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Abstract

We present algorithms for computing the differential geometry properties of tangential intersection curves
of two surfaces in the three-dimensional Lorentz-Minkowski space E3. We compute the tangent vector of
tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike,
or lightlike. The first method computed the tangent vector using the equality of the projection of the second
derivative vector onto the normal vector and second method computes the tangent vector by applying a
rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the
surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike,
lightlike, or timelike.

Keywords . Euler Rodrigues formula, Tangential Intersection, Lorentz Minkowski space, Surface-surface inter-
section.

Resumen

Presentamos algoritmos para calcular las propiedades de la geometria diferencial de las curvas de inter-
seccion tangencial de dos superficies en el espacio de Lorentz-Minkowski tridimensional E3. Calculamos el
vector tangente de las curvas de interseccion tangencial de dos superficies paramétricas, donde las super-
ficies pueden ser: espaciales (spacelike), temporales (timelike) o isotrépicas (lightlike). El primer método
calcula el vector tangente utilizando la igualdad de la proyeccion del vector derivada segunda sobre el vec-
tor normal. El segundo método calcula el vector tangente aplicando una rotacion a un vector proyectado
sobre el espacio tangente, donde el eje de rotacion es el vector normal de la superficie. En el espacio de
Minkowski, existen tres tipos de rotaciones, ya que los vectores normales pueden ser: espaciales, isotrdpi-
cos o temporales.

Palabras clave. Férmula Euler Rodrigues; Intersecciéon Tangencial; Espacio Lorentz Minkowski; Interseccién
Superficie-superficie.

1. Introduction. Rotation matrices are very important matrices especially for computer sciences. For
this reason, the generation of a rotation matrix becomes one of the most important problems for mathe-
maticians. In differential geometry and mechanics, Euler-Rodrigues formula is a quite useful formula to
generate the rotation matrix for a given rotation angle € around a given rotation axis in Euclidean 3-space.
If we take the skew-symmetric matrix as
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—Wy Wy 0

where w = (w5, Wy, w;) i8 a unit vector, then we get the Rodrigues formula
R =1T1+sin(0)W + (1 — cos(0))W?

In Minkowski 3-space, the rotation axis can be spacelike, timelike, or lightlike. Consequently, the
Euler—Rodrigues formula in Minkowski 3-space varies depending on the nature of the rotation axis. The
Rodrigues rotation formulas in Minkowski 3-space are provided in [1, 2]. Rotation matrices in Minkowski
3-space are generated using unit timelike split quaternions, as shown in [3]. The Rodrigues equation for
rotations with a spacelike rotation axis is presented in [4]. Geometric and algebraic interpretations of the
Euler—Rodrigues formula in Minkowski 3-space, as well as the derivation of the formula for spacelike,
timelike, and lightlike axes, are discussed in [5].

If the Lorentz metric (inner product) of signature (+, 4, —), then the semi-skew-symmetric matrix

where w = (w,, wy, w,) is rotation axis, then we get the Euler-Rodrigues formula

If wis unit spacelike vector, we have Rg,(0,w) = I3 + sinh(0)W + (=1 + cosh(8))W?

If w is unit timelike vector, we have — Rym(0,w) = I3 + sin(0)W + (1 — cos(0))W?

92
I1f wis lightlike vector,we have Rig(0,w)=I3+60 W + 5 w2,

The Rodrigues’ rotation formula was introduced into the surface intersection problem by Bahar and
Mustafa in [6]. In that paper, the authors proposed new approaches for analyzing both tangential and
transversal intersections of two surfaces in Euclidean 3-space using Rodrigues’ rotation formula. In [7, 8],
the authors employed Rodrigues’ rotation formula to derive the geometric properties of the transversal
intersection curve of two regular parametric and implicit surfaces in R3, including the computation of
geodesic curvature and geodesic torsion.

The surface—surface intersection (SSI), is a fundamental problem in computational geometry and ge-
ometric modeling of complex shapes. For general parametric surface intersections, the most commonly
used methods include subdivision and marching. Marching-based algorithms begin by finding a starting
point on a intersection curve, and proceed to march along the curve. The marching method which yields
linear approximation of the intersection curve is used to generate the sequences of exact points of the inter-
section curve in a direction obtained by the local differential geometry. To compute the intersection curve
with precision, we need higher-order approximation, i.e. higher-order derivative vectors of the intersection
curve.

We can find the geometric properties of parametric curves in the classical literature on differential
geometry in Euclidean space E3 [9, 10, 11, 12, 13] and in the contemporary literature on geometric mod-
eling [14, 15, 16, 17]. There is a textbook with a systematic study of curves and surfaces in Lorentz-
Minkowski space such as it occurs in the Euclidean space, in the books [18]. Some of the topics of this
paper can be found in some books [19, 20, 21] and thesis in Minkowski space [22] and papers [23, 24, 25,
26,27, 28,29, 30]. A general reference including many topics in semi-Riemannian geometry is the classical
book [21].

Differential geometry of intersection curves of (n — 1) hypersurfaces in Euclidean space E™, n > 3 can
be found in several articles, on the other hand, there is very little or almost nothing literature for differential
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geometry of transversal intersection curves of (n — 1) hypersurfaces in Lorentz-Minkowski space E',
n > 3 and there is no tangential intersection curve of (n — 1) hypersurfaces in Lorentz-Minkowski space
n
T.n=34.

For transversal intersections in Euclidean spaces EY, n = 3,4, various studies have addressed the
computation of differential geometric properties of the intersection curves. Willmore [13] obtained the
unit tangent, unit principal normal, and unit binormal vectors, along with the curvatures of the intersection
curve of two implicit surfaces in E3, using the operator A = )\% = (h1% + hga% + hs %) , Where
h = V f x Vg. Faux and Pratt [ 14] provided an expression for the curvature of the intersection curve of two
parametric surfaces. Using the Implicit Function Theorem, Hartmann [31] derived formulas for computing
the curvature and geodesic curvature of intersection curves for all three types of intersection problems in [E2.
Ye and Maekawa [32] expressed the curvature vector as a linear combination of the normal vectors of the
intersecting surfaces and represented the third-order derivative vector as a linear combination of the tangent
and normal vectors, thereby obtaining the Frenet frame and curvatures of the intersection curve. Gold-
man [33] derived closed-form expressions for computing the curvatures of the intersection curve of two
implicit surfaces in [E, as well as the first curvature of the intersection curve in (n + 1)-dimensional space.
Aléssio [34] computed the curvature and torsion of the transversal intersection of two implicit surfaces us-
ing the Implicit Function Theorem. Building on the method of Ye and Maekawa and the Implicit Function
Theorem, Aléssio [35] developed a technique for computing the Frenet apparatus of the transversal inter-
section curve of three implicit hypersurfaces in E*. Diildiil and Caliskan [36] computed the geodesic torsion
and geodesic curvature of the intersection curve of two regular surfaces defined by parametric-parametric
and implicit-implicit equations. Diildiil [37] proposed a method to compute the Frenet frame and curvatures
of the transversal intersection curve of three parametric hypersurfaces in E*. Nassar et al. [38], in CAGD,
provided a method for computing the Frenet vectors and curvatures of the transversal intersection curve
of implicit-parametric-parametric and implicit-implicit-parametric hypersurfaces in E*. Uyar Diildiil and
Diildiil [39] extended Willmore’s method to four-dimensional space. Aléssio [40] computed the normal
curvature, the first geodesic curvature, and the first geodesic torsion of the transversal intersection curve of
n — 1 implicit hypersurfaces in E™. Following the ideas of Willmore, Diildiil and Akbaba [41] proposed a
new method for analyzing the intersection of two surfaces in three-dimensional space and three hypersur-
faces in four-dimensional space, where at least one (hyper)surface is defined parametrically. Finally, Bahar
and Mustafa Diildiil [6] introduced two new approaches for analyzing the transversal intersection of two
surfaces in Euclidean 3-space using Rodrigues’ rotation formula.

For tangential intersections in [E3, the available literature is relatively limited. Ye and Maekawa [32]
proposed an algorithm for evaluating higher-order derivatives of the tangential intersection curve of two sur-
faces, considering all three types of surface-surface intersection problems in [E3. Caligkan and Diildiil [42]
computed the unit tangent vector and the geodesic torsion of the tangential intersection curve of two sur-
faces, also addressing all three intersection types. Nassar et al. [43] investigated the differential geometric
properties of the Frenet apparatus (¢, n, b, s, 7) of intersection curves of two implicit surfaces in R, treating
both transversal and tangential cases using the Implicit Function Theorem. Bahar and Mustafa Diildiil [6] in-
troduced two new approaches for analyzing the tangential intersection of two surfaces in Euclidean 3-space,
utilizing Rodrigues’ rotation formula and Willmore’s method. For tangential intersections in [E4, the authors
of [44] studied the non-transversal intersection of parametric-parametric-parametric hypersurfaces. In [45],
they addressed the non-transversal intersection of implicit-implicit-parametric and implicit-parametric-
parametric hypersurfaces, and in [46], the non-transversal intersection of implicit-implicit-implicit hyper-
surfaces in E*.

The differential geometry of intersection curves arising from transversal intersections in Lorentz-
Minkowski spaces E? and E‘ll has been studied in several works [47, 48, 49]. Aléssio and Guadalupe [47]
investigated the transversal intersection curve of two parametric spacelike surfaces in E, considering the
parametric-parametric intersection problem. Zafer and Yusuf [50] studied the intersection curve of two
parametric timelike surfaces in E$. Karaahmetoglu and Aydemir [51] examined the intersection curves
between parametric spacelike and timelike surfaces in E. Diildiil and Caligkan [48] computed the Frenet
vectors and curvatures of the spacelike intersection curve of three spacelike hypersurfaces defined paramet-
rically in four-dimensional Minkowski space E}. Aléssio et al. [52] studied the differential geometry of the
transversal intersection curves of two surfaces in Minkowski 3-space E$, where the surfaces may be space-
like, timelike, or lightlike. They considered all combinations of pairs: spacelike-lightlike, timelike-lightlike,
and lightlike-lightlike.

In this paper, we compute the tangent vector of tangential intersection curves of two surfaces in the
three-dimensional Lorentz-Minkowski space [E3, where the combination of the surfaces (spacelike, time-
like, or lightlike) can be parametric-parametric. We propose two new approaches for handling the tangential
intersection of two surfaces in E$. Our first method differs from the approach of Ye and Maekawa only in
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the metric used, along with certain adaptations for cases involving lightlike surfaces. Our second method
modifies the use of Rodrigues’ rotation formula. In the work of Bahar and Mustafa, the rotation was carried
out in Euclidean space, whereas in our approach, the rotation is performed in Lorentz-Minkowski space.
This method uses the Euler-Rodrigues formula in cases where the rotation axis—given by the normal vector
of the surface—is spacelike, timelike, or lightlike in E‘;’

The remainder of the paper is organized as follows: Section 2 introduces some notation and definitions,
and reviews relevant aspects of differential geometry in the Lorentz-Minkowski 3-space E3. Section 3
further develops the notation and revisits the differential geometry of curves and surfaces in E$. Section 4
presents the Euler-Rodrigues formula adapted to Minkowski 3-space. Section 5 focuses on the differential
geometry of the tangential intersection curve of two surfaces in IE, where we propose two methods. The
first method is analogous to the one by Ye and Maekawa [32] in Euclidean space, while the second is based
on the approach of Bahar and Mustafa [6], but adapted using the Euler-Rodrigues formula in Minkowski
3-space. Some numerical results are provided in Section 6, and concluding remarks are given in Section 7.

2. Preliminaries. In this paper we denote by the Lorentz-Minkowski 3-space E$, the pair (R?, (,)1)
where R? is a three dimensional real vector space equipped with a Lorentz metric (inner product) of signa-
ture (2,1). That is, if v = (21,22, 23) and u = (y1, y2, y3), then

(v,u)r, = 21y1 + Tay2 — T3Y3.

Two vectors u and v in E$ are said to be orthogonal if (u,v);, = 0. An arbitrary vector u in E$ which
satisfies (u, u); = +1 is called a unir vector.

We say that an arbitrary vector v # 0 in E$ is called spacelike, timelike or lightlike(null), if respec-
tively holds (v,v)y, > 0, (v,v)r < 0or (v,v)r = 0. In particular, the vector v = 0 is spacelike. If
v = (21, 79, 23) € E3 we define it norm by

VI, = 1(v,v)1|7 = /Jwra1 + 2222 — 2323].

The timelike vectors can be separate in two disjoint sets, with describes the next definition.
Definition 2.1. Let F be the set of all timelike vectors in E3. If u is a timelike vector, the timelike cone
of u is the set

C(u) ={v € Fl{u,v)r < 0}.

The opposite timelike cone is C(—u) = —C(u) = {v € F|{u,v) > 0}. Since u’ is spacelike, F is
the disjoint union of these two timelike cones, i.e, F = C(—u) |JC(u). Furthermore we can conclude of the
definition that, two timelike vectors v and w in E are in the same timelike cone if and only if (v, w); < 0.
The Results the following show the relation of two vectors in E$ with the usual or hyperbolic angle formed
between them.

Proposition 2.1. [2]] Let v and w be timelike vectors in ]E? Then

o [(v,w)r| > ||Vl [|Wl|l,, with equality if and only if v and w are collinear (reverse inequality
Cauchy-Schwarz);

o If v and w are in the same timelike cone of B3, there is a unique 6 > 0, called the hyperbolic
angle between v and w, such that (v,w);, = — V||, ||w]| cosh(6);

e If v and w are not in the same timelike cone of E3, there is a unique 6 > 0, called the hyperbolic
angle between v and w, such that (v, w)r, = ||v||, ||w||, cosh(6).

Definition 2.2. [25] Let u,v € E3. The Lorentizian vector product of u and v is to the unique vector
denoted by u X 1, v that satisfies

(wxpv,w), =det(u,v,w), 2.1)

where det(u,v,w) is the determinant of the matrix obtained by replacing by columns the coordinates of the
three vectors u, v and w.
We also define the vector product of u and v (in that order) as the unique vector u x ;, v € E$ such that

e ey —e3
UXLv=_|uwu wus wuz |=(uv3—uzva, —(u1v3 — ugv1), —(u1v2 — usv1)),
V1 (%) V3

where {e;, ez, e3} is the canonical basis of Ef and u = (uy,us,u3) and v = (v1,v2,v3). We have
{e1, es, e3} is the canonical basis of R}, which satisfy e; X e; = —e3, €3 X e3 = e; andes X e; = ey.
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Corollary 2.1. [25] (Lagrange’s Identities). Letu,v € E{’ Then

(w,u)y; (u,v),

<v’u>L <vav>L

(uxpvuxpvy, = —det (2.2)

Remark 2.1. [25] Let us observe that if u and v are two non-degenerate vectors, then B = {u, v,u X, v}
is basis of € E$. However, and in contrast to the Euclidean space, the causal character of u and v deter-
mines if the basis is or is not positively oriented. Exactly, if u and v are spacelike vectors of E} then u x , v
is a timelike and B is negatively oriented because det(u,v,u X1, v) = (u xpv,u X v), <0.Isuandv
have different causal character, then B is positively oriented.

Proposition 2.2. [25] Let E3, then

o Two null (lightlike) vectors are linearly dependent if and only if they are orthogonal;

e Two timelike vectors are never orthogonal;

e A timelike vector is never orthogonal to a null (lightlike) vector.

Proposition 2.3. [25] For u, v, w € E3 we have

e (uxpv,u), =0and (uxgv,v), =0;

o (uxpv,uxpv), = <u7v)i —(w,u), (v,v);

e Let u be a spacelike vector, v be a null vector, then (u,v),; # 0 if and only if u X 1, v is spacelike.
Also (u,v), = 0ifand only ifu X, v is null;

e [fu and v are null vectors, then u X 1, v is a spacelike vector;

o [fuis a timelike vector, v is a null vector, then u X p, v is spacelike vector.

Proposition 2.4. [25] Let E3, then

o Two null (lightlike) vectors are linearly dependent if and only if they are orthogonal;

e Two timelike vectors are never orthogonal;

e A timelike vector is never orthogonal to a null (lightlike) vector.

Proposition 2.5. [25] Let U be a vector subspace of E3. The following statements are equivalent:

o U is a lightlike subspace;

o U contains a lightlike vector bute not a timelike one;

e UNC=L—-{0}, anddim L = 1.

Proposition 2.6. (Causal Character). Let M C E3 be a regular surface. We say that:

o M is spacelike, if for each p € M, T, M is a spacelike plane;

o M is timelike, if for each p € M, T, M is a timelike plane;

o M is lightlike, if for each p € M, T, M is a lightlike plane.

Remark 2.2.

o We will have a situation similar to what happened for curves: by continuity, if T), M is spacelike or
timelike for some p € M, then T, Mwill have the same causal type for each q in some neighbor-
hood of pinM. This way,we may possibly restrict our attention to surfaces with constant causal
character, when needed.

o If M has no points p for which T}, M is lightlike, we’ll simply say that M is non-degenerate.

3. Curves in E3. The follows definition classifies the curves in E3.

Definition 3.1. A regular curve o : I C R — E$ can locally be a spacelike, timelike or null (lightlike),
if all of its velocity vectors o/ (s) are respectively spacelike, timelike or null (lightlike).

Definition 3.2. For any non-lightlike vector ¥ # 0, we set its indicator €, to be the sign of (U, T) , that
is, €, = 1 if U is spacelike, ¢, = —1 if U is timelike, and €, = 0 if U is lightlike.

Definition 3.3. [/8] Let o : I — 3 be a parametrized curve. We'll say that « is admissible if:

o « is biregular, that is, {o/(t), & (t)} is linearly independent for all t € I;
o both o (t) and span {a/(t),a” (t)} are not lightlike, for all t € 1.

Remark 3.1. If a(s)" and o' (s) are orthogonal and span {&/(t), & (t)} are not lightlike, then o' (s)
cannot be lightlike.

Definition 3.4. Let o : I — E$ be a unit admissible curve. The indicador of ais €q, = (to,ta ), and
a// (5)

Ka(s)

3.1. The Frenet-Serret trihedron. Definition 3.5. (Frenet-Serret Trihedron for admissible unit speed
curve). Let o : I — E3 be an admissible unit speed curve.The tangent vector to o at s is to(s) = o/(s).
The curvature of the curve «at s is ko (s) = ||t'(s)|| .. The assumptions on « ensure that ko (s) > 0 for all
s € I, so that the unit vector pointing in the same direction as t'(s) is well defined, allowing us to define
the normal vector to « at s, by the relation t,,(s) = ko (s)ny(s). Lastly, the binormal vector to « at s is
defined as the unique vector b(s) making the basis {t(s), n(s), by (s)} orthonormal and positive.

coindicador of o is o = (Do, Ny ), , where t, = o/(s) and n, =
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Theorem 1. [/8] (Frenet-Serret Equations admissible curve ( If curve is spacelike, the «(s)" cannot
be lightlike)). Let o : I — E% be a unit speed admissible curve. Then

t,(5) = Kala(s);
(5) = _eanaﬂa(s)ta(s) + Ta(s)ba(s); 3.1
() = eaTa(s)ny(s).

n
b

/
o
i
(e}
Where

Ka(8) = €a (t,(s), n.(8)) s Ta(s) = —€ala (ng,(s), ba(s)), and ba(s) = —€anata(s) X1 na(s).

Definition 3.6. (Frenet-Serret apparatus for admissible curves not necessarily having unit speed). Let
a : I — E3$ be an admissible curve and s be an arclength function for o. Write a(t) = a(s(t)). The
tangent, normal and binormal vectors to o em t are defined by t,(t) = t5(s(t)), ny(t) = ns(s(t)) and
bo (t) = ba(s(t)). The curvature of the curve ko (t) = ka(s(t)) and torsion 74(t) = 75(s(t))

Proposition 3.1. Let o : I — E3 be an admissible curve. Given t € I, the formulas hold:

') xp (@)l
Iy

a7 (t)

_ det (al(t)7 a”(t), a///(t)) .

o (#) x @ (1)]]7

Ta (t)

These expressions represent, respectively, the curvature k., (t) and the torsion 7,(t) of the curve o in
the three-dimensional Minkowski space E3, where x 1, and || - ||, denote the Lorentzian cross product and
norm, respectively.

Definition 3.7. [18] A unit speed curve o : I — E$ is called semi-lightlike if span {’(s),a” (s)} is
degenerate (and, thus,o' (s) is lightlike) for all s € T

o [nview of this definition, we’ll allow the indicator e, and the coindicator 1, to be zero. This way, if
ais lightlike, we have that (€., M) = (0, 1), while if a is semi-lightlike, we have (e, 1) = (1,0).
This is done to treat both cases simultaneously

e Since the arclenght parameter is denoted by s and arc-photon parameter by ¢. we will allow
ourselves to simply omit the parameter when discussing results for both cases.

Theorem 2. [18] (Arc-photon) o : I — 3 be a lightlike parametrized curve such that || (t)|| # 0
forallt € 1. Then o admits an arc-photon reparametrization, that is, there exists an open interval J and a
diffeomorphism h : J — I such that B = «o(h) satisfies || " (¢)||;, = 1 forall ¢ € J.

Let 3: J C R — R} be a regular curve parametrized by parameter ¢, with the same trace of the null
curve «a(s), i.e.

_1 dh _1
B(¢) = a(h(9)), h(¢) = qu; I (w)]|,* du and 7 lo”(#)ll . Thus,

Notice that, if % = 0 then the curve is a straight-line.

Definition 3.8. [/8] Let o : I — E$ be lightlike or semi-lightlike. We define the tangent and the
normal to the curve by

to=a’ and n,=a’.
Proposition 3.2. [18] Let o : I — E$ be semi-lightlike, then (to,to); =1, (Rq,na); =0, if defined
b, =t, Xgn, (cross product Euclidean)
and (no,bo); = —1, and (ba,to); = 0. The triple {t, 0o, by} is a positive basis for E3. Consequently
(ba,bo), = (n,t), =0.
Proposition 3.3. [18] If o : I — E$ be lightlike, then (t,to); = 0 and (no,n.); =1, if defined
b, =t, Xgng, (cross product Euclidean)
and (nq,b,); =0, and (bs,to); = —1. The triple {to,n,, by} is a positive basis for E3. Consequently

<baaba>L = <tav”a>L =0.
Orientations for a lightlike plane [18].
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N

(a) (v, w) positive (A < 0) (b) (v, w) negative (A = 0)

Figure 3.1: Orientations for a lightlike plane.

Definition 3.9. [/8] Let o : I — 3 be lightlike or semi-lightlike. The pseudo-torsion of o is given by
Ta = — <n:17boc>L :

Remark 3.2. In the literature, this pseudo-torsion is also called the Cartan curvature of c.
Theorem 3. [/8] (Frenet-Serret Equations -lightlike or semi-lightlike curves ) Let o : I — E:f Then
we have

t, =m;
"; =Na Ta ta + €a Ta No; 3.2)
b/oz = €ata + Mo Ta Do — €4 Ta ba.-

3.2. Surfaces in Ei)’ Definition 3.10. [/8] [Regular Parametrized Surface] A smooth map S : U C
R? — E$ is called a regular parametrized surface if Ds(u,v) has full rank for all (u,v) € U.

3.2.1. Normal vector of parametric Spacelike, Timelike and Ligthlike Surfaces in E3.
The unit normal vector field N of a parametric spacelike (or a timelike) surface M
. The unit normal vector is given by

Su XL Sv
N=—m"—7-—"7"4/—. 3.3)
”Su XL Sy ||L
The unit normal vector field N of a parametric lightlike surface M
. The unit normal vector is given by
N =S, X S,. (3.4)

Remark 3.3. Since S, X1 S, is lightlike, it follows from Proposition (2.3) that the vectors S, and S,
can be either lightlike or spacelike. If (S, Sy); = 0, then one element of the sett {S,,, S,} is lightlike
and the other is spacelike. If both elements of the set {S,,, S, } are spacelike, then (S,,, Sy); (Sv, Sv); =

Sy, Sy 2. Both vectors cannot be li htlike, as we would have S,, x 1, S, being spacelike.
L 8 8
3.3. Curves and Surface in E3.

3.3.1. Curves in Parametric Surface in E}. Consider an parametric surface represented by S : U C
R? — VNS C E3 and let o(s) a curve in the surface defined by a(s) = S(u(s), v(s)). The a’(s), ' (s)
and o’ (s) is

a/(s) = Syu’ + S0, (3.5)
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o’ (5) = Syt + Syv”" + Syu(t)? + 28t/ + Sy (V)2 (3.6)

Therefore, the projection of the vectors o’ (s), a”(s) and o’”'(s) onto the unit normal vector field (IN) of the
surface S(u, v) are given respectively by

(o ,N), =0, 3.7)

(@ N, = (Suu, N), (W) + 2 (S, N) , /0" + (Sy, N, (V)2 (3.8)
4. Euler-Rodrigues formula in Minkowski 3-space (E‘;’). In [5, 4], the Lorentz metric (inner prod-

uct) of signature (—, +, +), the semi-skew-symmetric matrix W obtained from the vector w = (w,, w,, w,)
axis with unit length be

—Wy Wy 0

In this work, the Lorentz metric (inner product) of signature (+, 4+, —), then the semi-skew-symmetric
matrix W obtained from the vector w = (w5, wy, w) axis with unit length be

Case 4. [5, 4] Assume that w = (wz, Wy, W) is unit spacelike vector, then we get

Rep(0, W) = I3 + sinh(0)W + (=1 + cosh(0))W?, 4.1)

where in this work, the Lorentz metric (inner product) of signature (+, +, —), then we have

14 (=14 cosh(0)(w2 — w?2) —sinh(Q)w, — (—1 + cosh(0))wzwy  sinh(0)wy + (—1 + cosh(0))wzw.
Rsp = | sinh(0)w; — (—1 + cosh(0))wywy 1+ (=1 4+ cosh(8))(w? — w?) —sinh(0)wz + (—1 + cosh(0))wyw.
sinh(0)wy — (=1 + cosh(8))wew, —sinh(0)wz — (—1 4 cosh(0))wyw, 14 (=1 + cosh(8)) (w2 + wg)

Case 5. [5, 4] Assume that W = (W, Wy, w,) is unit timelike axis, then we get

Rim (0, W) = I3 + sin(0)W + (1 — cos(0))W?, 4.2)

where in this work, the Lorentz metric (inner product) of signature (+,+, —), then we have

14 (1 — cos(0)(w — w?) —sin(§)w, — (1 — cos(8))wzw,  sin(@)w, + (1 — cos(9))wyw,
Rim = | sin(0)w, — (1 — cos(8))ww, 1+ (1 —cos())(w? —w?) —sin(8)w, + (1 — cos(9))wyw,

sin(@)wy, — (1 — cos(8))wyw, —sin(0)w, — (1 — cos(9))wyw, 1+ (1= cos(0)) (w2 +wy)

Case 6. [5] If w = (wg, wy, w,) is lightlike axis, then we get

2
Rig(0,w) = I3 +0 W + % w2, (4.3)

where in this work, the Lorentz metric (inner product) of signature (+, +, —), then we have
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2 2 2
1+ (5) (w2 —w?) 0w, — (S ww,  Owy + (% )ww,
Rig= | 0w = (Fwsw, 1+ (53 —wd) —buy +(Fwyw.
2 2 5

Where

1 0 O
I3s=10 1 0
0 0 1

4.1. Operator D;,. In the paper [?], the authors defined the operator D(w) = u X g w, where X g
cross product Euclidean space. In this subsection, we defined Dy. Let w be a nonzero vector in ]E:f We
define Dy, as

Dp(w) =pxLw. (4.4)

Where X, is cross product Lorentzian spaces.
Proposition 4.1. If the vector i is chosen arbitrary such that it is linearly independent with w, then
D1, (w) yields never a zero vector and also we can see that

i)

h
=
2
S

(Dr(w),Dr(w)), = (1 X W, X W), =—det =2\ — cyeu,

where (i, w); = A g, = (W, u); ande,, = (W, W), .
ii) If ;1 and w are spacelike vectors, we have Dr,(w) is spacelike or D, (w) is timelike or Dr,(w) is
lightlike ;

iii) If u and w are timelike vectors, we have D1, (W) is spacelike;

v) If pand w are lightlike (linearly independent), them Dy, (w) is spacelike vector;
v) If v is timelike(spacelike) and w is spacelike (timelike), them Dy, (w) is spacelike vector;

vi) If w is lightlike (spacelike) and w is spacelike (lightlike) with (i, w); = 0 them Dr,(w) is lightlike

vector;

vii) If p is lightlike (spacelike) and w is spacelike (lightlike) with (j, w),; # 0 them Dr(w) is space-

like vector;

viii) If p is lightlike (timelike) and w is timelike (lightlike), them Dr,(w) spacelike vector, A # 0.

The operator Dy, will play the main role together with the Euler-Rodrigues formula in Minkowski
3-space for finding the tangent vector at the tangential intersection point of the intersection curve of two
surfaces.

Remark 4.1. The rotation Ry, (0, w) = I3 + sin()W + (1 — cos(0))W? of vector % still
keeps it unitary, but the rotation R, (0, w) = I3 + sinh(0)W + (1 — cosh(0))W? does not maintain its
unit length. See the figure below.

Dr(N
Remark 4.2. The R4, (0, N) L(N)

DNl
like vectors to spacelike vectors and the lightlike vectors to lightlike vectors.
Theorem 7. The R;,(8, N)Dy,(N) transform the lightlike vectors to lightlike vectors.
Proof: Since the axis of the rotation is lightlike, the matrix of rotation is

transform the timelike vectors to timelike vectors, the space-

1+ (%)(wi w?) —bw, — (%)wxwy Ow, + (%)wxwz
Rig(6,N) = (g)w 1+ (&) (w2 —w?) —0w, + (£ )wyw.
— (Bwew,  —Ow, — (B wyw, 1+ (%) (w2 +w?)

Let D1 (N) = [a, b, ¢] lightlike vector, the multiplication R;4 (0, N)Dr (IN) is
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Rot, 0, MDIN] .

Rot, o, ,x]gmfi.

Roty,[6, N|DIN]

DIN|=p x. N

Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4:
DL (N) Dr(N) D (N) o
R0 N mor, RNy, Re@Nimimr Rep(6,N)DL(N).

a (02(w§2—w§) + 1) + b( 6> 'LU]U}Q ng) + C( w21w3 +€w2)
Rig (0. N)DLN) = | o~ 4+ gug ) +b (M +1) + e (L — )
a (702“’% + 071)2) +b (7792“’22“’3 - 9w1> +c (792(7“0%2“”3) + 1)

The norma is

2( 2 2 2
o)) () o5 )

2 2 2

' H—”mes%b(“ +) (75 o)
2 2 2
- (T o) s (- o) o (PR )

4.5)
2

Since w = (w1, w2, w3) and D1, (N) = [a, b, c] are lightlike, we have w3 = w? + w3 and a? = b2 + 2.
Replacing w3 = w} + w3 and a® = b? + ¢? in the equation above, we have the equation below

IRis (6, N)DL(N)||, = {a

294 2 2 2942 2 294 4 294 2 2 294, 4
a0 wiw; a0 wiws 0% w a0 wiw; a0 ws

a
RO NP, === - — — +—— ——5 — + 5 +d
_abftwiwe  abfluwiwd | abblwiwewd | achwiws  achwiwiws
2 2 2 2 2
act*wiwi | 60wl | 6*0'wiwi  0*0'wiwi  6*0'wiwi | 60w o
T2 Tt 2 T
+ beh* wiwaws + bet'wiws  beblwowi  PO'wi  F0'wiwd | PF0twiwd
2 2 2 4 2 4
POy | POwiwd 2
4 1 ’
(4.6)
simplifying
694’11)3 3 2 2 2 3 2
[Rig (0, N)DL(N)Il, = —5= (aw + awiwh — awywf + bwjws + bwj — bugw3)
simplifying
ch*ws 9 2 2 2 2 2
[Rig(6, N)DL(N)||, = 2 (aws (wi +w3) — awyws + bwa (Wi + w3) — bwaws)

and replacing again w? = w? + w3, we have

IR1y (6, N)YDL(N), = 0.
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5. Differential Geometry of Tangential Intersection Curve of Two Surfaces in E3. Now, let us
assume the two surfaces S and S? intersect tangentially at a point Py = S4(ug,v9) = SZ(po, qo) on
the intersection curve a(s), i.e., N (ug, vo) | NB(po, qo) at Py. If the surfaces are spacelike or timelike,
by orienting the surfaces properly we can assume that N4 (ug, vo) = NB(po, qo) = N. If the surfaces are
lightlike, N (ug,v9) = ANE(pg, qo), for some real A € R.

5.1. First method.

5.1.1. Parametric-parametric surfaces Spacelike or Timelike
. Let S4 and S® be two regular surfaces spacelike or timelike given by the parametric equations S (u, v) =
(z(u,v),y(u,v), 2(u,v)) and SB(p, q) = (z(p,q),y(p, q), 2(p, q)). The vector o’(sg) of the tangential in-

tersection curve a(s) = S4(u(s),v(s)) = SB(p(s), q(s)), i.e.
t =St + S =8Py + SPq (5.1

and the projection of the vector o’ (s) onto N“ (ug, v9) and N2 (pg, qo) in the point Py = S (ug, vo) =
S (po, qo) where surfaces S and S? intersect tangentially

<NA(u0,v0),a”(so)>L = <NB(p07q0),a”(so)>L, (5.2)

produces the equation in terms of the coefficients of the second fundamental form it becomes
eA(u’)2 + QfAu/v' + gA(v/)2 — eB(p/)Q + 2pr/q/ + gB(q/)Q . (5.3)
Since the equation (5.1) consists of four variables u’,v’, p’ and ¢', we can write p’ and ¢’ in terms of

' and v’.

/ ! !
P = anu +appv,

5.4)
q' = agu’ + axnv’,
where
A B A B
a11:<Su XL SZN), alZ:(Sv xL SP,N), 55)
<SpB><LSqB,N>L <SpB><LSquN>L
A B A B
a21:<5u XLSpaN>L. CL22:<SU XLSp7N>L. (56)
(S§ <L SP,N), (SP <L 87.N),
Substituting (5.4) into (5.3), we have
bi1(u')? 4 2b1ou' v’ + baa(v/)? = 0, (5.7)
where
b1 = a31eP + 2a11a12f8 + a3, 9P — e;
bi2 = arjaize’ + 2(a11a22 + a21a12)fB + aga09”® — 4
bas = a29eP + 2a12a00 fB + a3,9F — g
u v’
Ifw= o when dy; #Oorp = i when dyo # 0, we have
b11w2 + 2b120.) + b22 = 0, (58)

ijfA + S{j‘A
lwSA + SA

)
UA ’UA”
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or

baopt® + 2b12p1 + byy = 0, (5.9)

A A
Su +/’[’S’UA

— A

19, +uSE |

5.1.2. Parametric-parametric surfaces Lightlike. Let S and S? be two regular surfaces lightlike
given by the parametric equations S* (u, v) = (2(u, v), y(u, v), 2(u,v)) and ¥ (p, q) = (z(p, 9), y(p, 9), 2(p, q))-
The vector o (sg) of the tangential intersection curve a(s) = S4(u(s),v(s)) = SB(p(s), q(s)), i.e.

t =St + 50 = SPp 4+ S5Pq (5.10)

and the projection of the vector o (s ) onto N (ug, vg) and N B (pg, go) in the point Py = S4 (ug, vp) =
SB(po, qo) where surfaces S and S intersect tangentially

(N*(ug, vo), a(s0)), = (N"(po, ), a"(s0)), » (5.11)

produces the equation in terms of the coefficients it becomes
éA(u/)2 4 QfAu/v' 4 gA(v’)2 — —B(p/)2 4 2pr/q/ 4 gB(q/)Z , (5.12)

# = (NS0, P = (NS, 10 = (NS, i e 4,3,

Remark 5.1. Since N(uo,vo) = Si!(ug, vo) x 1 S5 (uo, vo) = XS (po, a0) ¥z 87 (po, o) is light-
like, we have <S{?(uo7vo) X, S{f‘(uo, Uo),N>L = 0and <Sf(po,qo) X, Sf(po, q0)7N>L =0, but
(Sy (o, q0) & S¢(Po,q0),N), # 0.

In fact, let SpB (o, q0) XLSf (o, qo) = (a, b, c), then Sf (o, q0) XESf (po, qo) = (a,b, —c), therefore
Sf(po7 Qo) XE S’f(po, qo) is lightlike,
if the product <Sf(p0, qQ) XE Sf (o, qo0), Sf(po, qo) X1, Sf(po, qo)>L = 0 by Proposition (2.4) we have
Sf(po,qo) X Sf(po, ) | (Sf(po, qo) XE Sf(po,qo)) . Which is absurd.

Since the equation (5.10) consists of four variables u’, v’, p’ and ¢/, p’ and ¢’ it can be written in terms
of u’ and v'.

/ ! !
P =a11u + agv’,

(5.13)
¢ = agu’ + axnv’,
where
(S x SENY, (St xpSEN),
a1l = B B ; a12 = B B ; (5.14)
(SP xg SP,N), (SP xpg SP,N),
S xgp SBN Sfx SB N
as < 5 r 1;3 >L; a22:< 5 r 2 >L- (5.15)
<S xESp,N>L <Sq xESp,N>L
Substituting (5.4) into (5.12), we have
bi1(u')? 4 2b1ou/ v’ + baa(v/)? = 0, (5.16)

where

_ 2 =B B 2 -B _ ZA.
bi1 = af €” + 2an1a12f° +a3,9° — e

o _B rB —B A.
bi2 = a11a12€” + 2(a11a22 + as1a12) f° + az1a225” — f4

2 B B, 2 -B _ -
bas = 2,88 + 2a12a02 f B + a3,g" — g



Alessio O, Cintra Neto L.A R.- Selecciones Matemadticas. 2025; Vol.12(1):97-122 109
! !

Ifw= % when dy; Z0Qorpu = % when dos # 0, we have

briw? + 2b1ow + bay = 0. (5.17)

w82+ S

t=—2—-~- if tisspacelike.
[wSg, + Sl

t=wSy + 57

vA?

if tislightlike.
or

boop® + 2b1ap + byp = 0. (5.18)

Sit, + uS,
= —A4 24 iftisspacelike.
152, + nSE

t=S; +uSi. if tislightlike.
5.1.3. Solution of the Equations. There are four distinct cases to the solution of the equations (5.7,
5.16) depending upon the discriminant A = bfg — 4b11b9s.
1. Isolated tangential contact point: If A < 0 then the equations does not have any solution. Thus, P
is an isolated contact point of S4 and S%.
2. Tangential intersection curve: If A = 0 and b%; + b3, + b3, # 0 then the equations has double
roots and t is unique. Thus, S4 and S& intersect at P and at its neighborhood.
3. Branch point: If A > 0 then the equations has distinct roots. Thus, P is a branch point of the
intersection curve a(s): there is another intersection branch crossing «(s) at P.
4. Higher-order contact point: Is b;; = b1 = bao = 0 then the equations are vanishes for any values
of v’ and v'. Thus, S and S has contact of at least second order at P.

5.2. Second method. This method will be called the Euler-Rodrigues formula in Minkowski 3-space
(ED).

The rotation with rotation angle 6 around the axis in the direction of N is Ry p. (6, N), where type =
{sp,tm,lg}, depending on whether N is spacelike or timelike or lightlike, respectively.

By the definition of D, the vector D(IN) lies in the common tangent plane of the surfaces S“ and S&.
Thus, after a suitable rotation with rotation angle § around the axis in the direction of N, the vector of
D(N) is multiple of the unit tangent vector t of the intersection curve at P (0 < 6 < 7).

Dr(N
The normal vector of the surface N can be spacelike or timelike or lightlike. The rotation R, (6, N) ||DL(§\I))||
L L
Dr(N
around axis N may not preserve the length of vector ||DL(§\I)) and furthermore the vector Dy, (N)
L L

cannot be unitary, as it can be lightlike. Thus, the rotation will be Ryype(0, N)Dr(N), and the vec-
tor Dy, (IN) can not be unitary. Therefore instead of o/(s) = ARyype(0, N)Dr(N) we will use o/ (t) =
Riype(0,N)Dp(N).

5.2.1. Parametric-parametric surfaces Spacelike or Timelike. The vector tangent is
o) = St (t)+ St (t) = Sfp’(t) + qu’(t) = Riype(0, N)D(N). (5.19)
The projection of the vector o’ onto N4 and N'Z produces the equation.

(N4, ") = (NP, "),

(5.20)
eA(u/)2+2fAu'1/+gA(vl)2 — GB(p/)2+2pr/q/+gB(q/)2.
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The v/, v’ and p’, ¢’ values can be found in terms of the rotation angle 6.

u/(@) _ <Rtype(97 N)DL(N) XL S{;‘, N>L
(S xz S N) " 7 (5.21)
1/(9) . <Rtype(97 N)DL(N) XL Su ’N>L
B <S{;4 XL S{?v N>L
p/(e) - <Rtype(95 N)DL (N) XL va N>L
- B B ’
(SF 1 S, N), (5.22)

q(9) = <Rtyp€(9712)%(1\;) xSy N),
<Sq XL Sp 7N>L

Substituting these solutions u/(t) = u/(9),v'(t) = v'(8),p'(t) = p'(8), and, ¢'(t) = ¢'(0) in (5.21)
yields a trigonometric equation:
(' (0))? + 24 (0)0'(0) + 9 ('(0))* = P (9'(0))% + 2150 (0)d'(0) + 9" (d'(0))*.  (5.23)

5.2.2. Parametric-parametric surfaces Lightlike. The projection of the vector o/’ onto N4 and
AN® produces the equation.

<NA, a//> — <)\NB, a//> )
B L L (5.24)
éA(u’)2 4 QfAu'U/ 4 gA(,U/)Q =\ (éB(p’)2 4 2pr/q/ 4 gB(q/)Q) .

The v/, v’ and p’, ¢’ values can be found by solving a linear system

0 (6) = (Riype(0,N)DL(N) xp S, N)

<S&4 XE S{;leN>L A ’ (5.25)
o(6) = (Riype(0,N)DL(N) xp Sz, N)

(St xm S{LN) L
p’(Q) _ <Rtype(97 N)DL(N) XE SqB, N>L

<S£ XE Sf7N>L 5 7 (5.26)
0) = (Riype (0, N)DL(N) x5 S, N)

(SF % SIJJB’N>L

Substituting these solutions u/(t) = u/(0),v'(t) = v'(8),p'(t) = p'(6), and, ¢ (t) = ¢'(0) in (5.24)
yields a trigonometric equation:

e (u'(0))? + 24 (0)0'(0) + g (v'(0))* = A (0 (9))* + 2750 (0)d'(6) + 57 (d'(6))*).  (5.27)

5.2.3. Solution of the Equations. Theorem 8. Let S and SP be timelike surfaces that intersect
tangentially at a point Py = S (ug,vo) = SB(po,qo), i.e., N4(ug,v0) || NB(po,qo) at Py. Since
the surfaces are timelike, the normal vector N is spacelike. Therefore, the corresponding rotation is of
spacelike type: Rs,(0,N). As a result, the transformation R, (0, N)DL(N) maps lightlike vectors to
lightlike vectors.

Proof:

See theorem 1 of the [4] article. O

Theorem 9.

Let S” and SP be lighlike surfaces that intersect tangentially at a point Py = S (ug,vo) = S (po, q0),
i.e., N4(ug,vo) || NB(po,qo) at Py. Since the surfaces are lighlike, the normal vector N is lighlike.
Therefore, the corresponding rotation is of lighlike type: R;4(6,N). As a result, the transformation
Rsp(0, N)Dr,(N) maps lightlike vectors to lightlike vectors.

Proof: In fact, since the rotation R;4(6, N(Fy))Dr(N(Fp)) maps lightlike vectors to lightlike vectors
(7), and since T}, M is a lightlike subspace, then there is only one lightlike vectors at p € M, T, M. If the
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vector tangent o' (sg) is lightlike and Dy, (IN(F)) is lightlike, then R, (6, N(Fy))Dr(N(F)) is lightlike
and belongT), M , therefore R;4(6, N(Py))Dr(N(FPy)) = o/(s¢) for all 6.
Since

(N',0"(t)), = = ((N'), /(1)) .,

if Oy is a solution of

(N ((ug, v0)), " (0)), — (AN"((po, 90)), 2" (0)) , = 0,
<(NA((u0,v0)))’, 0/(9)>L — <)\(NB((p0, qo)))’,a’(9)>L =0, forallé.

therefore

(N4((ug, v0)), & (), — (AN ((po, q0)), & (8)), =0,

O
Remark 5.2.
To analyze the solutions of the trigonometric equations (5.23,5.27 ) in the variable 0, we need to
separate into three cases: When N is timelike or is lightlike or is spacelike.

e [f N is timelike, we have the following cases depending upon the number of solutions:

(a) If equation has no solution, then P is the isolated contact point.

(b) If equation has one simple solution, then we have one intersection curve passing through P.

(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch
passing through P.

(d) If equation vanishes, then surfaces have at least second order contact at P.

o [fNisspacelike inp € M, T,,M is a timelike plane, then T, M contains two linearly independent
lightlike vectors, timelike and spacelike vector, therefore the vector tangent can be spacelike, time-
like or lightlike. Since the rotation Rsy,(8,N)Dr(N) transform the timelike vectors to timelike
vectors, the spacelike vectors to spacelike vectors and the lightlike vectors to lightlike vectors, we
must choose four vector p; i € {1,2,3,4} for D,(N) = p; X1, N. We can choose the vector i1
such that Dy, (N) = p1 X1, N be lightlike and pio such that Dy, (N) = ug X1, N lightlike and 13
such that Dy, (N) = pg x 1, N spacelike and puy such that Dy, (N) = pg X1, N timelike.

eql = <NA,a"(0)>L—<NB7o/’(9)>L, for py; eq2 = <NA,a"(0)>L—<NB7a”(9)>L, for pa;

eq3 = <NA, o/'(t9)>L—<NB7 a"(9)>L , for us; eqd = <NA, a”(9)>L—<NB7a”(9)>L , for ua.
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eql eq2 eq3 eq4 case solution
eql #0 | eq2#0 | eqg3 #0 | eqd #0 a If equation has no solution, then P is the isolated contact point.
eql=0 | eq2#0 | eq3#0 | eqgd#0 | b o/ (tg) = Rsp(0,N) pq xp, N for any 6.
eql #0 | eq2=0 | eq3#0 | egd#0 | b o/ (to) = Rsp(0,N) pz x 1, N for any 6.
eql 0 | eq2#0 | eq3=0 | eqg4#0 | bc o/ (to) = Rsp(6i, N) ug x 1, N, if0; is solutions to the eg3 = 0.
eql 20 | eq2#0 | eq3#0 | eqgd=0 | bc o/ (to) = Rsp(0i, N) pa x g N, if 6; is solutions to the eq4 = 0.
eql 20 | eq2=0 | eq3#0 | egd=0 | byc o/ (tg) = Rsp(8,N) 2 x N for any 6.

o/ (to) = Rsp(0i, N) pa xr N, if 6; is solutions to the eq4 = 0.
eql 20 | eq2=0 | eq3=0 | eqgd #0 | bc o/ (tg) = Rsp(8,N) p2 x N, for any 6.

o' (to) = Rsp(0i, N) g x 1, N, if 0; is solutions to the eg3 = 0.
egl=0]eq2=0|eg3=0|eqd#0 | bec | &/(to) = Rsp(0,N) p1 X1 N; &/ (to) = Rsp(0,N) p2 X, N, V6.
eql=0]eq2=0]eqg3#0 | eqd=0| bec | &/(to) = Rsp(0,N) 1 Xz N; &/ (to) = Rsp(0,N) 2 x, N, V6.
eql=0|eq2=0|eg3#0 | e¢d#0 | bec | &/(tg) = Rep(0,N) p1 x1 N; o/ (to) = Rep(6,N) p2 x N, V6.
eql=0 | eq2#0 | eq3#0 | eq¢d=0 | bec o/ (to) = Rsp(6,N) pg xr N,forany 6

o/ (to) = Rsp(6i, N) pa x 1 N, if §; is solutions to the eq4 = 0.
eql=0 | eq2#0 | eq3=0 | eqg4#0 | bc o/ (tg) = Rsp(0,N) pq xr, N for any 6.

a/(to) = Rsp(6i, N) ug xr, N, if §; is solutions to the eg3 = 0.
eql 20 | eq2#0 | eq3=0 | eqg4d=0 | bc o/ (tg) = Rsp(0;,N) ug x, N, if 6; is solutions to the e¢3 = 0.

o/ (tg) = Rsp(0i,N) pa x, N, if 6; is solutions to the eqg4 = 0.
eql=0 | eq2#0 | eq3=0 | eq¢4=0| bc o/ (to) = Rsp(0,N) p1 x 1, N, for any 6.

o/ (to) = Rsp(8;,N) ug x, N, if 6;, is solutions to the eg3 = 0.

o/ (tg) = Rsp(8i,N) pa xp N, if 6; is solutions to the eqg4 = 0.
eql £0 | eq2=0 | eq3=0 | eqg4d=0 | bc o/ (tg) = Rsp(0,N) pg xr, N for any 6.

a/(to) = Rsp(6;, N) ug x N, if0; is solutions to the eg3 = 0

o/ (to) = Rsp(0s, N) pa x 1, N, if6; is solutions to the eq4 = 0
eql =0 1]eq2=01|eq3=0|eqd=0 d have at least second order contact at P

Table 5.1: Solutions.

Where the cases are:

(a) If equation has no solution, then P is the isolated contact point.

(b) If equation has one simple solution, then we have one intersection curve passing through P.
(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch
passing through P.

(d) If equation vanishes, then surfaces have at least second order contact at P.

o If N is lightlike in p € M, T,M is a lightlike plane, then by proposition (2.5) the T,M con-
tains only one vector lightlike vector and spacelike vector, but not a timelike one, therefore vector

tangent can be spacelike or lightlike.

Since Dr,(N) can be spacelike or lightlike, the rotation Ri4(8, N)Dr,(N) transform the Dr,(N)
spacelike vector to spacelike or lighlike vectors and Dy, (IN) lightlike vectors to lightlike vectors,
we must choose py such that Dp,(N) = pq x 1 N be lightlike and pio such that D, (N) = pa X, N
spacelike. For the choice of i, see Proposition (4.1).

eql = <NA,0/’(9) L~

(N, a"(8)), , for p;
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a2 = (N, (0)), ~ (N"."() ., for pz,

eql eq2 case solutions
eql #0 | eq2#0 a If equation has no solution, then P is the isolated contact point
eql =0 | eq2 #£0 b o/ (tg) = Rig(0,N) pq1 x 1 N, V6.
eql=0|e2=0| ¢ o/ (tg) = Rig(6,N) p1 xp N, V6.

o/ (to) = Rig(0;, N) sz x 1, N if 6; is solutions of the equation eq2 = 0.

eql#0 | eg2=01| c¢ | &/(to) = Ryy(0;,N) ua x, Nif 6, is solutions of the equation eq2 = 0.

eql =0 | eq2=0 d have at least second order contact at P.

Table 5.2: Solutions

Where the cases are:
(a) If equation has no solution, then P is the isolated contact point.
(b) If equation has one simple solution, then we have one intersection curve passing through P.
(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch
passing through P.
(d) If equation vanishes, then surfaces have at least second order contact at P.

6. Example. In this section, we present some examples that illustrate our new methods.
Example 6.1. Let us consider the surface S and S® by the parametric equations

1 11
54 (u,v) = (cos(u)cos(v), sin(u)cos(v), sin(v)). SE(p,q) = (2005(])) + 2 isin(p), q) .
Since the unit normal vectors of these surfaces at the intersection point P = $4(0,0) = SP(0,0) =

(1,0,0) are N4 = NB = N, these surfaces intersect tangentially at P. The vectors S*(0,0) = (0,1,0),
A A
S:0,0) = (0,0,1), S2(0,0) = (0,1/2,0) and SP(0,0) = (0,0,1), produce N4 = 2 "L

T TSExesET, —
(1,0,0) and N? = % = (1,0,0). The vector normal N4 = NB = N = (1,0,0) are space-
p “LPq ||,

likes. Let us now apply our second method to find the tangential direction.
Since N = (1,0, 0) is spacelike, We must test the four equations:
e cql = <NA,0/’(0)>L — <NB,0/’(0)>L, for uy
Let 1 = (0,1, 1) be lightlike, we get Dy, = pu; X, N = (0,1, 1) is lightlike. Then, from (5.19) we

way write

0 0 1 0 0 0 0 0

1L |u+]|0|v=]0 cosh(h) —sinh(f) 1|=]3|p+]0]d

0 1 0 —sinh(f) cosh(6) 1 0 1
i.e, we have

u' = —sinh(6) + cosh(#), v' = —sinh(#) + cosh(9),
p' = —2sinh(#) + 2 cosh(6) and ¢’ = — sinh(6) + cosh(6).

We have

e =10, fA=0, ¢g* =-1.0, e =—05, fB=0and g% =0.

If we substitute these results into (5.23), we have
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(et (' (0)* + 24/ (0)v' (0) + g™ (v'(9))?) — (P (' (0))* + 2/ PP (0)d' (0) + 9P (' (0))*) =
0 —

6.1)
We have

eql =0.

e cq2 = <NA,0/’(0)>L — <NB,0/’(0)>L, for ua
We need to choose pg such that Dy, (N) = ug xp, N is lightlike, but linearly independent with
DL(N) = U1 X, N.
Choosing pa = (0,1, —1) such that Dy, = pe X, N = (0,1, 1) is lightlike. Then, from (5.19)
we way write,

0 0 1 0 0 0 0 0
1w+ |0]|v=]0 cosh(h) —sinh(f) -1 |=]|i|P+]|0]|d
0 1 0 —sinh(f) cosh(8) 1 0 1

from (5.21,5.22) we have

v = —sinh(6) — cosh(6), v' = sinh(#) + cosh(h),

p' = —2sinh(0) — 2 cosh(f) and ¢’ = sinh(#) + cosh(9).
We have

e =-10, fA=0, g* =-1.0, e =05, fB=0and ¢® =0.

If we substitute these results into (5.23), we have

(e (' (0))* + 24/ (0)v'(0) + g (v'(0))*) — (P (' (9))* + 21 PP (0)d' (0) + 97 (d'(0))*) =
O —

(6.2)
We have

eq2 = 0.

® cq3 = <NA,0/'(0)>L — <NB,0/'(9)>L , for us
Choosing pz = (0,0,1) such that Dy, = ps X, N = (0, 1,0) is spacelike. Then, from (5.19) we

way write,
0 0 1 0 0 0 0 0
1 {u+ |0 | 0 cosh(f)) —sinh(8) 1=]3 P+10|d
0 1 0 —sinh(f) cosh(6) 0 0 1

from (5.21,5.22) we have
u' = cosh(0), v = —sinh(), p’ = 2cosh(#) and ¢ = — sinh(6).

We have

e =-1.0, fA=0, g =-1.0, e = =05, fP=0and g% =0.

If we substitute these results into (5.23), we have
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We have

(et (W' (0))* + 24/ (0)v'(0) + g™ (v'(9))?) — (P (W' (0))* + 2/ PP (0)d' (0) + 9P (' (0))*) =

0
1 £ 0
(6.3)

eq3 # 0.

e eqd = (N4, a"(9)>L — (NB, a"(9)>L , for g
Choosing j14 = (0,1,0) such that Dy, = g X1, N = (0,0, 1) is timelike. Then, from (5.19) we way write

i.e, we have

We have

/

u

1

0 0 0 0
0 cosh(f)) —sinh(6) 0|=1|13 P+|0|d.
0 —sinh(f) cosh(0) 1 0 1

—sinh(0), v' = cosh(#), p’ = —2sinh(0) and ¢ = cosh(h).

e =-1.0, fA=0, ¢g*

—1.0, e = —05, fB=0and g% = 0.

If we substitute these results into (5.23), we have

(e (u'(0))? + 24’ (0)0(8) + g™ (v'(0))%) — (P (0 (0))* + 21 PP (0)d'(0) + ¢P(d'(6))) = 0
-1 # 0 .
(6.4)
We have
eqd # 0.

As <NA,0/'(9)>L —(NB, a(0)), = 0for s, i € {1,2} and we have (N4, o/’(0)>L - <NB,O/’(9)>L #
0 for s, i € {3,4}, then P is a branch point. Since we can choose any value for theta, so let’s choose § = 0,
then we have: o (tg) = Dr(N) = pu1 X, N = (0,1,1). and o/ (tg) = D, (N) = pa xp N =(0,-1,1).

eql

eq2

eq3

eq4

solution

eql =0

eq2 =0

eq3 #0

eqd #0

a/(to) = RSP(G,N) M1 Xr, N, Oé/(to) = RSP(H,N) M2 X, N,VG

Figure 6.1: $4 N S5,

Example 6.2.
Let us consider the surface S and S® by the parametric equations

S (u,v) = (

Figure 6.2: SANSB.  Figure 6.3: SANSE.  Figure 6.4: SA N SB.

u,vt,v) . SB(p,q) = (p,0,q).
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Since the unit normal vectors of these surfaces at the intersection point P = S4(1,0) = SB(1,0) =
(1,0,0) are N4 = NB = N, these surfaces intersect tangentially at P. The vectors S{(1,0) = (1,0,0),

SA(1,0) = (0,0,1), SE(1,0) = (1,0,0) and SE(1,0) = (0,0,1), produce N4 = —SpxL5

P T TS T
(0,—1,0) and NB = % = (0,—1,0). The vector normal N4 = N¥ = N = (0,—1,0) are
spacelikes. Let us now apply our second method to find the tangential direction.

Since N = (0, —1,0) is spacelike, We must test the four equations:
e ¢ql = <NA,0/'(9)>L — <NB,O/I(9)>L, for pa
Let 1 = (1,0, 1) be lightlike, we get Dy, = pu; X1, N = (1,0, 1) is lightlike. Then, from (5.19) we

way write
1 0 cosh(#) 0 —sinh(6) 1 1 0
0|+ [0 |v= 0 1 0 ol=|o|r+]o0|d.
0 1 —sinh(0) 0  cosh(0) 1 0 1
i.e, we have
v’ = cosh(f) — sinh(6), v' = —sinh(#) + cosh(h),
p’ = cosh(f) — sinh(0) and ¢’ = — sinh(6) + cosh(6).
We have

eA =00, fA=0, ¢g* =00, e =00, fB=0and g% =0.

If we substitute these results into (5.23), we have

(e (u'(0))? + 24’ (0)0(0) + g™ (v'(9))%) — (P (0 (0))* + 221 ()¢ (0) + ¢P(d'(9))%) =
0 —
(6.5)
We have

eql = 0.

° ¢cq2 = <NA,0/'(9)>L - <NB,0/'(9)>L , for us
We need to choose g such that Dy, (N) = ug X N is lightlike, but linearly independent with
DL(N) = M1 X[, N.
Choosing pa = (—1,0, 1) such that Dy, = pa x5, N = (1,0, —1) is lightlike. Then, from (5.19)
we way write,

1 0 cosh(0) 0 —sinh(0) 1 1 0
0 |u+|0]|v= 0 1 0 0o |=]o0|+]o0|d
0 1 —sinh(0) 0  cosh(0) -1 0 1

from (5.21,5.22) we have

u’ = cosh(f) + sinh(6), v' = — sinh(#) — cosh(h),

p’ = cosh(0) + sinh(0) and ¢’ = — sinh(6) — cosh(6).

We have

A =0, f4=0,¢7=00, =0, fP=0andg® =0.
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If we substitute these results into (5.23), we have

(e (u'(6))? + 24’ (0)0(0) + g™ (v'(0))%) — (P (P (0))* + 21 PP ()¢ (0) + ¢P(d'(9))%) =
0 -
(6.6)
We have

eq2 = 0.

® cqd = <NA,O/'(9)>L — <NB,0/'(9)>L , for us
Choosing pz = (0,0,1) such that D, = us X N = (1,0,0) is spacelike. Then, from (5.19) we

way write,
1 0 cosh(#) 0 —sinh(0) 1 1 0
0|u+]0|v= 0 1 0 ol=|o0|P+|0|d
0 1 —sinh(0) 0  cosh(0) 0 0 1

from (5.21,5.22) we have

u’ = cosh(f), v = —sinh(f), p’ = cosh(f) and ¢’ = — sinh(6).
We have

=0, f4=0,¢"=0 =0, fB=0andg® =0.

If we substitute these results into (5.23), we have

(et (' (0))* + 24/ (0)v'(0) + g™ (v'(0))?) — (P (' (0))* + 2/ PP (0)d' (0) + 9P (d'(0))*) =
0

6.7)
We have

eq3 = 0.

e cqd = <NA, a”(9)>L — <NB, a”(9)>L , for pg.
Choosing 114 = (1,0,0) such that Dy, = pg X1, N = (0,0, 1) is timelike. Then, from (5.19) we way write

1 0 cosh(#) 0 —sinh(8) 0 1 0
0|+ [0 |v= 0 1 0 ol=|o|r+]o0|d.
0 1 —sinh(0) 0  cosh(0) 1 0 1

i.e, we have
u' = —sinh(f), v' = cosh(#), p’ = —sinh(0) and ¢ = cosh(6).
We have

=0, f4=0,¢"=0 =0, fP=0and¢® =0.

If we substitute these results into (5.23), we have

(e (W (6))% + 2f 4/ (0)v' (0) + g2 (V' (0))?) — (eB(p'(0))* + 25D (0)d () + gB(d'(6))*) = 0
0 -0
(6.8)
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We have

eqd = 0.

As (N4 0"(0)), — (NP, a/(0)), = 0for s, i € {1,2,3,4}, then surfaces have at least second order
contact at P.

eql eq2 eq3 eq4 solution

eql =0 | eq2=0 | eq3 =0 | eqg4 =0 | have at least second order contact at P.

Figure 6.5: Seconde Order Contact.

Example 6.3.
Let us consider the surface S* and S® by the parametric equations

SA(u,v) = (um m) 7

SB(p7q) = (_p_qvpvq)

Since the unit normal vectors of these surfaces at the intersection point P = S4(0,1) = SB(1,-1) =
(0,1,1) are N4 = NB = N, these surfaces intersect tangentially at P = (0,1, 1). The vectors S(0,1) =
(1,0,0), S;4(0,1) = (0,1,1), SE(1,-1) = (-1,1,1), SE(1,—1) = (~1,0,0), produce N* = S x,
SA4 = (0,—1,—1) and NB = SB xp S = (0,-1,—1). The vector normal N4 = ANZ = N =
(0, —1, —1) are lightlikes and \ = 1. Let us now apply our second method to find the tangential direction.
Since N(P) = (0, —1, —1) is lightlike, We must test the two equations:
e ¢ql = <NA,a"(9)>L — <NB,0/’(9)>L, for u1
Let 1 = (1,0,0) be lightlike, we get Dy, = 1 X, N = (0, 1,1) is lightlike. Then, from (5.19)
we way write

1 0 1 9 -0 0 -1 -1
0 |u+]1|vV=]| -6 1-050> 0.502 1= 1 |2+] 0 |d,
0 1 -0 —0.50% 0.50%+1 1 1 0

or

(R0, N)DL(N) x5 S, N),

/
B (0) <S{? XE S{j‘,N)L B 07 (6 9)
(Rig(0,N)DL(N) x g S, N) :
V() =
<Sv XE Su 7N>L
(6) = (Riype (0, N)DL(N) x5 SP,N) 1

<SB XE SB7N>
(Reype (0, 1\?)DL(N(; X g SL£7N>L . (6.10)
(SB xp SB.N), :

q'(0) =
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If we substitute these results into (5.23), we have

e (u'(9))% + 24/ (0)v'(0) + g4 (v/(0))? — P (1 (0))* — 2fPp' ()¢’ (0) — 3" (d'(9))* = .
(6.11)
A=Tlandwehavee! =1, fA=0,g*=0,e% =0, f8 =0, g% =0.

1.024+2.(0).0.1 +0.12 = 0.12 + 2.(0).1.(=1) — 0.(=1)2+ =
0 =

(6.12)

We have
eql =0.

eq2 = (N4, a”(0)>L — (N5, a”(0)>L , for ua.

We need to choose pig such that Dy, (N) = pa x 1, N is spacelike

Choosing p2 = (0,0,1) such that Dy, = ue X, N = (1,0,0) is spacelike. Then, from (5.19) we
way write,

1 0 1 0 9 ) . »
0w+ |1 |vV=] -6 1-050> 05062 0l=1|1 [P+] 0 |d,
0 1 —0  —056> 0502+1 | |0 | 0
or
W(0) = (Rig(0, N)DL(N) x5 S N)
T EhaESEN), T o
v'(0) = <R19(9vN)DL(N) X g Su,N>L _
- <S{)4 XE S{?a N>L B '
p/(e) _ <Rtype(9aN)DL(N) XE Sf’N>L y
<S;§ XE Sf,N>L J 610

<Rtype(97N)DL(N) XE SpB7 N>L

=60-1.
<StjzB XESE7N>L

q'(0) =

If we substitute these results into (5.23), we have

et (/' (0))? + 24/ (0)0'(0) + g4 (v'(0))? — e (9 (0))* — 2 PP (0)¢'(0) — 9" (d'(0))* =
A=1landwehavee? =1, fA=0,g4=0,ef =0, fB=0, gf =0. 1
1.12 4 2.(0).1.(=0) + 0.(=0)% = 0.(=0)%> + 2.(=0).(0 — 1) = 0.( = 1)+ = 0 616
1 = 0
We have
eq2 =1+#0.

As <NA,0/’(0)>L — (N5, a”(9)>L = 0 for p1 and <NA,O/’(9)>L — (N5, 0/’(0)>L = 0 for pa.
The vector tangent is
1 0 —0 0
o/ (tg) = Rig(0,N)us xp N(N) = | —9 1-0.502  0.502 1| =(0,1,1).
-6 —0.56% 0.50%+1 1
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eql eq2 solutions

eql=0 | eq2 #0 | &/ (to) = Ryg(6,N) p1 x, N for any 6.

Rot[0. N|p, <1 N

Figure 6.6: S4 N SE. Figure 6.7: S4 N SB. Figure 6.8: S4 N SB.

7. Conclusion. Differently from the works in [47, 48, 49, 52], this study investigates tangential inter-
section curves instead of transversal intersections. We compute the tangent vector of tangential intersection
curves formed by the intersection of two spacelike, timelike, or lightlike surfaces, where the surface pairs
may be parametric—parametric in the three-dimensional Lorentz-Minkowski space E3.

Our novel approach is based on a newly defined operator and the Euler-Rodrigues rotation formula in
Minkowski 3-space. This methodology is applicable to both tangential and transversal intersection id the
surfaces parametrics. In this work, however, we focus only on tangential intersections.

The application of the Euler-Rodrigues rotation formula in Minkowski 3-space is more intricate than
the classical Rodrigues rotation formula in Euclidean 3-space. In the case of tangential intersection between
two timelike surfaces, the tangent vector is computed by applying the rotation to all three types of vectors:
spacelike, timelike, and lightlike. For tangential intersections of two lightlike surfaces, the rotation involves
spacelike and lightlike vectors. For two spacelike surfaces, the computation of the tangent vector is similar
to that using Rodrigues’ rotation formula in Euclidean 3-space.

As future work, we intend to extend the method to transversal intersection curves in Lorentz-Minkowski
space, possibly employing quaternions to simplify the computation of the tangent vector by rotating a sin-
gle vector. The generalization of our method to broader settings in Lorentz-Minkowski spaces E} and E}
remains an open direction for further research.
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