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Abstract
We present algorithms for computing the differential geometry properties of tangential intersection curves
of two surfaces in the three-dimensional Lorentz-Minkowski space E3

1. We compute the tangent vector of
tangential intersection curves of two surfaces parametric, where the surfaces can be: spacelike, timelike,
or lightlike. The first method computed the tangent vector using the equality of the projection of the second
derivative vector onto the normal vector and second method computes the tangent vector by applying a
rotation to a vector projected onto the tangent space, where the axis of rotation is the normal vector of the
surface. In Minkowski space, there are three types of rotations, since the normal vectors can be: spacelike,
lightlike, or timelike.

Keywords . Euler Rodrigues formula, Tangential Intersection, Lorentz Minkowski space, Surface-surface inter-
section.

Resumen
Presentamos algoritmos para calcular las propiedades de la geometrı́a diferencial de las curvas de inter-
sección tangencial de dos superficies en el espacio de Lorentz-Minkowski tridimensional E3

1. Calculamos el
vector tangente de las curvas de intersección tangencial de dos superficies paramétricas, donde las super-
ficies pueden ser: espaciales (spacelike), temporales (timelike) o isotrópicas (lightlike). El primer método
calcula el vector tangente utilizando la igualdad de la proyección del vector derivada segunda sobre el vec-
tor normal. El segundo método calcula el vector tangente aplicando una rotación a un vector proyectado
sobre el espacio tangente, donde el eje de rotación es el vector normal de la superficie. En el espacio de
Minkowski, existen tres tipos de rotaciones, ya que los vectores normales pueden ser: espaciales, isotrópi-
cos o temporales.

Palabras clave. Fórmula Euler Rodrigues; Intersección Tangencial; Espacio Lorentz Minkowski; Intersección
Superficie-superficie.

1. Introduction. Rotation matrices are very important matrices especially for computer sciences. For
this reason, the generation of a rotation matrix becomes one of the most important problems for mathe-
maticians. In differential geometry and mechanics, Euler-Rodrigues formula is a quite useful formula to
generate the rotation matrix for a given rotation angle θ around a given rotation axis in Euclidean 3-space.
If we take the skew-symmetric matrix as
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W =


0 wz −wy

wz 0 −wx

−wy wx 0

 .

where w = (wx, wy, wz) is a unit vector, then we get the Rodrigues formula

R = I + sin(θ)W + (1− cos(θ))W 2

.
In Minkowski 3-space, the rotation axis can be spacelike, timelike, or lightlike. Consequently, the

Euler–Rodrigues formula in Minkowski 3-space varies depending on the nature of the rotation axis. The
Rodrigues rotation formulas in Minkowski 3-space are provided in [1, 2]. Rotation matrices in Minkowski
3-space are generated using unit timelike split quaternions, as shown in [3]. The Rodrigues equation for
rotations with a spacelike rotation axis is presented in [4]. Geometric and algebraic interpretations of the
Euler–Rodrigues formula in Minkowski 3-space, as well as the derivation of the formula for spacelike,
timelike, and lightlike axes, are discussed in [5].

If the Lorentz metric (inner product) of signature (+,+,−), then the semi-skew-symmetric matrix

W =


0 −wz wy

wz 0 −wx

wy −wx 0

 .

where w = (wx, wy, wz) is rotation axis, then we get the Euler-Rodrigues formula

If w is unit spacelike vector, we have Rsp(θ,w) = I3 + sinh(θ)W + (−1 + cosh(θ))W 2

If w is unit timelike vector, we have Rtm(θ,w) = I3 + sin(θ)W + (1− cos(θ))W 2

If w is lightlike vector, we have Rlg(θ,w) = I3 + θ W +
θ2

2
W 2.

The Rodrigues’ rotation formula was introduced into the surface intersection problem by Bahar and
Mustafa in [6]. In that paper, the authors proposed new approaches for analyzing both tangential and
transversal intersections of two surfaces in Euclidean 3-space using Rodrigues’ rotation formula. In [7, 8],
the authors employed Rodrigues’ rotation formula to derive the geometric properties of the transversal
intersection curve of two regular parametric and implicit surfaces in R3, including the computation of
geodesic curvature and geodesic torsion.

The surface–surface intersection (SSI), is a fundamental problem in computational geometry and ge-
ometric modeling of complex shapes. For general parametric surface intersections, the most commonly
used methods include subdivision and marching. Marching-based algorithms begin by finding a starting
point on a intersection curve, and proceed to march along the curve. The marching method which yields
linear approximation of the intersection curve is used to generate the sequences of exact points of the inter-
section curve in a direction obtained by the local differential geometry. To compute the intersection curve
with precision, we need higher-order approximation, i.e. higher-order derivative vectors of the intersection
curve.

We can find the geometric properties of parametric curves in the classical literature on differential
geometry in Euclidean space E3 [9, 10, 11, 12, 13] and in the contemporary literature on geometric mod-
eling [14, 15, 16, 17]. There is a textbook with a systematic study of curves and surfaces in Lorentz-
Minkowski space such as it occurs in the Euclidean space, in the books [18]. Some of the topics of this
paper can be found in some books [19, 20, 21] and thesis in Minkowski space [22] and papers [23, 24, 25,
26, 27, 28, 29, 30]. A general reference including many topics in semi-Riemannian geometry is the classical
book [21].

Differential geometry of intersection curves of (n−1) hypersurfaces in Euclidean space En, n ≥ 3 can
be found in several articles, on the other hand, there is very little or almost nothing literature for differential
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geometry of transversal intersection curves of (n − 1) hypersurfaces in Lorentz-Minkowski space En
1 ,

n ≥ 3 and there is no tangential intersection curve of (n − 1) hypersurfaces in Lorentz-Minkowski space
En
1 , n = 3, 4.

For transversal intersections in Euclidean spaces En
1 , n = 3, 4, various studies have addressed the

computation of differential geometric properties of the intersection curves. Willmore [13] obtained the
unit tangent, unit principal normal, and unit binormal vectors, along with the curvatures of the intersection
curve of two implicit surfaces in E3, using the operator △ = λ d

ds =
(
h1

∂
∂x + h2

∂
∂y + h3

∂
∂z

)
, where

h = ∇f×∇g. Faux and Pratt [14] provided an expression for the curvature of the intersection curve of two
parametric surfaces. Using the Implicit Function Theorem, Hartmann [31] derived formulas for computing
the curvature and geodesic curvature of intersection curves for all three types of intersection problems in E3.
Ye and Maekawa [32] expressed the curvature vector as a linear combination of the normal vectors of the
intersecting surfaces and represented the third-order derivative vector as a linear combination of the tangent
and normal vectors, thereby obtaining the Frenet frame and curvatures of the intersection curve. Gold-
man [33] derived closed-form expressions for computing the curvatures of the intersection curve of two
implicit surfaces in E3, as well as the first curvature of the intersection curve in (n+1)-dimensional space.
Aléssio [34] computed the curvature and torsion of the transversal intersection of two implicit surfaces us-
ing the Implicit Function Theorem. Building on the method of Ye and Maekawa and the Implicit Function
Theorem, Aléssio [35] developed a technique for computing the Frenet apparatus of the transversal inter-
section curve of three implicit hypersurfaces in E4. Düldül and Çalışkan [36] computed the geodesic torsion
and geodesic curvature of the intersection curve of two regular surfaces defined by parametric-parametric
and implicit-implicit equations. Düldül [37] proposed a method to compute the Frenet frame and curvatures
of the transversal intersection curve of three parametric hypersurfaces in E4. Nassar et al. [38], in CAGD,
provided a method for computing the Frenet vectors and curvatures of the transversal intersection curve
of implicit-parametric-parametric and implicit-implicit-parametric hypersurfaces in E4. Uyar Düldül and
Düldül [39] extended Willmore’s method to four-dimensional space. Aléssio [40] computed the normal
curvature, the first geodesic curvature, and the first geodesic torsion of the transversal intersection curve of
n − 1 implicit hypersurfaces in En. Following the ideas of Willmore, Düldül and Akbaba [41] proposed a
new method for analyzing the intersection of two surfaces in three-dimensional space and three hypersur-
faces in four-dimensional space, where at least one (hyper)surface is defined parametrically. Finally, Bahar
and Mustafa Düldül [6] introduced two new approaches for analyzing the transversal intersection of two
surfaces in Euclidean 3-space using Rodrigues’ rotation formula.

For tangential intersections in E3, the available literature is relatively limited. Ye and Maekawa [32]
proposed an algorithm for evaluating higher-order derivatives of the tangential intersection curve of two sur-
faces, considering all three types of surface-surface intersection problems in E3. Çalışkan and Düldül [42]
computed the unit tangent vector and the geodesic torsion of the tangential intersection curve of two sur-
faces, also addressing all three intersection types. Nassar et al. [43] investigated the differential geometric
properties of the Frenet apparatus (t, n, b, κ, τ) of intersection curves of two implicit surfaces in R3, treating
both transversal and tangential cases using the Implicit Function Theorem. Bahar and Mustafa Düldül [6] in-
troduced two new approaches for analyzing the tangential intersection of two surfaces in Euclidean 3-space,
utilizing Rodrigues’ rotation formula and Willmore’s method. For tangential intersections in E4, the authors
of [44] studied the non-transversal intersection of parametric-parametric-parametric hypersurfaces. In [45],
they addressed the non-transversal intersection of implicit-implicit-parametric and implicit-parametric-
parametric hypersurfaces, and in [46], the non-transversal intersection of implicit-implicit-implicit hyper-
surfaces in E4.

The differential geometry of intersection curves arising from transversal intersections in Lorentz-
Minkowski spaces E3

1 and E4
1 has been studied in several works [47, 48, 49]. Aléssio and Guadalupe [47]

investigated the transversal intersection curve of two parametric spacelike surfaces in E3
1, considering the

parametric-parametric intersection problem. Zafer and Yusuf [50] studied the intersection curve of two
parametric timelike surfaces in E3

1. Karaahmetoğlu and Aydemir [51] examined the intersection curves
between parametric spacelike and timelike surfaces in E3

1. Düldül and Çalışkan [48] computed the Frenet
vectors and curvatures of the spacelike intersection curve of three spacelike hypersurfaces defined paramet-
rically in four-dimensional Minkowski space E4

1. Aléssio et al. [52] studied the differential geometry of the
transversal intersection curves of two surfaces in Minkowski 3-space E3

1, where the surfaces may be space-
like, timelike, or lightlike. They considered all combinations of pairs: spacelike-lightlike, timelike-lightlike,
and lightlike-lightlike.

In this paper, we compute the tangent vector of tangential intersection curves of two surfaces in the
three-dimensional Lorentz-Minkowski space E3

1, where the combination of the surfaces (spacelike, time-
like, or lightlike) can be parametric-parametric. We propose two new approaches for handling the tangential
intersection of two surfaces in E3

1. Our first method differs from the approach of Ye and Maekawa only in
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the metric used, along with certain adaptations for cases involving lightlike surfaces. Our second method
modifies the use of Rodrigues’ rotation formula. In the work of Bahar and Mustafa, the rotation was carried
out in Euclidean space, whereas in our approach, the rotation is performed in Lorentz-Minkowski space.
This method uses the Euler-Rodrigues formula in cases where the rotation axis—given by the normal vector
of the surface—is spacelike, timelike, or lightlike in E3

1.
The remainder of the paper is organized as follows: Section 2 introduces some notation and definitions,

and reviews relevant aspects of differential geometry in the Lorentz-Minkowski 3-space E3
1. Section 3

further develops the notation and revisits the differential geometry of curves and surfaces in E3
1. Section 4

presents the Euler-Rodrigues formula adapted to Minkowski 3-space. Section 5 focuses on the differential
geometry of the tangential intersection curve of two surfaces in E3

1, where we propose two methods. The
first method is analogous to the one by Ye and Maekawa [32] in Euclidean space, while the second is based
on the approach of Bahar and Mustafa [6], but adapted using the Euler-Rodrigues formula in Minkowski
3-space. Some numerical results are provided in Section 6, and concluding remarks are given in Section 7.

2. Preliminaries. In this paper we denote by the Lorentz-Minkowski 3-space E3
1, the pair (R3, ⟨, ⟩1)

where R3 is a three dimensional real vector space equipped with a Lorentz metric (inner product) of signa-
ture (2,1). That is, if v = (x1, x2, x3) and u = (y1, y2, y3), then

⟨v,u⟩L = x1y1 + x2y2 − x3y3.

Two vectors u and v in E3
1 are said to be orthogonal if ⟨u,v⟩L = 0. An arbitrary vector u in E3

1 which
satisfies ⟨u,u⟩1 = ±1 is called a unit vector.

We say that an arbitrary vector v ̸= 0 in E3
1 is called spacelike, timelike or lightlike(null), if respec-

tively holds ⟨v,v⟩L > 0, ⟨v,v⟩L < 0 or ⟨v,v⟩L = 0. In particular, the vector v = 0 is spacelike. If
v = (x1, x2, x3) ∈ E3

1 we define it norm by

∥v∥L = |⟨v,v⟩1|
1
2 = 2

√
|x1x1 + x2x2 − x3x3|.

The timelike vectors can be separate in two disjoint sets, with describes the next definition.
Definition 2.1. Let F be the set of all timelike vectors in E3

1. If u is a timelike vector, the timelike cone
of u is the set

C(u) = {v ∈ F|⟨u,v⟩L < 0}.

The opposite timelike cone is C(−u) = −C(u) = {v ∈ F|⟨u,v⟩L > 0}. Since u⊥ is spacelike, F is
the disjoint union of these two timelike cones, i.e, F = C(−u)

⋃
C(u). Furthermore we can conclude of the

definition that, two timelike vectors v and w in E3
1 are in the same timelike cone if and only if ⟨v,w⟩L < 0.

The Results the following show the relation of two vectors in E3
1 with the usual or hyperbolic angle formed

between them.
Proposition 2.1. [21] Let v and w be timelike vectors in E3

1. Then
• |⟨v,w⟩L| ≥ ∥v∥L ∥w∥L, with equality if and only if v and w are collinear (reverse inequality

Cauchy-Schwarz);
• If v and w are in the same timelike cone of E3

1, there is a unique θ ≥ 0, called the hyperbolic
angle between v and w, such that ⟨v,w⟩L = −∥v∥L ∥w∥L cosh(θ);

• If v and w are not in the same timelike cone of E3
1, there is a unique θ ≥ 0, called the hyperbolic

angle between v and w, such that ⟨v,w⟩L = ∥v∥L ∥w∥L cosh(θ).
Definition 2.2. [25] Let u, v ∈ E3

1 . The Lorentizian vector product of u and v is to the unique vector
denoted by u ×L v that satisfies

⟨u ×L v,w⟩L = det(u, v,w), (2.1)

where det(u, v,w) is the determinant of the matrix obtained by replacing by columns the coordinates of the
three vectors u, v and w.

We also define the vector product of u and v (in that order) as the unique vector u×L v ∈ E3
1 such that

u×L v =

∣∣∣∣∣∣∣∣∣
e1 e2 −e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣ = (u2v3 − u3v2,−(u1v3 − u3v1),−(u1v2 − u2v1)) ,

where {e1, e2, e3} is the canonical basis of E3
1 and u = (u1, u2, u3) and v = (v1, v2, v3). We have

{e1, e2, e3} is the canonical basis of R3
1, which satisfy e1×Le2 = −e3, e2×Le3 = e1 and e3×Le1 = e2.



Alessio O, Cintra Neto L.A.R.- Selecciones Matemáticas. 2025; Vol.12(1):97-122 101

Corollary 2.1. [25] (Lagrange’s Identities). Let u, v ∈ E3
1 . Then

⟨u ×L v,u ×L v⟩L = −det

⟨u,u⟩L ⟨u, v⟩L
⟨v,u⟩L ⟨v, v⟩L

 . (2.2)

Remark 2.1. [25] Let us observe that if u and v are two non-degenerate vectors, then B = {u, v,u ×L v}
is basis of ∈ E3

1. However, and in contrast to the Euclidean space, the causal character of u and v deter-
mines if the basis is or is not positively oriented. Exactly, if u and v are spacelike vectors of E3

1 then u×Lv
is a timelike and B is negatively oriented because det(u, v,u ×L v) = ⟨u ×L v,u ×L v⟩L < 0. Is u and v
have different causal character, then B is positively oriented.

Proposition 2.2. [25] Let E3
1, then

• Two null (lightlike) vectors are linearly dependent if and only if they are orthogonal;
• Two timelike vectors are never orthogonal;
• A timelike vector is never orthogonal to a null (lightlike) vector.

Proposition 2.3. [25] For u,v,w ∈ E3
1 we have

• ⟨u×L v,u⟩L = 0 and ⟨u×L v,v⟩L = 0;

• ⟨u×L v,u×L v⟩L = ⟨u,v⟩2L − ⟨u,u⟩L ⟨v,v⟩L ;
• Let u be a spacelike vector, v be a null vector, then ⟨u,v⟩L ̸= 0 if and only if u×L v is spacelike.

Also ⟨u,v⟩L = 0 if and only if u×L v is null;
• If u and v are null vectors, then u×L v is a spacelike vector;
• If u is a timelike vector, v is a null vector, then u×L v is spacelike vector.

Proposition 2.4. [25] Let E3
1, then

• Two null (lightlike) vectors are linearly dependent if and only if they are orthogonal;
• Two timelike vectors are never orthogonal;
• A timelike vector is never orthogonal to a null (lightlike) vector.

Proposition 2.5. [25] Let U be a vector subspace of E3
1. The following statements are equivalent:

• U is a lightlike subspace;
• U contains a lightlike vector bute not a timelike one;
• U ∩ C = L − {0}, and dim L = 1.

Proposition 2.6. (Causal Character). Let M ⊂ E3
1 be a regular surface. We say that:

• M is spacelike, if for each p ∈ M, TpM is a spacelike plane;
• M is timelike, if for each p ∈ M, TpM is a timelike plane;
• M is lightlike, if for each p ∈ M, TpM is a lightlike plane.

Remark 2.2.
• We will have a situation similar to what happened for curves: by continuity, if TpM is spacelike or

timelike for some p ∈ M, then TqMwill have the same causal type for each q in some neighbor-
hood of pinM. This way,we may possibly restrict our attention to surfaces with constant causal
character, when needed.

• If M has no points p for which TpM is lightlike, we’ll simply say that M is non-degenerate.

3. Curves in E3
1 . The follows definition classifies the curves in E3

1.
Definition 3.1. A regular curve α : I ⊂ R → E3

1 can locally be a spacelike, timelike or null (lightlike),
if all of its velocity vectors α′(s) are respectively spacelike, timelike or null (lightlike).

Definition 3.2. For any non-lightlike vector v⃗ ̸= 0, we set its indicator ϵv to be the sign of ⟨v⃗, v⃗⟩L, that
is, ϵv = 1 if v⃗ is spacelike, ϵv = −1 if v⃗ is timelike, and ϵv = 0 if v⃗ is lightlike.

Definition 3.3. [18] Let α : I → E3
1 be a parametrized curve. We’ll say that α is admissible if:

• α is biregular, that is, {α′(t), α′′(t)} is linearly independent for all t ∈ I;
• both α′(t) and span {α′(t), α′′(t)} are not lightlike, for all t ∈ I .

Remark 3.1. If α(s)′ and α′′(s) are orthogonal and span {α′(t), α′′(t)} are not lightlike, then α′′(s)
cannot be lightlike.

Definition 3.4. Let α : I → E3
1 be a unit admissible curve. The indicador of α is ϵα = ⟨tα, tα⟩L and

coindicador of α is ηα = ⟨nα,nα⟩L , where tα = α′(s) and nα =
α′′(s)

κα(s)
.

3.1. The Frenet-Serret trihedron. Definition 3.5. (Frenet-Serret Trihedron for admissible unit speed
curve). Let α : I → E3

1 be an admissible unit speed curve.The tangent vector to α at s is tα(s) = α′(s).
The curvature of the curve α at s is κα(s) = ∥t′(s)∥L. The assumptions on α ensure that κα(s) > 0 for all
s ∈ I , so that the unit vector pointing in the same direction as t′(s) is well defined, allowing us to define
the normal vector to α at s, by the relation t′α(s) = κα(s)nα(s). Lastly, the binormal vector to α at s is
defined as the unique vector b(s) making the basis {t(s),nα(s),bα(s)} orthonormal and positive.
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Theorem 1. [18] (Frenet-Serret Equations admissible curve ( If curve is spacelike, the α(s)′′ cannot
be lightlike)). Let α : I → E3

1 be a unit speed admissible curve. Then
t′α(s) = καnα(s);

n′
α(s) = −ϵαηακα(s)tα(s) + τα(s)bα(s);

b′α(s) = ϵατα(s)nα(s).

(3.1)

Where

κα(s) = ϵα ⟨t′α(s),nα(s)⟩L , τα(s) = −ϵαηα ⟨n′
α(s),bα(s)⟩L and bα(s) = −ϵαηαtα(s)×L nα(s).

Definition 3.6. (Frenet-Serret apparatus for admissible curves not necessarily having unit speed). Let
α : I → E3

1 be an admissible curve and s be an arclength function for α. Write α(t) = α̃(s(t)). The
tangent, normal and binormal vectors to α em t are defined by tα(t) = tα̃(s(t)), nα(t) = nα̃(s(t)) and
bα(t) = bα̃(s(t)). The curvature of the curve κα(t) = κα̃(s(t)) and torsion τα(t) = τα̃(s(t))

Proposition 3.1. Let α : I → E3
1 be an admissible curve. Given t ∈ I , the formulas hold:

κα(t) =
∥α′(t)×L α′′(t)∥L

∥α′(t)∥3L
;

τα(t) =
det (α′(t), α′′(t), α′′′(t))

∥α′(t)×L α′′(t)∥2L
.

These expressions represent, respectively, the curvature κα(t) and the torsion τα(t) of the curve α in
the three-dimensional Minkowski space E3

1, where ×L and ∥ · ∥L denote the Lorentzian cross product and
norm, respectively.

Definition 3.7. [18] A unit speed curve α : I → E3
1 is called semi-lightlike if span {α′(s), α′′(s)} is

degenerate (and, thus,α′′(s) is lightlike) for all s ∈ I
• In view of this definition, we’ll allow the indicator ϵα and the coindicator ηα to be zero. This way, if
α is lightlike, we have that (ϵα, ηα) = (0, 1), while if a is semi-lightlike, we have (ϵα, ηα) = (1, 0).
This is done to treat both cases simultaneously

• Since the arclenght parameter is denoted by s and arc-photon parameter by ϕ. we will allow
ourselves to simply omit the parameter when discussing results for both cases.

Theorem 2. [18] (Arc-photon) α : I → E3
1 be a lightlike parametrized curve such that ∥α′′(t)∥ ≠ 0

for all t ∈ I . Then α admits an arc-photon reparametrization, that is, there exists an open interval J and a
diffeomorphism h : J → I such that β = α(h) satisfies ∥α′′(ϕ)∥L = 1 for all ϕ ∈ J.

Let β : J ⊂ R → R3
1 be a regular curve parametrized by parameter ϕ, with the same trace of the null

curve α(s), i.e.

β(ϕ) = α(h(ϕ)), h(ϕ) =
∫ ϕ

ϕ0
∥α′′(u)∥−

1
2

L du and
dh

dϕ
= ∥α′′(ϕ)∥−

1
2

L . Thus,

Notice that, if dh
dϕ = 0 then the curve is a straight-line.

Definition 3.8. [18] Let α : I → E3
1 be lightlike or semi-lightlike. We define the tangent and the

normal to the curve by

tα=̇α′ and nα=̇α′′.

Proposition 3.2. [18] Let α : I → E3
1 be semi-lightlike, then ⟨tα, tα⟩L = 1, ⟨nα,nα⟩L = 0, if defined

bα = tα ×E nα (cross product Euclidean)

and ⟨nα, bα⟩L = −1, and ⟨bα, tα⟩L = 0. The triple {tα,nα,bα} is a positive basis for E3
1. Consequently

⟨bα, bα⟩L = ⟨n, t⟩L = 0.
Proposition 3.3. [18] If α : I → E3

1 be lightlike, then ⟨tα, tα⟩L = 0 and ⟨nα,nα⟩L = 1, if defined

bα = tα ×E nα (cross product Euclidean)

and ⟨nα, bα⟩L = 0, and ⟨bα, tα⟩L = −1. The triple {tα,nα,bα} is a positive basis for E3
1. Consequently

⟨bα, bα⟩L = ⟨tα,nα⟩L = 0.
Orientations for a lightlike plane [18].
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Figure 3.1: Orientations for a lightlike plane.

Definition 3.9. [18] Let α : I → E3
1 be lightlike or semi-lightlike. The pseudo-torsion of α is given by

τα
.
= −⟨n′

α,bα⟩L .

Remark 3.2. In the literature, this pseudo-torsion is also called the Cartan curvature of α.
Theorem 3. [18] (Frenet-Serret Equations -lightlike or semi-lightlike curves ) Let α : I → E3

1. Then
we have


t′α = n;

n′
α = ηα τα tα + ϵα τα nα;

b′α = ϵαtα + ηα τα nα − ϵα τα bα.

(3.2)

3.2. Surfaces in E3
1 . Definition 3.10. [18] [Regular Parametrized Surface] A smooth map S : U ⊂

R2 −→ E3
1 is called a regular parametrized surface if DS(u, v) has full rank for all (u, v) ∈ U .

3.2.1. Normal vector of parametric Spacelike, Timelike and Ligthlike Surfaces in E3
1.

The unit normal vector field N of a parametric spacelike (or a timelike) surface M
. The unit normal vector is given by

N =
Su ×L Sv

∥Su ×L Sv∥L
. (3.3)

The unit normal vector field N of a parametric lightlike surface M
. The unit normal vector is given by

N = Su ×L Sv. (3.4)

Remark 3.3. Since Su ×L Sv is lightlike, it follows from Proposition (2.3) that the vectors Su and Sv

can be either lightlike or spacelike. If ⟨Su,Sv⟩L = 0, then one element of the sett {Su,Sv} is lightlike
and the other is spacelike. If both elements of the set {Su,Sv} are spacelike, then ⟨Su,Su⟩L ⟨Sv,Sv⟩L =

(⟨Su,Sv⟩L)
2. Both vectors cannot be lightlike, as we would have Su ×L Sv being spacelike.

3.3. Curves and Surface in E3
1 .

3.3.1. Curves in Parametric Surface in E3
1 . Consider an parametric surface represented by S : U ⊂

R2 −→ V ∩S ⊂ E3
1 and let α(s) a curve in the surface defined by α(s) = S(u(s), v(s)). The α′(s), α′′(s)

and α′′′(s) is

α′(s) = Suu
′ + Svv

′, (3.5)
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α′′(s) = Suu
′′ + Svv

′′ + Suu(u
′)2 + 2Suvu

′v′ + Svv(v
′)2. (3.6)

Therefore, the projection of the vectors α′(s), α′′(s) and α′′′(s) onto the unit normal vector field (N) of the
surface S(u, v) are given respectively by

⟨α′,N⟩L = 0, (3.7)

⟨α′′,N⟩L = ⟨Suu,N⟩L (u′)2 + 2 ⟨Suv,N⟩L u′v′ + ⟨Svv,N⟩L (v′)2. (3.8)

4. Euler-Rodrigues formula in Minkowski 3-space (E3
1). In [5, 4], the Lorentz metric (inner prod-

uct) of signature (−,+,+), the semi-skew-symmetric matrix W obtained from the vector w = (wx, wy, wz)
axis with unit length be

W =


0 wz −wy

wz 0 −wx

−wy wx 0

 .

In this work, the Lorentz metric (inner product) of signature (+,+,−), then the semi-skew-symmetric
matrix W obtained from the vector w = (wx, wy, wz) axis with unit length be

W =


0 −wz wy

wz 0 −wx

wy −wx 0

 .

Case 4. [5, 4] Assume that w = (wx, wy, wz) is unit spacelike vector, then we get

Rsp(θ,w) = I3 + sinh(θ)W + (−1 + cosh(θ))W 2, (4.1)

where in this work, the Lorentz metric (inner product) of signature (+,+,−), then we have

Rsp =


1 + (−1 + cosh(θ)(w2

y − w2
z) −sinh(θ)wz − (−1 + cosh(θ))wxwy sinh(θ)wy + (−1 + cosh(θ))wxwz

sinh(θ)wz − (−1 + cosh(θ))wxwy 1 + (−1 + cosh(θ))(w2
x − w2

z) −sinh(θ)wx + (−1 + cosh(θ))wywz

sinh(θ)wy − (−1 + cosh(θ))wxwz −sinh(θ)wx − (−1 + cosh(θ))wywz 1 + (−1 + cosh(θ))(w2
x + w2

y)

 .

Case 5. [5, 4] Assume that w = (wx, wy, wz) is unit timelike axis, then we get

Rtm(θ,w) = I3 + sin(θ)W + (1− cos(θ))W 2, (4.2)

where in this work, the Lorentz metric (inner product) of signature (+,+,−), then we have

Rtm =


1 + (1− cos(θ)(w2

y − w2
z) −sin(θ)wz − (1− cos(θ))wxwy sin(θ)wy + (1− cos(θ))wxwz

sin(θ)wz − (1− cos(θ))wxwy 1 + (1− cos(θ))(w2
x − w2

z) −sin(θ)wx + (1− cos(θ))wywz

sin(θ)wy − (1− cos(θ))wxwz −sin(θ)wx − (1− cos(θ))wywz 1 + (1− cos(θ))(w2
x + w2

y)

 .

Case 6. [5] If w = (wx, wy, wz) is lightlike axis, then we get

Rlg(θ,w) = I3 + θ W +
θ2

2
W 2, (4.3)

where in this work, the Lorentz metric (inner product) of signature (+,+,−), then we have



Alessio O, Cintra Neto L.A.R.- Selecciones Matemáticas. 2025; Vol.12(1):97-122 105

Rlg =


1 + ( θ

2

2 )(w2
y − w2

z) −θwz − ( θ
2

2 )wxwy θwy + ( θ
2

2 )wxwz

θwz − ( θ
2

2 )wxwy 1 + ( θ
2

2 )(w2
x − w2

z) −θwx + ( θ
2

2 )wywz

θwy − ( θ
2

2 )wxwz −θwx − ( θ
2

2 )wywz 1 + ( θ
2

2 )(w2
x + w2

y)

 .

Where

I3 =


1 0 0

0 1 0

0 0 1

 .

4.1. Operator DL. In the paper [?], the authors defined the operator D(w) = µ ×E w, where ×E

cross product Euclidean space. In this subsection, we defined DL. Let w be a nonzero vector in E3
1. We

define DL as

DL(w) = µ×L w. (4.4)

Where ×L is cross product Lorentzian spaces.
Proposition 4.1. If the vector µ is chosen arbitrary such that it is linearly independent with w, then

DL(w) yields never a zero vector and also we can see that
i)

⟨DL(w),DL(w)⟩L = ⟨µ×L w, µ×L w⟩L = −det

∣∣∣∣∣∣ ⟨µ, µ⟩L ⟨µ,w⟩L
⟨w, µ⟩L ⟨w,w⟩L

∣∣∣∣∣∣ = λ2 − εuεw,

where ⟨µ,w⟩L = λ. εu = ⟨u,u⟩L and εw = ⟨w,w⟩L .
ii) If µ and w are spacelike vectors, we have DL(w) is spacelike or DL(w) is timelike or DL(w) is

lightlike ;
iii) If µ and w are timelike vectors, we have DL(w) is spacelike;
iv) If µ and w are lightlike (linearly independent), them DL(w) is spacelike vector;
v) If µ is timelike(spacelike) and w is spacelike (timelike), them DL(w) is spacelike vector;

vi) If µ is lightlike (spacelike) and w is spacelike (lightlike) with ⟨µ,w⟩L = 0 them DL(w) is lightlike
vector;

vii) If µ is lightlike (spacelike) and w is spacelike (lightlike) with ⟨µ,w⟩L ̸= 0 them DL(w) is space-
like vector;

viii) If µ is lightlike (timelike) and w is timelike (lightlike), them DL(w) spacelike vector, λ ̸= 0.
The operator DL will play the main role together with the Euler-Rodrigues formula in Minkowski

3-space for finding the tangent vector at the tangential intersection point of the intersection curve of two
surfaces.

Remark 4.1. The rotation Rtm(θ,w) = I3 + sin(θ)W + (1 − cos(θ))W 2 of vector DL(N)
∥DL(N)∥L

still
keeps it unitary, but the rotation Rsp(θ,w) = I3 + sinh(θ)W + (1 − cosh(θ))W 2 does not maintain its
unit length. See the figure below.

Remark 4.2. The Rsp(θ,N)
DL(N)

∥DL(N)∥L
, transform the timelike vectors to timelike vectors, the space-

like vectors to spacelike vectors and the lightlike vectors to lightlike vectors.
Theorem 7. The Rlg(θ,N)DL(N) transform the lightlike vectors to lightlike vectors.
Proof: Since the axis of the rotation is lightlike, the matrix of rotation is

Rlg(θ,N) =


1 + ( θ

2

2 )(w2
y − w2

z) −θwz − ( θ
2

2 )wxwy θwy + ( θ
2

2 )wxwz

θwz − ( θ
2

2 )wxwy 1 + ( θ
2

2 )(w2
x − w2

z) −θwx + ( θ
2

2 )wywz

θwy − ( θ
2

2 )wxwz −θwx − ( θ
2

2 )wywz 1 + ( θ
2

2 )(w2
x + w2

y)

 .

Let DL(N) = [a, b, c] lightlike vector, the multiplication Rlg(θ,N)DL(N) is
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Figure 4.1:
Rtm(θ,N) DL(N)

∥DL(N)∥L
.

Figure 4.2:
Rsp(θ,N) DL(N)

∥DL(N)∥L
.

Figure 4.3:
Rsp(θ,N) DL(N)

∥DL(N)∥L
.

Figure 4.4:
Rsp(θ,N)DL(N).

Rlg(θ,N)DL(N) =


a
(

θ2(w2
2−w2

3)
2 + 1

)
+ b

(
− θ2w1w2

2 − θw3

)
+ c

(
θ2w1w3

2 + θw2

)
a
(
− θ2w1w2

2 + θw3

)
+ b

(
θ2(w2

1−w2
3)

2 + 1
)
+ c

(
θ2w2w3

2 − θw1

)
a
(
− θ2w1w3

2 + θw2

)
+ b

(
− θ2w2w3

2 − θw1

)
+ c

(
θ2(w2

1+w2
2)

2 + 1
)

 .

The norma is

∥Rlg(θ,N)DL(N)∥L =

[
a

(
θ2(w2

2 − w2
3)

2
+ 1

)
+ b

(
−θ2w1w2

2
− θw3

)
+ c

(
θ2w1w3

2
+ θw2

)]2

+

[
a

(
−θ2w1w2

2
+ θw3

)
+ b

(
θ2(w2

1 − w2
3)

2
+ 1

)
+ c

(
θ2w2w3

2
− θw1

)]2

−
[
a

(
−θ2w1w3

2
+ θw2

)
+ b

(
−θ2w2w3

2
− θw1

)
+ c

(
θ2(w2

1 + w2
2)

2
+ 1

)]2

.

(4.5)

Since w = (w1, w2, w3) and DL(N) = [a, b, c] are lightlike, we have w2
3 = w2

1 + w2
2 and a2 = b2 + c2.

Replacing w2
3 = w2

1 + w2
2 and a2 = b2 + c2 in the equation above, we have the equation below

∥Rlg(θ,N)DL(N)∥L =
a2θ4w2

1w
2
2

4
− a2θ4w2

1w
2
3

4
+

a2θ4w4
2

4
− a2θ4w2

2w
2
3

2
+

a2θ4w4
3

4
+ a2

− abθ4w3
1w2

2
− abθ4w1w

3
2

2
+

abθ4w1w2w
2
3

2
+

acθ4w3
1w3

2
+

acθ4w1w
2
2w3

2

− acθ4w1w
3
3

2
+

b2θ4w4
1

4
+

b2θ4w2
1w

2
2

4
− b2θ4w2

1w
2
3

2
− b2θ4w2

2w
2
3

4
+

b2θ4w4
3

4
+ b2

+
bcθ4w2

1w2w3

2
+

bcθ4w3
2w3

2
− bcθ4w2w

3
3

2
− c2θ4w4

1

4
− c2θ4w2

1w
2
2

2
+

c2θ4w2
1w

2
3

4

− c2θ4w4
2

4
+

c2θ4w2
2w

2
3

4
− c2,

(4.6)

simplifying

∥Rlg(θ,N)DL(N)∥L =
cθ4w3

2

(
aw3

1 + aw1w
2
2 − aw1w

2
3 + bw2

1w2 + bw3
2 − bw2w

2
3

)
simplifying

∥Rlg(θ,N)DL(N)∥L =
cθ4w3

2

(
aw1(w

2
1 + w2

2)− aw1w
2
3 + bw2(w

2
1 + w2

2)− bw2w
2
3

)
and replacing again w2

3 = w2
1 + w2

2 , we have

∥Rlg(θ,N)DL(N)∥L = 0.

□
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5. Differential Geometry of Tangential Intersection Curve of Two Surfaces in E3
1. Now, let us

assume the two surfaces SA and SB intersect tangentially at a point P0 = SA(u0, v0) = SB(p0, q0) on
the intersection curve α(s), i.e., NA(u0, v0) ∥ NB(p0, q0) at P0. If the surfaces are spacelike or timelike,
by orienting the surfaces properly we can assume that NA(u0, v0) = NB(p0, q0) = N . If the surfaces are
lightlike, NA(u0, v0) = λNB(p0, q0), for some real λ ∈ R.

5.1. First method.

5.1.1. Parametric-parametric surfaces Spacelike or Timelike
. Let SA and SB be two regular surfaces spacelike or timelike given by the parametric equations SA(u, v) =
(x(u, v), y(u, v), z(u, v)) and SB(p, q) = (x(p, q), y(p, q), z(p, q)). The vector α′(s0) of the tangential in-
tersection curve α(s) = SA(u(s), v(s)) = SB(p(s), q(s)), i.e.

t = SA
u u

′ + SA
v v

′ = SB
p p′ + SB

q q′ (5.1)

and the projection of the vector α′′(s0) onto NA(u0, v0) and NB(p0, q0) in the point P0 = SA(u0, v0) =
SB(p0, q0) where surfaces SA and SB intersect tangentially

〈
NA(u0, v0), α

′′(s0)
〉
L
=

〈
NB(p0, q0), α

′′(s0)
〉
L
, (5.2)

produces the equation in terms of the coefficients of the second fundamental form it becomes

eA(u′)2 + 2fAu′v′ + gA(v′)2 = eB(p′)2 + 2fBp′q′ + gB(q′)2 . (5.3)

Since the equation (5.1) consists of four variables u′, v′, p′ and q′, we can write p′ and q′ in terms of
u′ and v′.

p′ = a11u
′ + a12v

′,

q′ = a21u
′ + a22v

′,
(5.4)

where

a11 =

〈
SA
u ×L SB

q , N
〉
L〈

SB
p ×L SB

q , N
〉
L

; a12 =

〈
SA
v ×L SB

q , N
〉
L〈

SB
p ×L SB

q , N
〉
L

, (5.5)

a21 =

〈
SA
u ×L SB

p , N
〉
L〈

SB
q ×L SB

p , N
〉
L

; a22 =

〈
SA
v ×L SB

p , N
〉
L〈

SB
q ×L SB

p , N
〉
L

. (5.6)

Substituting (5.4) into (5.3), we have

b11(u
′)2 + 2b12u

′v′ + b22(v
′)2 = 0, (5.7)

where

b11 = a211e
B + 2a11a12f

B + a221g
B − eA;

b12 = a11a12e
B + 2(a11a22 + a21a12)f

B + a21a22g
B − fA;

b22 = a212e
B + 2a12a22f

B + a222g
B − gA.

If ω =
u′

v′
when d11 ̸= 0 or µ =

v′

u′ when d22 ̸= 0, we have

b11ω
2 + 2b12ω + b22 = 0, (5.8)

t =
ωSA

uA
+ SA

vA

∥ωSA
uA

+ SA
vA∥

,
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or

b22µ
2 + 2b12µ+ b11 = 0, (5.9)

t =
SA
uA

+ µSA
vA

∥SA
uA

+ µSA
vA∥

.

5.1.2. Parametric-parametric surfaces Lightlike. Let SA and SB be two regular surfaces lightlike
given by the parametric equations SA(u, v) = (x(u, v), y(u, v), z(u, v)) and SB(p, q) = (x(p, q), y(p, q), z(p, q)).
The vector α′(s0) of the tangential intersection curve α(s) = SA(u(s), v(s)) = SB(p(s), q(s)), i.e.

t = SA
u u

′ + SA
v v

′ = SB
p p′ + SB

q q′ (5.10)

and the projection of the vector α′′(s0) onto NA(u0, v0) and NB(p0, q0) in the point P0 = SA(u0, v0) =
SB(p0, q0) where surfaces SA and SB intersect tangentially

〈
NA(u0, v0), α

′′(s0)
〉
L
=

〈
NB(p0, q0), α

′′(s0)
〉
L
, (5.11)

produces the equation in terms of the coefficients it becomes

ēA(u′)2 + 2f̄Au′v′ + ḡA(v′)2 = ēB(p′)2 + 2f̄Bp′q′ + ḡB(q′)2 , (5.12)

ēi =
〈
Ni, Si

uu

〉
L
; f̄ i =

〈
Ni, Si

uv

〉
L
; ḡi =

〈
Ni, Si

vv

〉
L
, i ∈ {A,B}.

Remark 5.1. Since N(u0, v0) = SA
v (u0, v0) ×L SA

v (u0, v0) = λSB
p (p0, q0) ×L SB

q (p0, q0) is light-
like, we have

〈
SA
u (u0, v0)×L SA

v (u0, v0),N
〉
L
= 0 and

〈
SB
p (p0, q0)×L SB

q (p0, q0),N
〉
L
= 0, but〈

SB
p (p0, q0)×E SB

q (p0, q0),N
〉
L
̸= 0.

In fact, let SB
p (p0, q0)×LS

B
q (p0, q0) = (a, b, c), then SB

p (p0, q0)×ES
B
q (p0, q0) = (a, b,−c), therefore

SB
p (p0, q0)×E SB

q (p0, q0) is lightlike,
if the product

〈
SB
p (p0, q0)×E SB

q (p0, q0), S
B
p (p0, q0)×L SB

q (p0, q0)
〉
L
= 0 by Proposition (2.4) we have

SB
p (p0, q0)×L SB

q (p0, q0) ∥
(
SB
p (p0, q0)×E SB

q (p0, q0)
)
. Which is absurd.

Since the equation (5.10) consists of four variables u′, v′, p′ and q′, p′ and q′ it can be written in terms
of u′ and v′.

p′ = a11u
′ + a12v

′,

q′ = a21u
′ + a22v

′,
(5.13)

where

a11 =

〈
SA
u ×E SB

q ,N
〉
L〈

SB
p ×E SB

q ,N
〉
L

; a12 =

〈
SA
v ×E SB

q ,N
〉
L〈

SB
p ×E SB

q ,N
〉
L

; (5.14)

a21 =

〈
SA
u ×E SB

p ,N
〉
L〈

SB
q ×E SB

p ,N
〉
L

; a22 =

〈
SA
v ×E SB

p ,N
〉
L〈

SB
q ×E SB

p ,N
〉
L

. (5.15)

Substituting (5.4) into (5.12), we have

b11(u
′)2 + 2b12u

′v′ + b22(v
′)2 = 0, (5.16)

where

b11 = a211ē
B + 2a11a12f̄

B + a221ḡ
B − ēA;

b12 = a11a12ē
B + 2(a11a22 + a21a12)f̄

B + a21a22ḡ
B − f̄A;

b22 = a212ē
B + 2a12a22f̄

B + a222ḡ
B − ḡA.
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If ω =
u′

v′
when d11 ̸= 0 or µ =

v′

u′ when d22 ̸= 0, we have

b11ω
2 + 2b12ω + b22 = 0. (5.17)

t =
ωSA

uA
+ SA

vA

∥ωSA
uA

+ SA
vA∥

, if t is spacelike.

t = ωSA
uA

+ SA
vA , if t is lightlike.

or

b22µ
2 + 2b12µ+ b11 = 0. (5.18)

t =
SA
uA

+ µSA
vA

∥SA
uA

+ µSA
vA∥

, if t is spacelike.

t = SA
uA

+ µSA
vA , if t is lightlike.

5.1.3. Solution of the Equations. There are four distinct cases to the solution of the equations (5.7,
5.16) depending upon the discriminant ∆ = b212 − 4b11b22.

1. Isolated tangential contact point: If ∆ < 0 then the equations does not have any solution. Thus, P
is an isolated contact point of SA and SB .

2. Tangential intersection curve: If ∆ = 0 and b211 + b212 + b222 ̸= 0 then the equations has double
roots and t is unique. Thus, SA and SB intersect at P and at its neighborhood.

3. Branch point: If ∆ > 0 then the equations has distinct roots. Thus, P is a branch point of the
intersection curve α(s): there is another intersection branch crossing α(s) at P .

4. Higher-order contact point: Is b11 = b12 = b22 = 0 then the equations are vanishes for any values
of u′ and v′. Thus, SA and SB has contact of at least second order at P .

5.2. Second method. This method will be called the Euler-Rodrigues formula in Minkowski 3-space
(E3

1).
The rotation with rotation angle θ around the axis in the direction of N is Rtype(θ,N), where type =

{sp, tm, lg}, depending on whether N is spacelike or timelike or lightlike, respectively.

By the definition of D, the vector D(N) lies in the common tangent plane of the surfaces SA and SB .
Thus, after a suitable rotation with rotation angle θ around the axis in the direction of N, the vector of
D(N) is multiple of the unit tangent vector t of the intersection curve at P (0 ≤ θ < π ).

The normal vector of the surface N can be spacelike or timelike or lightlike. The rotation Rsp(θ,N)
DL(N)

∥DL(N)∥L
around axis N may not preserve the length of vector

DL(N)

∥DL(N)∥L
and furthermore the vector DL(N)

cannot be unitary, as it can be lightlike. Thus, the rotation will be Rtype(θ,N)DL(N), and the vec-
tor DL(N) can not be unitary. Therefore instead of α′(s) = λRtype(θ,N)DL(N) we will use α′(t) =
Rtype(θ,N)DL(N).

5.2.1. Parametric-parametric surfaces Spacelike or Timelike. The vector tangent is

α′(t) = SA
u u

′(t) + SA
v v

′(t) = SB
p p′(t) + SB

q q′(t) = Rtype(θ,N)DL(N). (5.19)

The projection of the vector α′′ onto NA and NB produces the equation.

〈
NA, α′′〉

L
=

〈
NB , α′′〉

L
,

eA(u′)2 + 2fAu′v′ + gA(v′)2 = eB(p′)2 + 2fBp′q′ + gB(q′)2.
(5.20)
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The u′, v′ and p′, q′ values can be found in terms of the rotation angle θ.

u′(θ) =

〈
Rtype(θ,N)DL(N)×L SA

v ,N
〉
L

⟨SA
u ×L SA

v ,N⟩L
,

v′(θ) =

〈
Rtype(θ,N)DL(N)×L SA

u ,N
〉
L

⟨SA
v ×L SA

u ,N⟩L
.

(5.21)

p′(θ) =

〈
Rtype(θ,N)DL(N)×L SB

q ,N
〉
L〈

SB
p ×L SB

q ,N
〉
L

,

q′(θ) =

〈
Rtype(θ,N)DL(N)×L SB

p ,N
〉
L〈

SB
q ×L SB

p ,N
〉
L

.

(5.22)

Substituting these solutions u′(t) = u′(θ), v′(t) = v′(θ), p′(t) = p′(θ), and, q′(t) = q′(θ) in (5.21)
yields a trigonometric equation:

eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2 = eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2. (5.23)

5.2.2. Parametric-parametric surfaces Lightlike. The projection of the vector α′′ onto NA and
λNB produces the equation.

〈
NA, α′′〉

L
=

〈
λNB , α′′〉

L
,

ēA(u′)2 + 2f̄Au′v′ + ḡA(v′)2 = λ
(
ēB(p′)2 + 2f̄Bp′q′ + ḡB(q′)2

)
.

(5.24)

The u′, v′ and p′, q′ values can be found by solving a linear system

u′(θ) =

〈
Rtype(θ,N)DL(N)×E SA

v ,N
〉
L

⟨SA
u ×E SA

v ,N⟩L
,

v′(θ) =

〈
Rtype(θ,N)DL(N)×E SA

u ,N
〉
L

⟨SA
v ×E SA

u ,N⟩L
.

(5.25)

p′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

q ,N
〉
L〈

SB
p ×E SB

q ,N
〉
L

,

q′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

p ,N
〉
L〈

SB
q ×E SB

p ,N
〉
L

.

(5.26)

Substituting these solutions u′(t) = u′(θ), v′(t) = v′(θ), p′(t) = p′(θ), and, q′(t) = q′(θ) in (5.24)
yields a trigonometric equation:

ēA(u′(θ))2 + 2f̄Au′(θ)v′(θ) + ḡA(v′(θ))2 = λ(ēB(p′(θ))2 + 2f̄Bp′(θ)q′(θ) + ḡB(q′(θ))2). (5.27)

5.2.3. Solution of the Equations. Theorem 8. Let SA and SB be timelike surfaces that intersect
tangentially at a point P0 = SA(u0, v0) = SB(p0, q0), i.e., NA(u0, v0) ∥ NB(p0, q0) at P0. Since
the surfaces are timelike, the normal vector N is spacelike. Therefore, the corresponding rotation is of
spacelike type: Rsp(θ,N). As a result, the transformation Rsp(θ,N)DL(N) maps lightlike vectors to
lightlike vectors.

Proof:
See theorem 1 of the [4] article. □
Theorem 9.
Let SA and SB be lighlike surfaces that intersect tangentially at a point P0 = SA(u0, v0) = SB(p0, q0),

i.e., NA(u0, v0) ∥ NB(p0, q0) at P0. Since the surfaces are lighlike, the normal vector N is lighlike.
Therefore, the corresponding rotation is of lighlike type: Rlg(θ,N). As a result, the transformation
Rsp(θ,N)DL(N) maps lightlike vectors to lightlike vectors.

Proof: In fact, since the rotation Rlg(θ,N(P0))DL(N(P0)) maps lightlike vectors to lightlike vectors
(7), and since TpM is a lightlike subspace, then there is only one lightlike vectors at p ∈ M , TpM . If the
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vector tangent α′(s0) is lightlike and DL(N(P0)) is lightlike, then Rlg(θ,N(P0))DL(N(P0)) is lightlike
and belongTpM , therefore Rlg(θ,N(P0))DL(N(P0)) = α′(s0) for all θ.

Since 〈
Ni, α′′(t)

〉
L
= −

〈
(Ni)′, α′(t)

〉
L
,

if θ0 is a solution of

〈
NA((u0, v0)), α

′′(θ)
〉
L
−

〈
λNB((p0, q0)), α

′′(θ)
〉
L
= 0,〈

(NA((u0, v0)))
′, α′(θ)

〉
L
−
〈
λ(NB((p0, q0)))

′, α′(θ)
〉
L
= 0, for all θ.

therefore

〈
NA((u0, v0)), α

′′(θ)
〉
L
−

〈
λNB((p0, q0)), α

′′(θ)
〉
L
≡ 0,

□
Remark 5.2.
To analyze the solutions of the trigonometric equations (5.23,5.27 ) in the variable θ, we need to

separate into three cases: When N is timelike or is lightlike or is spacelike.
• If N is timelike, we have the following cases depending upon the number of solutions:

(a) If equation has no solution, then P is the isolated contact point.
(b) If equation has one simple solution, then we have one intersection curve passing through P.
(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch

passing through P.
(d) If equation vanishes, then surfaces have at least second order contact at P.

• If N is spacelike in p ∈ M, TpM is a timelike plane, then TpM contains two linearly independent
lightlike vectors, timelike and spacelike vector, therefore the vector tangent can be spacelike, time-
like or lightlike. Since the rotation Rsp(θ,N)DL(N) transform the timelike vectors to timelike
vectors, the spacelike vectors to spacelike vectors and the lightlike vectors to lightlike vectors, we
must choose four vector µi i ∈ {1, 2, 3, 4} for DL(N) = µi ×L N. We can choose the vector µ1

such that DL(N) = µ1 ×L N be lightlike and µ2 such that DL(N) = µ2 ×L N lightlike and µ3

such that DL(N) = µ3 ×L N spacelike and µ4 such that DL(N) = µ4 ×L N timelike.

eq1 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ1; eq2 =

〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ2;

eq3 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ3; eq4 =

〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ4.
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eq1 eq2 eq3 eq4 case solution

eq1 ̸= 0 eq2 ̸= 0 eq3 ̸= 0 eq4 ̸= 0 a If equation has no solution, then P is the isolated contact point.

eq1 ≡ 0 eq2 ̸= 0 eq3 ̸= 0 eq4 ̸= 0 b α′(t0) = Rsp(θ,N) µ1 ×L N for any θ.

eq1 ̸= 0 eq2 ≡ 0 eq3 ̸= 0 eq4 ̸= 0 b α′(t0) = Rsp(θ,N) µ2 ×L N for any θ.

eq1 ̸= 0 eq2 ̸= 0 eq3 = 0 eq4 ̸= 0 b,c α′(t0) = Rsp(θi,N) µ3 ×L N, ifθi is solutions to the eq3 = 0.

eq1 ̸= 0 eq2 ̸= 0 eq3 ̸= 0 eq4 = 0 b,c α′(t0) = Rsp(θi,N) µ4 ×L N, if θi is solutions to the eq4 = 0.

eq1 ̸= 0 eq2 ≡ 0 eq3 ̸= 0 eq4 = 0 b,c α′(t0) = Rsp(θ,N) µ2 ×L N for any θ.

α′(t0) = Rsp(θi,N) µ4 ×L N, if θi is solutions to the eq4 = 0.

eq1 ̸= 0 eq2 ≡ 0 eq3 = 0 eq4 ̸= 0 b,c α′(t0) = Rsp(θ,N) µ2 ×L N, for any θ.

α′(t0) = Rsp(θi,N) µ3 ×L N, if θi is solutions to the eq3 = 0.

eq1 ≡ 0 eq2 ≡ 0 eq3 ≡ 0 eq4 ̸= 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N; α′(t0) = Rsp(θ,N) µ2 ×L N, ∀ θ.

eq1 ≡ 0 eq2 ≡ 0 eq3 ̸= 0 eq4 ≡ 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N; α′(t0) = Rsp(θ,N) µ2 ×L N, ∀ θ.

eq1 ≡ 0 eq2 ≡ 0 eq3 ̸= 0 eq4 ̸= 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N; α′(t0) = Rsp(θ,N) µ2 ×L N, ∀ θ.

eq1 ≡ 0 eq2 ̸= 0 eq3 ̸= 0 eq4 = 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N,f or any θ

α′(t0) = Rsp(θi,N) µ4 ×L N, if θi is solutions to the eq4 = 0.

eq1 ≡ 0 eq2 ̸= 0 eq3 = 0 eq4 ̸= 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N for any θ.

α′(t0) = Rsp(θi,N) µ3 ×L N, if θi is solutions to the eq3 = 0.

eq1 ̸= 0 eq2 ̸= 0 eq3 = 0 eq4 = 0 b,c α′(t0) = Rsp(θi,N) µ3 ×L N, if θi is solutions to the eq3 = 0.

α′(t0) = Rsp(θi,N) µ4 ×L N, if θi is solutions to the eq4 = 0.

eq1 ≡ 0 eq2 ̸= 0 eq3 = 0 eq4 = 0 b,c α′(t0) = Rsp(θ,N) µ1 ×L N, for any θ.

α′(t0) = Rsp(θi,N) µ3 ×L N, if θi, is solutions to the eq3 = 0.

α′(t0) = Rsp(θi,N) µ4 ×L N, if θi is solutions to the eq4 = 0.

eq1 ̸= 0 eq2 ≡ 0 eq3 = 0 eq4 = 0 b,c α′(t0) = Rsp(θ,N) µ2 ×L N for any θ.

α′(t0) = Rsp(θi,N) µ3 ×L N, ifθi is solutions to the eq3 = 0

α′(t0) = Rsp(θi,N) µ4 ×L N, ifθi is solutions to the eq4 = 0

eq1 ≡ 0 eq2 ≡ 0 eq3 ≡ 0 eq4 ≡ 0 d have at least second order contact at P

Table 5.1: Solutions.

Where the cases are:
(a) If equation has no solution, then P is the isolated contact point.
(b) If equation has one simple solution, then we have one intersection curve passing through P.
(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch

passing through P.
(d) If equation vanishes, then surfaces have at least second order contact at P.

• If N is lightlike in p ∈ M, TpM is a lightlike plane, then by proposition (2.5) the TpM con-
tains only one vector lightlike vector and spacelike vector, but not a timelike one, therefore vector
tangent can be spacelike or lightlike.
Since DL(N) can be spacelike or lightlike, the rotation Rlg(θ,N)DL(N) transform the DL(N)
spacelike vector to spacelike or lighlike vectors and DL(N) lightlike vectors to lightlike vectors,
we must choose µ1 such that DL(N) = µ1×LN be lightlike and µ2 such that DL(N) = µ2×LN
spacelike. For the choice of µ, see Proposition (4.1).

eq1 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ1;
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eq2 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ2.

eq1 eq2 case solutions

eq1 ̸= 0 eq2 ̸= 0 a If equation has no solution, then P is the isolated contact point

eq1 ≡ 0 eq2 ̸= 0 b α′(t0) = Rlg(θ,N) µ1 ×L N,∀θ.

eq1 ≡ 0 eq2 = 0 c α′(t0) = Rlg(θ,N) µ1 ×L N,∀θ.

α′(t0) = Rlg(θi,N) µ2 ×L N if θi is solutions of the equation eq2 = 0.

eq1 ̸= 0 eq2 = 0 c α′(t0) = Rlg(θi,N) µ2 ×L N if θi is solutions of the equation eq2 = 0.

eq1 ≡ 0 eq2 ≡ 0 d have at least second order contact at P.

Table 5.2: Solutions

Where the cases are:
(a) If equation has no solution, then P is the isolated contact point.
(b) If equation has one simple solution, then we have one intersection curve passing through P.
(c) If equation has several simple solutions, then P is a branch point, i.e. we have another branch

passing through P.
(d) If equation vanishes, then surfaces have at least second order contact at P.

6. Example. In this section, we present some examples that illustrate our new methods.
Example 6.1. Let us consider the surface SA and SB by the parametric equations

SA(u, v) = (cos(u)cos(v), sin(u)cos(v), sin(v)) . SB(p, q) =

(
1

2
cos(p) +

1

2
,
1

2
sin(p), q

)
.

Since the unit normal vectors of these surfaces at the intersection point P = SA(0, 0) = SB(0, 0) =
(1, 0, 0) are NA = NB = N , these surfaces intersect tangentially at P. The vectors SA

u (0, 0) = (0, 1, 0),

SA
v (0, 0) = (0, 0, 1), SB

p (0, 0) = (0, 1/2, 0) and SB
q (0, 0) = (0, 0, 1), produce NA =

SA
u ×LSA

v

∥SA
u ×LSA

v ∥
L

=

(1, 0, 0) and NB =
SB
p ×LSB

q

∥SB
p ×LSB

q ∥L

= (1, 0, 0). The vector normal NA = NB = N = (1, 0, 0) are space-

likes. Let us now apply our second method to find the tangential direction.
Since N = (1, 0, 0) is spacelike, We must test the four equations:

• eq1 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ1

Let µ1 = (0, 1, 1) be lightlike, we get DL = µi ×L N = (0, 1, 1) is lightlike. Then, from (5.19) we
way write


0

1

0

u′ +


0

0

1

 v′ =


1 0 0

0 cosh(θ)) −sinh(θ)

0 −sinh(θ) cosh(θ)




0

1

1

 =


0

1
2

0

 p′ +


0

0

1

 q′.

i.e, we have

u′ = − sinh(θ) + cosh(θ), v′ = − sinh(θ) + cosh(θ),

p′ = −2 sinh(θ) + 2 cosh(θ) and q′ = − sinh(θ) + cosh(θ).

We have

eA = −1.0, fA = 0, gA = −1.0, eB = −0.5, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have
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(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

0 = 0

(6.1)
We have

eq1 ≡ 0.

• eq2 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ2

We need to choose µ2 such that DL(N) = µ2 ×L N is lightlike, but linearly independent with
DL(N) = µ1 ×L N.
Choosing µ2 = (0, 1,−1) such that DL = µ2 ×L N = (0,−1, 1) is lightlike. Then, from (5.19)
we way write,


0

1

0

u′ +


0

0

1

 v′ =


1 0 0

0 cosh(θ)) −sinh(θ)

0 −sinh(θ) cosh(θ)




0

−1

1

 =


0

1
2

0

 p′ +


0

0

1

 q′.

from (5.21,5.22) we have

u′ = − sinh(θ)− cosh(θ), v′ = sinh(θ) + cosh(θ),

p′ = −2 sinh(θ)− 2 cosh(θ) and q′ = sinh(θ) + cosh(θ).

We have

eA = −1.0, fA = 0, gA = −1.0, eB = −0.5, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

0 = 0

(6.2)
We have

eq2 ≡ 0.

• eq3 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ3

Choosing µ3 = (0, 0, 1) such that DL = µ3 ×L N = (0, 1, 0) is spacelike. Then, from (5.19) we
way write,


0

1

0

u′ +


0

0

1

 v′ =


1 0 0

0 cosh(θ)) −sinh(θ)

0 −sinh(θ) cosh(θ)




0

1

0

 =


0

1
2

0

 p′ +


0

0

1

 q′.

from (5.21,5.22) we have

u′ = cosh(θ), v′ = − sinh(θ), p′ = 2 cosh(θ) and q′ = − sinh(θ).

We have

eA = −1.0, fA = 0, gA = −1.0, eB = −0.5, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have
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(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

1 ̸= 0

(6.3)
We have

eq3 ̸= 0.

• eq4 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ4

Choosing µ4 = (0, 1, 0) such that DL = µ4 ×L N = (0, 0, 1) is timelike. Then, from (5.19) we way write


0

1

0

u′ +


0

0

1

 v′ =


1 0 0

0 cosh(θ)) −sinh(θ)

0 −sinh(θ) cosh(θ)




0

0

1

 =


0

1
2

0

 p′ +


0

0

1

 q′.

i.e, we have

u′ = − sinh(θ), v′ = cosh(θ), p′ = −2 sinh(θ) and q′ = cosh(θ).

We have

eA = −1.0, fA = 0, gA = −1.0, eB = −0.5, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

−1 ̸= 0
.

(6.4)
We have

eq4 ̸= 0.

As
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
≡ 0 for µi, i ∈ {1, 2} and we have

〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
̸=

0 for µi, i ∈ {3, 4}, then P is a branch point. Since we can choose any value for theta, so let’s choose θ = 0,
then we have: α′(t0) = DL(N) = µ1 ×L N = (0, 1, 1). and α′(t0) = DL(N) = µ2 ×L N = (0,−1, 1).

eq1 eq2 eq3 eq4 solution

eq1 ≡ 0 eq2 ≡ 0 eq3 ̸= 0 eq4 ̸= 0 α′(t0) = Rsp(θ,N) µ1 ×L N; α′(t0) = Rsp(θ,N) µ2 ×L N,∀θ.

Figure 6.1: SA ∩ SB . Figure 6.2: SA ∩ SB . Figure 6.3: SA ∩ SB . Figure 6.4: SA ∩ SB .

Example 6.2.
Let us consider the surface SA and SB by the parametric equations

SA(u, v) =
(
u, v4, v

)
. SB(p, q) = (p, 0, q) .
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Since the unit normal vectors of these surfaces at the intersection point P = SA(1, 0) = SB(1, 0) =
(1, 0, 0) are NA = NB = N , these surfaces intersect tangentially at P. The vectors SA

u (1, 0) = (1, 0, 0),

SA
v (1, 0) = (0, 0, 1), SB

p (1, 0) = (1, 0, 0) and SB
q (1, 0) = (0, 0, 1), produce NA =

SA
u ×LSA

v

∥SA
u ×LSA

v ∥
L

=

(0,−1, 0) and NB =
SB
p ×LSB

q

∥SB
p ×LSB

q ∥L

= (0,−1, 0). The vector normal NA = NB = N = (0,−1, 0) are

spacelikes. Let us now apply our second method to find the tangential direction.
Since N = (0,−1, 0) is spacelike, We must test the four equations:

• eq1 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ1

Let µ1 = (1, 0, 1) be lightlike, we get DL = µi ×L N = (1, 0, 1) is lightlike. Then, from (5.19) we
way write


1

0

0

u′ +


0

0

1

 v′ =


cosh(θ) 0 −sinh(θ)

0 1 0

−sinh(θ) 0 cosh(θ)




1

0

1

 =


1

0

0

 p′ +


0

0

1

 q′.

i.e, we have

u′ = cosh(θ)− sinh(θ), v′ = − sinh(θ) + cosh(θ),

p′ = cosh(θ)− sinh(θ) and q′ = − sinh(θ) + cosh(θ).

We have

eA = 0.0, fA = 0, gA = 0.0, eB = 0.0, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

0 = 0

(6.5)
We have

eq1 ≡ 0.

• eq2 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ2

We need to choose µ2 such that DL(N) = µ2 ×L N is lightlike, but linearly independent with
DL(N) = µ1 ×L N.
Choosing µ2 = (−1, 0, 1) such that DL = µ2 ×L N = (1, 0,−1) is lightlike. Then, from (5.19)
we way write,


1

0

0

u′ +


0

0

1

 v′ =


cosh(θ) 0 −sinh(θ)

0 1 0

−sinh(θ) 0 cosh(θ)




1

0

−1

 =


1

0

0

 p′ +


0

0

1

 q′.

from (5.21,5.22) we have

u′ = cosh(θ) + sinh(θ), v′ = − sinh(θ)− cosh(θ),

p′ = cosh(θ) + sinh(θ) and q′ = − sinh(θ)− cosh(θ).

We have

eA = 0, fA = 0, gA = 0.0, eB = 0, fB = 0 and gB = 0.
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If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0,

0 = 0.

(6.6)
We have

eq2 ≡ 0.

• eq3 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ3

Choosing µ3 = (0, 0, 1) such that DL = µ3 ×L N = (1, 0, 0) is spacelike. Then, from (5.19) we
way write,


1

0

0

u′ +


0

0

1

 v′ =


cosh(θ) 0 −sinh(θ)

0 1 0

−sinh(θ) 0 cosh(θ)




1

0

0

 =


1

0

0

 p′ +


0

0

1

 q′.

from (5.21,5.22) we have

u′ = cosh(θ), v′ = − sinh(θ), p′ = cosh(θ) and q′ = − sinh(θ).

We have

eA = 0, fA = 0, gA = 0, eB = 0, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

0 = 0.

(6.7)
We have

eq3 ≡ 0.

• eq4 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ4.

Choosing µ4 = (1, 0, 0) such that DL = µ4 ×L N = (0, 0, 1) is timelike. Then, from (5.19) we way write


1

0

0

u′ +


0

0

1

 v′ =


cosh(θ) 0 −sinh(θ)

0 1 0

−sinh(θ) 0 cosh(θ)




0

0

1

 =


1

0

0

 p′ +


0

0

1

 q′.

i.e, we have

u′ = − sinh(θ), v′ = cosh(θ), p′ = − sinh(θ) and q′ = cosh(θ).

We have

eA = 0, fA = 0, gA = 0, eB = 0, fB = 0 and gB = 0.

If we substitute these results into (5.23), we have

(eA(u′(θ))2 + 2fAu′(θ)v′(θ) + gA(v′(θ))2)− (eB(p′(θ))2 + 2fBp′(θ)q′(θ) + gB(q′(θ))2) = 0

0 = 0
.

(6.8)
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We have

eq4 ≡ 0.

As
〈
NA, α′′(θ)

〉
L
−

〈
NB , α′′(θ)

〉
L
≡ 0 for µi, i ∈ {1, 2, 3, 4}, then surfaces have at least second order

contact at P.

eq1 eq2 eq3 eq4 solution

eq1 ≡ 0 eq2 ≡ 0 eq3 ≡ 0 eq4 ≡ 0 have at least second order contact at P.

Figure 6.5: Seconde Order Contact.

Example 6.3.
Let us consider the surface SA and SB by the parametric equations

SA(u, v) =
(
u, v,

√
u2 + v2

)
,

SB(p, q) = (−p− q, p, q) .

Since the unit normal vectors of these surfaces at the intersection point P = SA(0, 1) = SB(1,−1) =
(0, 1, 1) are NA = NB = N , these surfaces intersect tangentially at P = (0, 1, 1). The vectors SA

u (0, 1) =
(1, 0, 0), SA

v (0, 1) = (0, 1, 1), SB
p (1,−1) = (−1, 1, 1), SB

q (1,−1) = (−1, 0, 0), produce NA = SA
u ×L

SA
v = (0,−1,−1) and NB = SB

p ×L SB
q = (0,−1,−1). The vector normal NA = λNB = N =

(0,−1,−1) are lightlikes and λ = 1. Let us now apply our second method to find the tangential direction.
Since N(P ) = (0,−1,−1) is lightlike, We must test the two equations:

• eq1 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ1

Let µ1 = (1, 0, 0) be lightlike, we get DL = µ1 ×L N = (0, 1, 1) is lightlike. Then, from (5.19)
we way write


1

0

0

u′ +


0

1

1

 v′ =


1 θ −θ

−θ 1− 0.5θ2 0.5θ2

−θ −0.5θ2 0.5θ2 + 1




0

1

1

 =


−1

1

1

 p′ +


−1

0

0

 q′,

or

u′(θ) =

〈
Rlg(θ,N)DL(N)×E SA

v ,N
〉
L

⟨SA
u ×E SA

v ,N⟩L
= 0,

v′(θ) =

〈
Rlg(θ,N)DL(N)×E SA

u ,N
〉
L

⟨SA
v ×E SA

u ,N⟩L
= 1.

(6.9)

p′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

q ,N
〉
L〈

SB
p ×E SB

q ,N
〉
L

= 1,

q′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

p ,N
〉
L〈

SB
q ×E SB

p ,N
〉
L

= −1.

(6.10)
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If we substitute these results into (5.23), we have

ēA(u′(θ))2 + 2f̄Au′(θ)v′(θ) + ḡA(v′(θ))2 − ēB(p′(θ))2 − 2f̄Bp′(θ)q′(θ)− ḡB(q′(θ))2 = 0.

(6.11)
λ = 1 and we have ēA = 1, f̄A = 0, ḡA = 0, ēB = 0, f̄B = 0, ḡB = 0.

1.02 + 2.(0).0.1 + 0.12 − 0.12 + 2.(0).1.(−1)− 0.(−1)2+ = 0

0 = 0
(6.12)

We have

eq1 ≡ 0.

• eq2 =
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
, for µ2.

We need to choose µ2 such that DL(N) = µ2 ×L N is spacelike
Choosing µ2 = (0, 0, 1) such that DL = µ2 ×L N = (1, 0, 0) is spacelike. Then, from (5.19) we
way write,


1

0

0

u′ +


0

1

1

 v′ =


1 θ −θ

−θ 1− 0.5θ2 0.5θ2

−θ −0.5θ2 0.5θ2 + 1




1

0

0

 =


−1

1

1

 p′ +


−1

0

0

 q′,

or

u′(θ) =

〈
Rlg(θ,N)DL(N)×E SA

v ,N
〉
L

⟨SA
u ×E SA

v ,N⟩L
= 1,

v′(θ) =

〈
Rlg(θ,N)DL(N)×E SA

u ,N
〉
L

⟨SA
v ×E SA

u ,N⟩L
= −θ.

(6.13)

p′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

q ,N
〉
L〈

SB
p ×E SB

q ,N
〉
L

= −θ,

q′(θ) =

〈
Rtype(θ,N)DL(N)×E SB

p ,N
〉
L〈

SB
q ×E SB

p ,N
〉
L

= θ − 1.

(6.14)

If we substitute these results into (5.23), we have

ēA(u′(θ))2 + 2f̄Au′(θ)v′(θ) + ḡA(v′(θ))2 − ēB(p′(θ))2 − 2f̄Bp′(θ)q′(θ)− ḡB(q′(θ))2 = 0 .

(6.15)
λ = 1 and we have ēA = 1, f̄A = 0, ḡA = 0, ēB = 0, f̄B = 0, ḡB = 0.

1.12 + 2.(0).1.(−θ) + 0.(−θ)2 − 0.(−θ)2 + 2.(−θ).(θ − 1)− 0.(θ − 1)2+ = 0

1 = 0
. (6.16)

We have

eq2 = 1 ̸= 0.

As
〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
≡ 0 for µ1 and

〈
NA, α′′(θ)

〉
L
−
〈
NB , α′′(θ)

〉
L
̸= 0 for µ2.

The vector tangent is

α′(t0) = Rlg(θ,N)µ1 ×L N(N) =


1 θ −θ

−θ 1− 0.5θ2 0.5θ2

−θ −0.5θ2 0.5θ2 + 1




0

1

1

 = (0, 1, 1).
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eq1 eq2 solutions

eq1 ≡ 0 eq2 ̸= 0 α′(t0) = Rlg(θ,N) µ1 ×L N for any θ.

Figure 6.6: SA ∩ SB . Figure 6.7: SA ∩ SB . Figure 6.8: SA ∩ SB .

7. Conclusion. Differently from the works in [47, 48, 49, 52], this study investigates tangential inter-
section curves instead of transversal intersections. We compute the tangent vector of tangential intersection
curves formed by the intersection of two spacelike, timelike, or lightlike surfaces, where the surface pairs
may be parametric–parametric in the three-dimensional Lorentz-Minkowski space E3

1 .
Our novel approach is based on a newly defined operator and the Euler-Rodrigues rotation formula in

Minkowski 3-space. This methodology is applicable to both tangential and transversal intersection id the
surfaces parametrics. In this work, however, we focus only on tangential intersections.

The application of the Euler-Rodrigues rotation formula in Minkowski 3-space is more intricate than
the classical Rodrigues rotation formula in Euclidean 3-space. In the case of tangential intersection between
two timelike surfaces, the tangent vector is computed by applying the rotation to all three types of vectors:
spacelike, timelike, and lightlike. For tangential intersections of two lightlike surfaces, the rotation involves
spacelike and lightlike vectors. For two spacelike surfaces, the computation of the tangent vector is similar
to that using Rodrigues’ rotation formula in Euclidean 3-space.

As future work, we intend to extend the method to transversal intersection curves in Lorentz-Minkowski
space, possibly employing quaternions to simplify the computation of the tangent vector by rotating a sin-
gle vector. The generalization of our method to broader settings in Lorentz-Minkowski spaces E3

1 and E4
1

remains an open direction for further research.
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[7] Lone M S, Shahid MH, Sharma DS. A new approach towards transversal intersection curves of two surfaces in R3. Geometry,
Imaging and Computing. 2016; 3(3-4):81-99.

[8] Lone MS, Lone MA, Shahid MH. A new approach towards geodesic curvature and geodesic torsion of transversal intersection
in R3. Facta Universitatis, Series: Mathematics and Informatics. 2016; 31(3):741-749.

[9] Do Carmo MP. Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
[10] Spivak M. A comprehensive introduction to differential geometry. Vol. III. second edition. Wilmington, Del.: Publish or Perish,

Inc.; 1979.
[11] Stoker JJ. Differential geometry. Wiley Classics Library. New York, John Wiley & Sons, Inc.; 1989.
[12] Struik DJ. Lectures on classical differential geometry. second edition. New York: Dover Publications, Inc.; 1988.
[13] Willmore TJ. An introduction to differential geometry. Oxford: Clarendon Press; 1959.
[14] Faux ID, Pratt MJ. Computational geometry for design and manufacture. New York-Chichester-Brisbane: Ellis Horwood Ltd.,

Chichester, distributed by Halsted Press [John Wiley & Sons]; 1979.
[15] Farin G. Curves and surfaces for computer-aided geometric design. Computer Science and Scientific Computing. Academic

Press; 1997.
[16] Hoschek J, Lasser D. Fundamentals of computer aided geometric design. A K Peters, Ltd., Wellesley, MA; 1993.
[17] Patrikalakis NM, Maekawa T. Shape interrogation for computer aided design and manufacturing. Berlin, Springer-Verlag; 2010.

Paperback reprint of the 2002 edition.
[18] Couto IT, Lymberopoulos A. Introduction to Lorentz Geometry. London: CRC Press; 2020.
[19] Kobayashi O. Maximal surfaces in the 3-dimensional Minkowski space L3. Tokyo J. of Mathematics. 1983; 6(2) 297–309.
[20] Kühnel W. Differential Geometry: curves-surfaces-manifolds. 4th Edition, Vieweg, Wiesbaden; 2008.
[21] O’Neill B. Semi-Riemannian geometry. Vol. 103 of Pure and Applied Mathematics, New York: Academic Press, Inc. [Harcourt

Brace Jovanovich, Publishers]; with applications to relativity; 1983.
[22] Walrave J. Curves and surfaces in Minkowski space[Thesis (Ph.D.)]. Belgium: Katholieke Universiteit Leuven. ProQuest LLC,

Ann Arbor, MI; 1995.
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[49] As E, Sarioğlugil A. On integral invariants of ruled surface generated by the darboux frame of the transversal intersection
timelike curve of two timelike surfaces in lorentz-minkowski 3-space. African Journal of Mathematics and Computer
Science Research. 2014; 7(2):31-40.

[50] Sanh Z, Yayh Y. Non-null intersection curves of time-like surfaces in Lorentz-Minkowski 3-space. International Journal of



122 Alessio O, Cintra Neto L.A.R.- Selecciones Matemáticas. 2025; Vol.12(1):97-122
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