = {2 ∗ (5/2)−1} ∗ x L′
1 : y/2 = {2 ∗ (5/2)−1} ∗ (x/(5/2))

and

L2 : y = {(5/2) ∗ 2−1} ∗ x L′
2 : y/(5/2) = {(5/2) ∗ 2−1} ∗ (x/2).

We affirm that: Li ∥ L′
i , i ∈ {1, 2}, in the sense that Li ∩ L′

i = ∅. Then, we observe L′
1 ∩ L′

2 =
{(5, 5)}, and (5, 5) = u · v = (5/2, 2) · (2, 5/2), which gives us the geometric interpretation of the
product in R2

+ as the diagonal of a multiplicative parallelogram, as illustrated by Figure 2.2.
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Figure 2.2: Representation of vectors u = (5/2, 2) and v = (2, 5/2) defining m-straight-lines L1

and L2 respectively. We have the m-affine-straight-lines L′
1 and L′

2 as its respective parallels. They
form a parallelogram whose diagonal in a dotted line represents the product u · v.

2.4. Matrices as a multiplicative algebra. Another example of m-vector space is the set of
matrices Mn×m(R+), i.e., with positive inputs and the following products operations:

• Given A,B ∈ Mn×m(R+), with A = (aij) y B = (bij), we have C = A ⊙ B = (cij),
defined by cij = aijbij . For its inverse operation, we denote D = A c B = (dij), where
dij = aij/bij .

• Given A ∈ Mn×m(R+), with A = (aij) and a ∈ R+, we have C = a ∗A = (cij), defined
by cij = a ∗ aij .

We note that matrices also form an algebra considering the following operation:

Definition 2.1 (∗ operation). Given A ∈ Mn×p(R+) and B ∈ Mp×m(R+), A = (aij) y
B = (bij), let us define

A ∗B = (cij) ∈ Mn×m(R+) where cij = Πp
l=1(ail ∗ blj).

This is called the ∗-product and follows the same idea as the usual product, where a row of the
first matrix is operated term by term with a column of the second matrix. It is associative, distributive
regarding the standard product of the matrices, and has neutral elements given by any square matrix
E = eI , where I is the usual identity matrix. This is, if E = (eij), then eij = 1 if i ̸= j and eij = e
if i = j. Notice that for a square matrix A ∈ Mn×n(R+), we will denote A≺k≻ the ∗-product
A ∗A ∗ · · · ∗A with k factors.

This product of matrices is associative, that is, for any trio of matrices A, B, and C, with
compatible dimensions for the ∗ products, satisfy (A ∗B) ∗ C = A ∗ (B ∗ C). Moreover, we have
the following distributive property

A ∗ (B ⊙ C) = (A ∗B)⊙ (A ∗ C) and (A⊙B) ∗ C = (A ∗B)⊙ (B ∗ C).

Moreover, the new product satisfies a bilinearity property or m-bilinearity, in the sense that:

{(α ∗A)⊙ (β ∗B)} ∗ C = {α ∗ (A ∗ C)} ⊙ {β ∗ (B ∗ C)}

and
A ∗ {(α ∗B)⊙ (β ∗ C)} = {α ∗ (A ∗B)} ⊙ {β ∗ (A ∗ C)}.
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2.5. Multiplicative linear transformations. Let be two m-vector spaces W1 and W2, we say
that a function T : W1 → W2 is a m-linear transformation (or m-linear map) if and only if

T ((α ∗ u) · (β ∗ v)) = (α ∗ T (u)) · (β ∗ T (v)),

for any u, v ∈ W1 and α, β ∈ R+.

Example 2.1. Consider f : R+ → R+ with f(x) =
√
x. It is a m-linear transformation from

the m-space W1 = R+ to itself. In fact,

f((α ∗ u) · (β ∗ v)) = f(uln(α)vln(β))

=
√
uln(α)vln(β)

=
√
uln(α) ·

√
vln(β)

= (α ∗ f(u)) · (β ∗ f(v)).

Example 2.2. Note that g : R+ × R+ → R+ with g(x, y) = x3y2 is a linear transformation
between the m-space W1 = R+ × R+ and W2 = R+ as m-Euclidean space of two and one
dimension, respectively. Indeed,

g((α ∗ (x1, y1)) · (β ∗ (x2, y2))) = g(x
ln(α)
1 x

ln(β)
2 , y

ln(α)
1 y

ln(β)
2 )

= x
3 ln(α)
1 x

3 ln(β)
2 y

2 ln(α)
1 y

2 ln(β)
2

= (x3
1y

2
1)

ln(α) · (x3
2y

2
2)

ln(β)

= (α ∗ (x3
1y

2
1), β ∗ (x3

2y
2
2))

= (α ∗ g(x1, y1)) · (β ∗ g(x2, y2)).

3. The eigen-concepts. In this section, we present the definitions, results, and corresponding
proofs related to the extension of eigen-concepts.

Definition 3.1 (m-Eigenvector). Given T : W → W a m-linear transformation. We say that
w ∈ W , w ̸= 1⃗, is an m-eigenvector if T (w) = a ∗ w, for some a ∈ R+.

Definition 3.2 (m-Eigenvalue). In Definition 3.1 the parameter a such that T (w) = a ∗ w is
called an m-eigenvalue.

Definition 3.3 (m-Eigenspace). Given an m-eigenvalue of a m-linear transformation T : W →
W , the set Wa = {v ∈ W : T (v) = a ∗ v}, is called the m-eigenspace.

Importantly, Wa is a vector subspace of W since given u, v ∈ Wa and α, β ∈ R+, then

T ((α ∗ u) · (β ∗ v)) = (α ∗ T (u)) · (β ∗ T (v)) = (α ∗ (a ∗ u)) · (β ∗ (a ∗ v))
= ((α ∗ a) ∗ u) · ((β ∗ a) ∗ v) = a ∗ [(α ∗ u) · (β ∗ v)],

so that, we have (α ∗ u) · (β ∗ v) ∈ W . Therefore, Wa is a subspace of W .

Definition 3.4 (m-Exponencial function). For a matrix A = (aij) ∈ Mn×m(R), we define

expm(A) := (eaij ),

it is called the m-exponential of A.

Definition 3.5 (m-Logarithm function). For a matrix A = (aij) ∈ Mn×m(R+), we define

lnm(B) := (ln(bij)),

it is called the m-logarithm of A. From this definition, it follows that expm(I) = E, lnm(E) = I ,

expm(A+B) = expm(A)⊙ expm(B), expm(A−B) = expm(A) c expm(B), lnm(A⊙B) =
lnm(A) + lnm(B) and lnm(A c B) = lnm(A)− lnm(B), for A and B matrices in the domain and
with sizes where operations and functions are defined.

Theorem 3.1. Given matrices A = (aij) ∈ Mn×p(K) and B = (bij) ∈ Mp×m(K), where K is
R or R+, according to the necessary domain, we have:
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(a) expm(A · B) = expm(A) ∗ expm(B) and expm(A
−1) = exp≺−1≻

m (A) if the inverse A−1

exists.

(b) lnm(A ∗B) = lnm(A) · lnm(B) and lnm(A
≺−1≻) = ln−1

m (A) if the inverse A≺−1≻ exists.

Proof: a

(a) Notice that the isomorphism exp : (R,+, ·) → (R+, ·, ∗), satisfies

exp(a · b) = {exp(a)}b = (ea)ln(e
b) = ea ∗ eb.

So, with which, if C = (cij) = A ·B, then:

exp(cij) = exp

(
p∑

k=1

aik · bkj

)
=

p∏
k=1

exp(aik · bkj) =
p∏

k=1

{exp(aik) ∗ exp(bkj)}.

In this way, we get

expm(C) = (exp(cij)) = (exp(aij)) ∗ (exp(bij)) = expm(A) ∗ expm(B).

(b) Let us remember that isomorphism ln : (R+, ·, ∗) → (R,+, ·), satisfies

ln(a ∗ b) = ln(aln(b)) = ln(a) · ln(b),

with which, if C = (cij) = A ∗B, then:

ln(cij) = ln

(
p∏

k=1

aik ∗ bkj

)
=

p∑
k=1

ln(aik ∗ bkj) =
p∑

k=1

{ln(aik) · ln(bkj)}.

Thus, we have lnm(C) = (ln(cij)) = (ln(aij)) · (ln(bij)) = lnm(A) · lnm(B).

□

Its properties are natural extensions of the properties of exponential and logarithmic functions,
exp : R → R+ and ln : R+ → R, respectively.

Definition 3.6 (m-Determinant). Given A ∈ Mn×n(R+) and considering the standard in-
variant det : Mn×n(R) → R determinant, we define the m-determinant of a positive matrix A,
by:

detm(A) := exp(det(lnm(A))).

Let us consider the following function Mn×n(R+) itself related to elementary operations. We
denote by Eij(·) the operation that exchanges the row i with row j. The function that ∗-multiply the
i-th matrix row by a positive number α, will be denoted Fα

i . We will denote by Rα
ji the operation

that multiply j ∗-multiplied by α to row i.

Theorem 3.2. Let us consider matrices A, B ∈ Mn×n(R+), then function detm(·) has the
following properties:

(a) Rows/columns m-linearity: If C = (cij) is such that cij = aij = bij for all j and i ̸= k,
some k ∈ {1, . . . , n}, then

detm(C) = {α ∗ detm(A)} · {β ∗ detm(B)},

if ckj = (α ∗ akj) · (β ∗ bkj), for all j ∈ {1, . . . , n}.

(b) Permutation of rows / columns: IfB = Fij(A), some par i, j ∈ {1, . . . , n}, then detm(B) =
1/detm(A).

(c) Row/column ∗-amplified by a scalar: IfB = Fα
i (A), some i ∈ {1, . . . , n}, then detm(B) =

α ∗ detm(A).

(d) m-triangular-matrix: If A = (aij) such that aij = 1, for any pair (i, j) with j > i (i.e., a
m-triangular matrix), then detm(A) = a11 ∗ · · · ∗ ann. In particular, detm(E) = e.

(e) The ∗-product of matrices: detm(A ∗ B) = detm(A) ∗ detm(B). In particular, since
A ∗A≺−1≻ = E, we have detm(A≺−1≻) = (detm(A))≺−1≻.
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(f) Transposed matrix: detm(A⊤) = detm(A).

(g) Matrix with identical rows/columns: If A = (aij) is such that aij = akj , for all j and some
pair i, k, then detm(A) = 1.

(h) Matrix with unitary row/column: If A = (aij) is such that akj = 1, for some k ∈ {1, . . . , n}
and all j, then detm(A) = 1.

Proof: As an illustration, we will only demonstrate some items, since the rest is very similar to
the standard case.

(a) Notice that k-th row of lnm(C) is given by elements ln(ckj) = ln(α) · ln(akj) + ln(β) ·
ln(bkj). Considering all other inputs of lnm(A) and lnm(B) are equal, we have det(lnm(C)) =
ln(α) · det(lnm(A)) + ln(β) · det(lnm(B)). Thus, the proof is achieved by applying the
exponential function.

(b) Since the row i and j of lnm(Fij(A)) are the permutations of lnm(A), we have that
det(lnm(Fij(A))) = −det(lnm(A)) and when applying the exponential function, the re-
quired equality immediately follows.

(e) Notice that detm(A ∗ B) = exp(det(lnm(A ∗ B))) = exp(det(lnm(A) · lnm(B))) =
exp(det(lnm(A)) · det(lnm(B))). Since exp(a · b) = exp(a) ∗ exp(b), for all a, b ∈ R,
the proof ends.

□

Definition 3.7 (m-Trace). Given A ∈ Mn×n(R+) and considering the standard invariant

det, Tr : Mn×n(R) → R,
the standard trace, we define the m-trace of a positive matrix A, by:

Trm(A) := exp(Tr(lnm(A))).

Notice that, if A = (aij) then Trm(A) := exp(Tr(lnm((aij)))), which is exp(Tr(ln(aij))).
So,

Trm(A) = exp(
n∑

i=1

ln(aii)) =
n∏

i=1

aii

is obtained.

Theorem 3.3. Let us consider matrices A, B ∈ Mn×n(R+), then function Trm(·) has the
following properties:

(a) The m-linearity: For any pair α and β in R+, it is satisfy
Trm({α ∗A} ⊙ {β ∗B}) = {α ∗ Trm(A)} · {β ∗ Trm(B)}.

(b) Invariance under transposition: Trm(A⊤) = Trm(A).

(c) Invariance under change of basis: If B = P≺−1≻ ∗A ∗ P , then Trm(B) = Trm(A).

(d) The ∗-product of matrices: Trm(A ∗B) = Trm(B ∗A).

(e) The ⊙-product of matrices: Trm(A⊙B) = Trm(A) · Trm(B).

Proof: As an illustration, we will only demonstrate some items, since the rest is very similar to
the standard case.

(a) If A = (aij) and B = (bij), then C = (α ∗ A)⊙ (β ∗ B) = ((α ∗ aij) · (β ∗ bij)). Thus,
lnm(C) = (ln(α ∗ aij) + ln(β ∗ bij)) and

Tr(lnm(C)) =
n∑

k=1

{ln(α ∗ aii) + ln(β ∗ bii)},

ln(α)
n∑

k=1

ln(aii) + ln(β)
n∑

k=1

ln(bii) = ln(α)Tr(lnm(A)) + ln(β)Tr(lnm(B)).

Therefore,
exp(Tr(lnm(C))) = exp(ln(α)Tr(lnm(A))) · exp(ln(β)Tr(lnm(B))).

Since exp(ln(a) · ln(b)) = a ∗ b, finally

Trm(C) = {α ∗ Trm(A)) · {β ∗ Trm(B)}.



150 Córdova-Lepe F. et al.- Selecciones Matemáticas. 2025; Vol.12(1):142-154

(d) We need to prove that

Tr(lnm((
n∏

l=1

ail ∗ blj))) = Tr(lnm((
n∏

l=1

bil ∗ alj))).

This is,

Tr((
n∑

l=1

ln{ail ∗ blj})) = Tr((
n∑

l=1

ln{bil ∗ alj})).

Then
n∑

i=1

n∑
l=1

ln{ail ∗ bli} =
n∑

i=1

n∑
l=1

ln{ail} · ln{bli}

has to be equal to
n∑

i=1

n∑
l=1

ln{bil ∗ ali} =
n∑

i=1

n∑
l=1

ln{bil} · ln{ali},

which is clear.

(e) Notice that Tr(lnm(A⊙B)) = Tr((ln(aijbij))) = Tr((ln(aij))+ (ln(bij))). It is equal to

Tr((ln(aij))) + Tr((ln(bij))) = Tr(lnm(A)) + Tr(lnm(B)).

Thus, all that remains is to apply the exponential function.

□

Definition 3.8 (m-Characteristic polynomial). Given A ∈ Mn×n(R+) the characteristic poly-
nomial pA(λ) of A is defined by

pA(λ) := detm(A c (λ ∗ E)).

Since lnm(Ac(λ∗E)) = lnm(A)−lnm(λ∗E) = lnm(A)−ln(λ)·I , we have det(lnm(A/(λ∗
E))) = det(lnm(A)− ln(λ) · I). Then, it is equal to q

B
(ln(λ)), where q

B
(x) is the characteristic

polynomial of the matrix B := lnm(A). Finally,

p(λ) = exp(q
ln(A)

(ln(λ))).

Definition 3.9. Two matrices A and B in Mn×n(R+) are m-similar if there exists a matrix
m-invertible P such that B = P≺−1≻ ∗A ∗ P .

This similarity relation implies that A and B represent the same m-linear transformation, but on
a basis different. Two m-similar matrices have the same eigenvalues. In fact, if a is an eigenvalue
of A, then there exists w such that A ∗ w = a ∗ w. Therefore, (P ∗ B ∗ P≺−1≻) ∗ w = a ∗ w,
and B ∗ (P≺−1≻ ∗ w) = a ∗ (P≺−1≻ ∗ w) is obtained. So, a is an eigenvalue of B. Similarly, an
eigenvalue of B is the eigenvalue of A.

Moreover, detm(P≺−1≻∗A∗P ) = detm(P≺−1≻)∗detm(A)∗detm(P ). Since, detm(P≺−1≻) =
(detm(P ))≺−1≻, we have detm(B) = detm(A). In addition, by (c) of Theorem 3, we have
Trm(B) = Trm(A).

4. The 2× 2 matrices. If A = (aij) ∈ M2×2(R+), then we have the m-linear transformation
TA : R2

+ → R2
+, given by

TA(y, y) =

(
a11 a12

a21 a22

)
∗
(

x

y

)
=

(
(a11 ∗ x) · (a12 ∗ y)
(a21 ∗ x) · (a22 ∗ y)

)
=

(
xln(a11) yln(a12)

xln(a21) yln(a22)

)
.

Then, the m-linear map T : R2
+ → R2

+, defined by the formula

T (x, y) = (x2y3, x3y2) = (xln(e2)yln(e3), xln(e3)yln(e2))

is a Texpm(B) m-linear transformation with

B =

(
2 3

3 2

)
.
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Finding an eigenvector w = (x, y) of TA associated with an eigenvalue of λ implies the relation
TA(w) = λ ∗ w, this is,(

xln(a11) yln(a12)

xln(a21) yln(a22)

)
= λ ∗

(
x

y

)
=

(
xln(λ)

yln(λ)

)
,

expression that can be rewritten as the following system{
xln(a11)−ln(λ)yln(a12) = 1,

xln(a21)yln(a22)−ln(λ) = 1.

When we apply the natural logarithm function on both sides of the equalities, assuming the
change of variables u = ln(x) and v = ln(y), we get{

ln(a11/λ)u+ ln(a12)v = 0

ln(a21)u+ ln(a22/λ) v = 0,

a system that supports the matrix expression given by

lnm

(
a11/λ a12

a21 a22/λ

)(
u

v

)
=

(
ln(a11/λ) ln(a12)

ln(a21) ln(a22/λ)

)(
u

v

)
=

(
0

0

)
,

and equivalent to {lnm(A c (λ ∗E))}(u, v)⊤ = (0, 0). Then, to have non-null solutions (u, v), we
need

det{lnm(A c (λ ∗ E))} = 0, i.e., pA(λ) = detm{(A c (λ ∗ E))} = 1,

so that

pA(λ) = (
a11

λ
∗ a22

λ
)/(a12 ∗ a21), detm(A) = pA(1) and Tm(A) = a11 · a22

are obtained. Importantly, the condition pA(λ) = 1, implies

(a11 · λ−1) ∗ (a22 · λ−1) = a12 ∗ a21,

a condition that can be written

λ≺2≻ · (Trm(A) ∗ λ−1) · detm(A) = 1,

an equivalent expression to
{λ−1 · Trm(A)}≺2≻ = ∆,

with ∆ =
√

Trm(A)
≺2≻

/detm(A) = (Trm(A)≺2≻)1/4/detm(A). Since a≺2≻ ≥ 1, for any a ∈
R+, a condition for the existence of λ ∈ R+ is ∆ ≥ 1, i.e.,

Trm(A)≺2≻ ≥ det4m(A).

Notice that for the Texp(B) map, we have

pexp(B)(λ) = (e2λ−1 ∗ e2λ−1)/(e3 ∗ e3) = 1,

that implies e2λ−1 ∗ e2λ−1 = e3 ∗ e3, i.e., (e2/λ)≺2≻ = (e3)≺2≻. Since ln(a≺2≻) = ln2(a), we
get |2 − ln(λ)| = 3. With z = ln(λ), it can be expressed as z2 − 4z − 5 = (z − 5)(z + 1) = 0,
which is the standard characteristic polynomial of the matrix B. So, the roots of the polynomial are
the eigenvalues of B, these are z1 = +5 and z2 = −1. Then, we have the pair of m-eigenvalues
λ1 = e+5 and λ2 = e−1.

Taking λ1 = e+5, the system for have (u, v) is:

[2− ln(a1)]u+ 3v = −3u+ 3v = −3(u− v) = 0.

That determines the subspace: W (e5) generated by the vector (u, v) = (1, 1), this is, the m-
eigenvector w1 = (e, e). Now, with λ2 = e−1, the system for have (u, v) is: 3u+3v = 3(u+v) = 0.
That determines the vector (u, v) = (1,−1), then the m-eigenvector w2 = (e, e−1). Indeed,

T (e, e) = (e2e3, e3e2) = (e5, e5) = (e5 ∗ e, e5 ∗ e) = e5 ∗ (e, e),
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and
T (e, e−1) = (e2e−3, e3e−2) = (e−1, e+1) = e−1 ∗ (e, e−1)

are obtained.

Looking for α and β such that (x, y) = [α ∗ (e, e)] · [β ∗ (e, e−1)] = (αβ, α/β), we get the
decomposition

(x, y) = [
√
xy ∗ (e, e)] · [

√
y/x ∗ (e, e−1)].

Using the linearity, we recuperate the transformation formula by:

T (x, y) = [
√
xy ∗ T (e, e)] · [

√
y/x ∗ T (e, e−1)]

= [
√
xy ∗ e5 ∗ (e, e)] · [

√
y/x ∗ e−1 ∗ (e, e−1)]

= [(x5/2y5/2) ∗ (e, e)] · [x1/2y−1/2) ∗ (e, e−1)]

= [(x5/2y5/2, x5/2y5/2)] · [x1/2y−1/2, x−1/2y1/2)]

= (x6/2y4/2, x4/2y6/2)

= (x3y2, x2y3).

Now regarding the diagonalization, let’us note that

exp(B) ∗ (w1|w2) =

(
e2 e3

e3 e2

)
∗
(

e e

e e−1

)
=

(
e5 e−1

e5 e+1

)
and

(w1|w2) ∗ diagm(λ1, λ2) =

(
e e

e e−1

)
∗
(

e5 1

1 e−1

)
=

(
e5 e−1

e5 e+1

)
.

Then exp(B) ∗ (w1|w2) = (w1|w2) ∗ diagm(λ1, λ2). Thus

(w1|w2)
≺−1≻ ∗ exp(B) ∗ (w1|w2) = diagm(λ1, λ2).

5. A non-linear but m-linear dynamical system. Let us consider the non-linear discrete dy-
namical system with state space R2

+ and transition function defined by:{
xk+1 = xα

k y
β
k

yk+1 = xγ
k y

δ
k,

(5.1)

where α, β, γ, and δ are real numbers. We know that for mediation of the logarithm function,
it can be seen and studied as a standard linear system. Nevertheless, (5.1) is a linear system in a
multiplicative sense (m -linear) because it is defined by the m-liner map:

T (x, y) = (xα yβ, xγ yδ).

As m-linear system, (5.1) admits the following matrix representation:(
xk+1

yk+1

)
= exp(A) ∗

(
xk

yk

)
with A =

(
α β

γ δ

)
.

In order, from an initial condition (x0, y0)
⊤, to get its positive orbit

Θ((x0, y0)
⊤) = {(xk, yk)

⊤ : k ≥ 0},

we define
Φ(k, v⊤) = exp(A)≺k≻ ∗ v⊤,

where v ∈ R2
+, which satisfies the flux property:

Φ(k1 + k0, v
⊤) = Φ(k1,Φ(k0, v

⊤)), for all k1, k0 ≥ 0.

Then, returning to system (5.1) the positive orbit of an initial state (x0, y0)
⊤ is

Θ((x0, y0)
⊤) = {Φ(k, (x0, y0)

⊤) : k ≥ 0} = {exp(A)≺k≻ ∗ (x0, y0)
⊤ : k ≥ 0}.
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Equilibria:. It is clear that (1, 1) is always a fixed point. Now if there exists another (x, y) ̸=
(1, 1), it is clear that the matrix exp(A) must have the number one as an m-eigenvalue and W (1, 1),
the set of respective m-eigenvectors, as the set of all fixed points. Now, if (x, y)⊤ ̸= (1, 1) is a
fixed point, then exp(A) ∗ (x, y)⊤ = (x, y)⊤. This is, (exp(A) c E) ∗ (x, y)⊤ = (1, 1). So, we
have the condition detm(exp(A) c E) = 1, which is equivalent to eα−1 ∗ eδ−1 = eβ ∗ eγ , i.e.,
(α− 1)(δ − 1) = βγ. Therefore, det(A) = 0.

Periodic orbits:. Since detm(B ∗ C) = detm(B) ∗ detm(C). We have, that the condition for
the existence of a n-periodic orbit exp(A)≺n≻) ∗ (x, y)⊤ = (x, y)⊤, implying {exp(A)≺n≻ cE} ∗
(x, y)⊤ = 1, in terms of the determinant is detm(exp(A)n) c E) = detm(exp(An) c E) = 1,
Therefore, det(An) = detn(A) = 0, i.e., det(A) = 0.

Now, if we take lnm(·) to both sides of the original system (xk+1, yk+1)
⊤ = exp(A)∗(xk, yk)

⊤,
we get (uk+1, vk+1)

⊤ = A·(uk, vk)
⊤. Thus, they are equivalent because (in the sense that) the orbits

are bijectively related.

We note that delving into the dynamics in terms of m-eigenvalues and characterization of pe-
riodic orbits (e.g., with rotation matrices) involves introducing us to the field of complex numbers.
In this regard, it only remains to say that these efforts are outside the objectives of this article. We
only give here the required number field structure: C+ := {u · (v ∗ κ) : u, v ∈ R+}, where an
element u1 · (v1 ∗ κ) is equal to the other u2 · (v2 ∗ κ) if u1 = u2 and v1 = v2. Now, introducing
in C+ the operations (i) Product standard: {a · (b ∗ κ)} · {c · (d ∗ κ)} = (ac) · {(bd) ∗ κ} and (ii)
Exponentiation: {a · (b ∗ κ)} ∗ {c · (d ∗ κ)} = {(a ∗ c)/(b ∗ d)} · {(a ∗ d)(b ∗ c)} ∗ κ, we have that
(C+, ·, ∗) is a field, where κ≺2≻ = 1/e.

6. Conclusion. Just as the isomorphism between the bodies (R,+, ·) and (R+, ·, ∗) implies the
existence of isomorphic calculi, e.g., the one existing between the Newtonian calculus and multi-
plicative calculus, this also implies an extension of the isomorphy to the realm of linear algebras.
This is the case, which we have tried to highlight, between the matrices with real entries and those
with positive entries (isomorphic algebras), and some of their spectral concepts.

Just to let you know, from a purely abstract perspective, the novelty of what was presented could
be considered by citing only a nominal exercise. However, in contrast, we must note that the gain is
that isomorphic structures are not a reality parallel to the standard one but rather they are inside it and
contain it. We mean that the real matrices and their linear structures contain the matrices of positive
entries with the presented structure, and so on. Defining a cascade of isomorphic structures within
each other. Thus, before each true proposition of the theory, there are infinite true propositions
(of similar architectures) within the same theory. For example, it is enough to remember that the
geometric mean in real numbers, between positive numbers, is the equivalent, or the isomorphic
image, of the arithmetic mean [8, 9]. However, we cannot deny that proper understanding of the
geometric mean is a technical necessity and we would not be willing to go back and forth through
isomorphism every time we want to calculate it.
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