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Abstract

In dynamical systems it is known that metrically transitive systems are topologically transitive.
M. Morse in 1946 ([1]) conjectured that if the dynamical system has some degree of regularity, then
the converse is true.

In this article, we will study the Morse conjecture for R2-actions on three-dimensional manifolds
and prove the following two results: The conjecture is false if we do not impose restrictions on the
singular set and we will prove that The Morse’s Conjecture is valid for locally free actions.

Keywords . Topological Transitive, Group Action, Metrically Transitive.

1. Introduction. The study of transitive dynamical systems has a long tradition and it addresses
two initial problems: First, what are the topological restrictions on the manifold for the existence
of a dynamical system with a dense orbit? This problem is known as the admissibility problem. A
second question is what dynamic implications does a transitive system have?

The results of classifying transitive manifolds was systematically presented by Smith and Thomas
in 1988 in papers [2, 3]. Essentially, they characterize the compact, connected surfaces that admit
transitive flows as being different the sphere S2, the projective plane P2, or the Klein bottle B2. In
dimensions greater than or equal to three, the authors proved that every compact, connected, smooth
manifold admits a transitive flow. The problems of characterizing which non-compact surfaces or
manifolds are transitive are still open.

On the other hand, in relation to the study of the second problem, in [1] Morse defined a dy-
namical system Metrically Transitive as being a flow such that if K is a compact, invariant set then
m(K)m(N \ K) = 0, where m denoted the Lebesgue measure. He conjectured that a vector
field defined in a admissible manifold (manifolds that admit a flow with a dense orbit), with some
regularity about the singular set, is metrically transitive.

About the Morse’s Conjecture on surfaces exist many works, [4, 5, 6, 7]. In the first three
articles, the authors prove, using different methods, that every real analyticv and transitive flow over
an admissible surface is metrically transitive. In the Fourth article, the author proved that every
C2-transitive flow on an admissible surface with a finite number of singular orbits is metrically
transitive.

When the system is defined by actions of Rk with k ≥ 3 on closed manifolds n-dimensional, the
author does not know results for the two problems mentioned above, except for some initial results.
In [8], the author started the study of these two problems when the singular set is non-empty and the
partial results on our two problems are described in [9, 10].

The aim of this article is to present some answers to Morse’s conjecture for some dynamical
systems defined by actions of R2 on 3-closed manifolds.
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To describe the results that we will present in this article, we will start with initial and known
notations and definitions for group actions on manifolds. Let ϕ be a C2 action of R2 on a C∞

closed manifold N of dimension 3. For any p in N , the set Op = {ϕ(p, r) : r ∈ R2} is called
the orbit by ϕ of p and Gp = {u ∈ R2;ϕ(u, p) = p} is called the isotropy group of p. Observe
that groups isomorphic to R × R, R × Z, R, Z, Z × Z and {0}, are respectively isotropy groups
of orbits homeomorphic to single point, circle, line, cylinder, torus and plane. We denote by Fϕ the
C2 foliation on N (eventually, with singularities, see [11]) whose leaves are the orbits of ϕ. The
singular set, denoted by Sing(ϕ), is the set of points in N whose orbits have dimension less than 2.
If Sing(ϕ) = ∅ we say that ϕ is locally free.

For each basis {w1, w2} of R2 we have two commutative vector fields Xw1
and Xw2

whose
flows associated are, respectively, ϕt1 = ϕ(tw1, ·) and ϕt2 = ϕ(tw2, ·). This vector fields are called
infinitesimal generators of the action ϕ. If w ∈ R2 is a element of a base, Xw is called infinitesimal
generator for p ∈ N if exist 0 < t0 ∈ R such that ϕt0(p) = ϕ(t0w, p) = p. and ϕ(p) ̸= p for
0 < t < t0.

The action ϕ is called topologically transitive on N if for every open sets U, V ⊂ N exist
v ∈ R2 such that

ϕv(V ) ∩ U ̸= ∅.
The action ϕ is called metrically transitive if the only closed, non-empty, ϕ-invariant set and

with positive Lebesgue measure is N .
In Section 2 of this paper, we will present four examples of topologically transitive R2-actions

on closed 3-manifolds that are metrically transitive; in the first and third examples the dense orbit
has the topological type of a cylinder and in the second and fourth examples the dense orbit has the
topological type of a plane. In this section we will also present preliminary results so that, finally, in
the third section we will present the proofs of our two main results:

Theorem A. Let Nn+1 = Tn × S1, n ≥ 2, then exist an Cr R2-action topological transitive
but without metric transitivity on N with r ≥ 1.

Theorem B. Let N3 be a compact closed manifold and ϕ be a C2 locallly free R2-action on N .
If ϕ is topological transitive then ϕ is metric transitivity.

2. Some examples and preliminaries. Let N be a closed and connected 3-manifold. We
always consider ϕ be a C2-action on N . We shall now describe some R2-action on 3-manifolds.
For Examples 1 and Example 2 consider N = T3 and a, b be real number which are algebraically
independent over Z.

Example 2.1. considering the basis {w1, w2} of R2 withw1 = (1, 0, 0) andw2 = (0, 1, b) then
the vector fields Xw1

and Xw2
are the infinitesimal generators of an action ϕ of R2 on the manifold

T3 such that all the orbits defined by this actions are cylinders and each orbit is dense in T3.
Example 2.2. Considering the basis {w1, w2} of R2 with w1 = (1, a, 0) and w2 = (0, 1, b)

then the vector fields Xw1
and Xw2

are the infinitesimal generators of an action ϕ of R2 on the
manifold T3 such that all the orbits defined by this actions are homeomorphic to R2 and each orbit
is dense in T3.

Note that in the previous examples it is easy to verify that the actions are metrically transitive.
We should also highlight that the singular set is emptyset.

In [7], the author proved that a C2-flow topologically transitive on a admissible surface Σ that
has only finitely many equilibrium states then, the flow is metrically transitive. If X is the vector
fild associated with this flow. With this notation, we have the following example.

Example 2.3. Let N = Σ × S1 be a 3-manifold. Consider the infinitesimal generators of a
R2-action ϕ of the form:

X1(p, θ) = X(p),

X2(p, θ) = b(θ)
∂

∂θ
.

Therefore ϕ is an R2-action on N with all its regular orbits of the cylinder type and with a finite
number of singular orbits of the circle type. If K ⊂ N is an ϕ-invariant set then K̃ = P (K) ⊂ Σ,
where P : N → Σ is the first projection, is a Xt-invariant set.

But, Xt is metric transitive we have m(K̃)m(σ \ K̃) = 0, where m is the Lebesgue measure
on Σ. Finally, we have m(K)m(σ \K) = 0, so ϕ is metric transitive.

Example 2.4. Consider the singular flow of S2 whose regular orbits are the meridians and the
singular ones are the poles P1 and P2, and form the product S2 × [0, 1]. Now, If ψ : S2 → S2 is the
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rotation, fixing the poles, of angle α such that the numbers α and 2π are linearly independent over
Q. identify each (x, 1) with (ψ(x), 0). In this way one obtains a action ϕ of R2 on N = S2 × S1
by dense planes such that Sing(ϕ) = ({p1} × S1) ∪ ({p2} × S1). Again, we get an example of a
metrically transitive action.

It is known that a locally free and topologically transitive R2-action on a 3-manifold cannot
simultaneously have cylindrical (not dense, by Lemma 2.1) and planar orbits. However, we cannot
yet state that this feature still holds for singular actions. In fact, in [8] we conjecture that this is not
possible.

Definition 2.1. The limit set of Op is a ϕ-invariant compact set given by limOp = ∩∞
i=1cl(Op\

Ki), where Ki is a compact subset of Op , Ki ⊂ Ki+1 and Op = ∪∞
i=1Ki . It is not difficult to

show that cl(Op) = Op ∪ limOp .
The notions of minimal and exceptional minimal sets that we use here are the standard ones.
In this section we introduce some tools useful for our purposes.
Lemma 2.1. If Oq ∈ limOp, then Gp ⊂ Gq.
Proof: Let u ∈ Gp, observe that ϕ(u, ϕ(v, p)) = ϕ(v, p) for all v ∈ R2; for other hand q is

an acumulation point of some sequences pn ∈ Op and vn ∈ R2 suct that ϕ(vn, p) = pn then by
definition of actions and by continuity of ϕ we conclude that ϕ(u, ϕ(vn, p)) converge to ϕ(u, q) and
q, then u ∈ Gq. □

Remark 2.1. Ussing the above lemma, if ϕ is an R2-action on N with a cylindrical dense orbit
then the regular orbits are homeomorphic to torus or cylinder.

2.1. Local structure in a neighborhood of an orbit diffeomorphic to T2. Let T be a compact
orbit of ϕ which is diffeomorphic to T2 and let Γ be a cylindrical orbit whose limit set contains T ,
i.e. T ⊂ lim(Γ). let G0

T and H subgroups of GT such that GΓ ⊂ G0
T and GT = H ⊕G0

T . We can
choose {w1, w2} a basis of R2 such that w1 and w2 are generator of GΓ and H , respectively.

LetX1 = Xw1
andX2 = Xw2

be the infinitesimal generators associated to w1 and w2. Clearly,
by our choice, all orbits of the vector field X1 through points in T ∪ Γ are periodics of period equal
to 1.

We consider the open ringA(ε) = {(θ, r) : θ ∈ [0, 2π] and r ∈ (−ε, ε)} and the open interval
I(δ) = (−δ, δ). There exist ε > 0 and δ > 0 such that the application h : A(ε) × I(δ) → N ,
defined by h(θ, r, t) = Xt

2(θ, r), satisfies:

• h is a diffeomorphism onto its image V ;

• γ = h(S1 × {0} × {0}) is a orbit of X1 through a point q in T ;

• h(A(ε)× {0}) is transverse to T

• Moreover, in the coordinates (V, h−1), the infinitesimal generators of ϕ are of the form:

X1(θ, r, t) = a(θ, r)
∂

∂t
+ b(θ, r)

∂

∂θ
+ c(θ, r)

∂

∂r
,

X2(θ, r, t) =
∂

∂t
.

(2.1)

The vector field X̂1(θ, r) = b(θ, r) ∂
∂θ + c(θ, r) ∂

∂r defines a local flow on A(ϵ) having
S1 × {0} as a periodic orbit of period equal to 1.

Remark 2.2. Note that all the orbits X̂1 by points in A(ε) ∩ Γ are periodics.

2.2. Some properties of actions having a dense cylindrical orbit. Let p be an element of N
whose orbit Γp is diffeomorphic to S1 × R. Then there exist a base {u1, u2} of R2 \ {0} such that
the isotropy subgroup of the orbit Γp is Zu1, denote by X1 and X2 the onfinetisimal gerators of
ϕ. We denote by R and L the half-planes which are defined by the straight line Ru1. We consider
the following subsets Γ+

p = {ϕ(v, p); v ∈ L} e Γ−
p = {ϕ(v, p); v ∈ R} of Γp, which, we call of

half-orbits of p by the action ϕ.
Definition 2.2. We say that the action ϕ is half topologically transitive, if ϕ has a cylindrical

orbit Γp for which one of his half-orbits is dense in N. If the half-orbit Γ−
p (resp. Γ+

p ) is dense in N ,
we say that the action ϕ is half topologically transitive with respect to R (resp. L).

As in the case of dynamical systems defined by diffeomorphisms and flows, we have the follow-
ing natural result:

Proposition 2.1. Suppose that H = R,L. The following statements are equivalent:

(i) ϕ is half topologically transitive with respect to H;
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(ii) every closed set E in N which is invariant by all diffeomorphism ϕv(·) = ϕ(v, ·), v ∈ H;
is either N or has empty interior;

(iii) for every pair of non-empty open sets U and V in N , there is v ∈ H such that

ϕ−v(U) ∩ V ̸= ∅.

Proof: We will prove to case in that H = R, the proof in the other case is analogous. We start
proving that (i) implies (ii). Suppose that ϕ is half topologically transitive with respect to R, and
take E a closed set in N with interior non-empty which is ϕv-invariant for all v ∈ L. Then, we will
show that E = N . In fact, there is a non-empty open set U in N such that U ⊂ E. Since ϕ is half
topologically transitive with respect to R, we can assume that there is a point p of N , whose orbit
Γp is a cylinder, such that Γ+

p is dense in N . Hence, there exists v0 ∈ L such that q = ϕ(v0, p)
belongs to U . Now, we consider the compact ring Cp = {ϕ(tu+ sv0, p) : 0 ≤ s, t ≤ 1}. It is easy
see that Γ+

p = Cp∪Γ+
q . Hence, being Cp a compact surface and Γ+

p dense inN , we obtains that Γ+
q

is also dense in N . But, as E is a closed set ϕv-invariant for all v ∈ L, we have that Γ+
q ⊂ E ⊂ N .

Therefore, whereas Γ+
q is dense in N , we conclude that E = N .

Now, we assume that (ii) is true. Let U, V two non-empty open sets in N . Then ∪v∈Lϕ
−v(U)

is a non-empty open set in N which, by definition, is ϕv-invariant for all v ∈ L. Consequently, the
statement (ii) implies that this set is dense in N . Therefore, there is v ∈ L such that

ϕ−v(U) ∩ V ̸= ∅.

This shows that (iii) follows.
Finally, we assume (iii). Let {Un}∞n=1 be a countable base of N . The statement (iii) implies

that:

• there is v1 ∈ L such that
ϕ−v1(U1) ∩ U1 ̸= ∅.

Take V1 a non-empty open set inN such that V1 is a compact set contained in ⊂ ϕ−v1(U1)∩
U1.

• there is v2 ∈ L such that:
ϕ−v2(U2) ∩ V1 ̸= ∅.

Take a non-empty open set V2 inN such that V2 is a compact set contained in ⊂ ϕ−v2(U2)∩
V1.

• by induction, we obtain a sequence {Vn}∞n=1 of non-empty open sets in N and a sequence
{vn}∞n=1 of elements inR such that: Vn+1 is a compact set contained in Vn∩ϕ−vn+1(Un+1)
and Vn+1 ⊂ Vn for all n ≥ 1, and V1 ⊂ U1 ∩ ϕ−v1(U1).

Hence, the set V = ∩∞
n=1Vn is a non-empty compact set. Furthermore, for any p ∈ V we have that

ϕvn(p) is an element of Un for all n. This shows that Γ+
p is dense in N , and concludes the proof. □

Obviously, if the action ϕ is half topologically transitive then it is topologically transitive. As a
consequence of previous proposition, we obtain the reciprocal for actions of R2.

Proposition 2.2. Assume that the action ϕ is topologically transitive and that the dense orbit is
cylindrical. Then ϕ is half topologically transitive with respect to R and L.

Proof: Let Op be a dense cylindrical orbit of ϕ, and we consider U and V two non-empty open
sets in N . Then, there is v ∈ R2 such that

ϕv(U) ∩ V ̸= ∅.

We going to prove that ϕ is half topologically transitive with respect toR, the other case is analogous.
In fact, we have two possibilities.

(i) v is an element of Ru: here, by continuity of the action ϕ, there exists δ > 0 such that

ϕw(U) ∩ V ̸= ∅,

for every w in D, the open disc in R2 of radius δ and center v.

Changing, if necessary, the element v for another element in D \ Ru we can assume that:
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(ii) v is not in Ru: If v ∈ L, then w = −v is in R and

ϕ−w(U) ∩ V ̸= ∅,

Consequentely, by (iii) of Proposition 2.1, ϕ is half topologically transitive with respect to
R. Hence, we can assume that v ∈ R. For W = ϕv(U) ∩ V , the topological transitivity
implies that there is w ∈ R such that

ϕw(W ) ∩W ̸= ∅.

Then, there are q and q1 two elements of W such that q = ϕ(w, q1). Furthermore, by
definition of W we have that q1 ∈ V and q1 = ϕ(v, q2) for some q2 in U . It follows that
q1 = ϕ(w + v, q2), and thence q2 belongs to ϕ−v−w(V ) ∩ U . On the other hand, by (i)
above, we can assume that w ∈ L. This implies that v + w is also an element of H+,
consequently, by Proposition 2.1, we conclude that ϕ is half topologically transitive with
respect to R. □

Note that γ = ϕ(tu1, p) is a closed orbit of the vector field X1, defined the sets Γ+
t =

∪s≥tXs
2(γ) and Γ−

t = ∪s<tXs
2(γ) and ω(Γ) = ∩t∈RΓ

+
t , α(Γ) = ∩t∈RΓ

−
t . This last sets are

called ω and α set of Γ respectively.
Remark 2.3. For a cylindrical orbit Γ, the ω and α set of Γ are ϕ-invariant, closed and non-

empty. Also limΓ = ω(Γ) ∪ α(Γ).
The following result is a fundamental tool to prove the Theorems B.
Proposition 2.3. Let ϕ a action of R2 on a compact, connected 3-manifold N . Suppose ϕ is

topologically transitive with dense orbit cylinder. Then there are no compact orbits.
Proof: As ϕ is topologically transitive, we can assume, by Proposition 2.2, that there is a orbit

Γ topologically transitive on one side. Let T , γ, A(ε), X1, X2 and X̂1 as above, then:
Given x ∈ T , as T ⊂ lim(Γ), exist qn = (θn, rn, tn) on V , n ≥ 1 such that qn → x. Take

q̃n = (θn, rn) on A(ε), we have that the orbit Cn of q̃n, by vector field X̂2 is periodic for all n ≥ 1.
Consider the subsets An de A(ε) homeomorphic to the open annulus S1 × (−1, 1) such that

∂An = Cn ∪ γ. Observe that as Y is transverse to A(ε), for any pair of points p1 and p2 on An,
Y (p1) and Y (p2) are parallel and have the same direction.

Changing the direction of the field X2, if necessary, we have An is contained in one connected
component of A(ε) \ γ, para todo n ≥ 1, e A1 ⊃ A2 ⊃ ... ⊃ Ai ⊃ Ai+1 ⊃ .....

Fixed i0 ∈ N, consider the topological torus Ti0 which is the union of the following sets: the
cylinder contained in Γ between Ci0 and Ci0+1 and the annulus Ai0 \ Ai0+1. The torus T and Ti0
are the bord of an open submanifold N

′
ϕv-invariant for all v ∈ L. This contradiction with the item

(iii) of the Proposition 2.1 concludes the demonstration. □
Corollary 2.1. If ϕ ∈ A then Oi are the only minimal set of ϕ, where Oi ∈ Sing(ϕ).
Proof: Let µ a minimal set sucht that µ ̸= Oi for Oi ∈ Sing(ϕ). Consider the locally free

action ϕ
′
: R2 ×N

′ → N
′

where N
′
= N \ Sing(ϕ) is given by ϕ

′
= ϕ|R2×N ′ . Observe that ϕ

′

has no exceptional minimal set (see [?, Theorem 8]), then µ = Op or µ = N
′
. If µ = Op, then Op

is a compact orbit of ϕ, contradicting the above proposition. If µ = N
′
, then the clausure of µ in N ,

contain some Oi ∈ Sing(ϕ); this contradiz the fact that µ is a minimal set of ϕ. □

3. Proof of Theorem A and Theorem B. In this section we will present the proofs of our main
results, initially we will prove that a necessary condition for the validity of Morse’s conjecture is the
existence of some type of control over the singular set of the action.

Theorem 3.1 (A). Let Nn+1 = Tn × S1, n ≥ 2, then exist an Cr R2-action topological
transitive but without metric transitivity on N with r ≥ 1.

Proof: On Torus Tn, cosider the constant vector field defined by:

X(x) = (1, π, π2, · · · , πn−1) (3.1)

It is known that this field is minimal, that is, all its orbits are dense in Tn. Let Γ0 be the solution
of Equation 3.1 passing through the point (0, 0, · · · , 0) ∈ Tn, then Γ0 = Tn. Let us denote by φt

the flow associated with the vector field X .
Consider the sets S1 = [{(0, t2, · · · , tn); ti ∈ R}] and S2 = [{(12 , t2, · · · , tn); ti ∈ R}], where

[A] denotes the image by applying the universal covering p : Rn → Tn of the subset A of Rn. Note
that φ

1

2 (S1) = S2. Let {pk}k∈Z be a sequence of points of Γ0 ∩ S1 and let c be a positive real

number such that
∑
k≥0

2c

1 + k2
<

1

2
.
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Let us denote by m the Lebesgue measure on Tn, by m∗ the Lebesgue measure on S1 and let
Bk be open balls in S1 centered at pk such that m∗(Bk) = c

1+k2 therefore m∗(B) < 1
2 where

B =
⋃
k∈Z

Bk.

Considering the sets F1 = S1 \ B, F1 = {φ
1

2 (p); p ∈ F1} and E = {φt(p); p ∈ F1, 0 ≤ t ≤
1
2} then 1

4 < m(E) < 1.
Taking the compact F = F1 ∪ F2, then there exists δ : Tn → [0,∞) of class C∞ such that

F = δ−1(0) e δ(x) > 0 if x ̸∈ F . Considering the new vector field

X1(x) = δ(x)X(x)

We observe that Sing(X1) = F , Γ0 is still a dense orbit in Tn of the vector field X1 and E is
a closed and invariant subset such that 1

4 < m(E) < 1.
Thus, the flow associated with the field X1 is topologically transitive but not metrically transi-

tive.
Finally, on the manifold N = Tn × S1, consider the coordinates (x, θ) such that and the C∞-

action ϕ onN with set of generators {X1,
∂
∂θ}. Thus, there isK = E×S1 compact and ϕ-invariante

subset of N such that 0 < m(K) < 1, where m is the Lebesgue measure on N . This proves the
Theorem. □

Remark 3.1. The previous result proves that for Morse’s conjecture to be true for R2-action,
we must have some control over the singular set of the action. A first way to have this control is to
impose that the singular set is empty. Under these conditions we have that Morse’s conjecture is
true as we will prove below.

Theorem 3.2 (B). Let N3 be a compact closed manifold and ϕ be a C2 locallly free R2-action
on N . If ϕ is topological transitive then ϕ is metric transitivity.

Proof: Consider the regular foliation Fϕ defined on N induced by ϕ, then this foliations is by
planes, cylinders and torus.

If there are not torus then by [12, Theorem 9] and [13] all the leaves are dense and have the same
topological type, in particular this action is metrically transitive.

In exist a compact orbit and how the action is topologically transitive, by [13] exist an unique
orbit torus T . By Proposition 2.3, N1 = N \ T is a open manifold with a C2 foliation by planes
such that ϕ1(N1) = Z2 (this by [13, Item 3]). Finally, by [14, Theorem 2] the foliation in N1 is
minimal; this implies that the actions ϕ is metrically transitive. □
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