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Abstract

This paper is concerned with traveling wave solutions for a delayed reaction-diffusion SVIR epidemic
model that includes both general incidence function and imperfect vaccination. In the model, the
spread of infection in space is explicitly taken into account by using a heterogeneous environment; it
takes into consideration the delay in immune response and inefficiency in vaccinations. The analysis
carried out below shows that the basic reproduction number R0 will be a critical value for deter-
mining the existence of traveling waves. More precisely, when R0 > 1 there exists a minimal wave
speed ρ∗ > 0 such that the system admits nontrivial traveling wave solutions for ρ ≥ ρ∗ whereas no
such solutions exist for ρ < ρ∗. On the other hand, if R0 ≤ 1, there are no traveling wave solutions.
The introduction of delays and imperfect vaccination adds richness and complexity to the dynamics,
such as possible wave speed adjustments and pattern formations, which are hallmarks of complex
systems. This work develops a theoretical framework that shall guide the understanding of how
delays, spatial spread, and control measures interact in epidemic systems and offers insights appli-
cable to real-world infectious disease dynamics. Numerical simulations for some typical nonlinear
incidence functions are given in the last to illustrate the existence of traveling waves.

Keywords . Imperfect vaccination; minimal wave speed; delay; basic reproduction number.

1. Introduction. Infectious diseases often present with very complex spatial and temporal be-
haviors. Examples include traveling wave phenomena: the spatial spread of infection fronts through
a heterogeneous environment, as a function of dynamic interactions in disease transmission, recov-
ery, immunity, and movement [1, 2, 3, 4, 5]. Mathematical models that capture such dynamics are
particularly important for understanding and prediction regarding infectious diseases spread through
space and time. According to Murray (2002) [6], Shigesada & Kawasaki, 1997 [7].

The SVIR model is one of the most widespread frameworks in epidemiology [8], dividing a
population into four compartments: Susceptible, Vaccinated, Infected, and Recovered. Liu et al. [9]
formulated the following system of ordinary differential equations:

dS
dt

= Λ− (µ+ α)S(t)− β1S(t)I(t)),
dV
dt

= αS(t)− β2V (t)I(t)− (µ+ κ)V (t),
dI
dt

= β1S(t)I(t) + β2V (t)I(t)− (µ+ δ + ξ)I(t).
dR
dt

= δI(t) + κV (t)− µR(t).
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see also [10, 11, 12]. However, although vaccination remains one of the most important tools for
the control of infectious diseases, the real world contains complicating factors like vaccine ineffi-
cacy, waning immunity, and delayed responses. Coupling these factors with spatial diffusion in the
SVIR model allows for more realistic modeling of epidemic spread and helps in determining optimal
intervention strategies. This was noted by Diekmann et al. (2013) [13] and Hethcote (2000) [14].

Traveling waves are solutions of epidemic models that describe the development of an infection
front in time. Such waves typically appear for reaction-diffusion models whose reaction term de-
scribes local dynamics of a disease, such as infection, recovery, and vaccination, while the diffusion
term describes spatial spread due to mobility [15, 16, 17, 18, 19, 20, 21]. In this respect, within the
framework of the SVIR model, traveling wave solutions might indicate the speed of epidemic fronts,
persistence of infection in spatial domains, and the role of vaccination coverage in mitigating disease
spread. This was supported by such works as those of [22, 23].

Policy or other delays in vaccination, and even response times in vaccine efficacy, further com-
plicate the dynamics of epidemic waves. Most of these delays lead to richer dynamics such as oscil-
lations, bistability, and the possibility of backward bifurcation. This problem is further complicated
by imperfect vaccinations, which can be described by partial immunity or incomplete coverage; in-
deed, imperfect vaccinations may allow infection to persist in vaccinated populations or result in
traveling waves with slower or fragmented fronts (Wang et al., 2012 [24]; Liu & Wu, 2020 [25]).

In this paper, the authors consider traveling waves in a generalized diffusive SVIR epidemic
model with delay and imperfect vaccination, which includes spatial diffusion, time delays in the
vaccination effect, and the reduction of vaccine efficacy. The conditions for traveling waves to
arise, the effects of delays on wave speed, and the role of vaccination in the control of disease
spread over space were considered both analytically and numerically. These findings have a critical
implication for epidemic management when vaccinations are poorly effective or late. In light of
the aforementioned issues, we provide the following diffusive delay SVIR epidemic model with a
nonlinear incidence rate.


∂S
∂t

= d1∆S + Λ− (µ+ α)S(x, t)− F1(S(x, t), I(x, t)),
∂V
∂t

= d2∆V + αS(x, t)− F2(V (x, t), I(x, t))− (µ+ κ)V (x, t),
∂I
∂t

= d3∆I + F1(S(x, t− τ), I(x, t− τ)) + F2(V (x, t− τ), I(x, t− τ))− (µ+ δ + ξ)I(x, t),
∂R
∂t

= d4∆R+ δI(x, t) + κV (x, t)− µR(x, t).
(1.1)

with t > 0 and x ∈ R. Therefore, S(x, t), V (x, t), I(x, t) are the density of the susceptible, vac-
cinated, infected population at time t and position x, respectively. The non-dependence of the three
equations of the system (1.1) to R(x, t) allows for the omission of the equation of the recovered pop-
ulation (the fourth equation of (1.1)), and the asymptotic behaviour of this equation can be inferred
by examining the evolution of the solution of the first three equations. The constant that enters the
S-class is Λ. The constant natural death rate is µ. The transmission functions for people in the S and
V classes are denoted by Fj(j = 1, 2), respectively. The immunisation rate is α. The approximate
amount of time spent in V -class prior to gaining immunity is 1

κ
and ξ is death rate of the disease.

The average duration of the infectious period is 1
δ
. It is demonstrated that the basic reproduction

number (BRN) R0 can exhibit threshold behaviour in the model (1.1). We presume

(A) dj are positive, and µ, τ, δ, γ, κ, ξ > 0 for j = 1, 2, 3, 4. Also, we suppose that F1, F2 ∈
C2(R2), and satisfies

(H) : F1(S, 0) = F1(0, I) = 0, ∂F1(S,I)

∂I
> 0, ∂2F1(S,I)

∂I2 < 0 and ∂F1(S,I)

∂S
> 0 for all S, I > 0.

(D) : F2(V, 0) = F2(0, I) = 0, ∂F2(V,I)

∂I
> 0, ∂2F2(V,I)

∂I2 < 0 and ∂F2(V,I)

∂V
> 0 for all V, I > 0.

The organization of this paper is as follows. In section 2, we proved the existence of traveling wave
solutions of (1.1) for by applying Schauder’s fixed point theorem and Lyapunov method. In section
3, we show that the existence of traveling wave solutions of (1.1) for ρ = ρ∗. Furthermore, we
investigate the nonexistence of traveling wave solutions under some conditions in section 4. At last,
there is a brief numerical simulation.

2. Existence of traveling wave solutions for ρ > ρ∗. The existence of traveling wave solutions
of system (1.1) is examined in this section. We must examine the following subsystem of (1.1) as we
have assumed that the recovered have acquired permanent immunity and that R(x, t) is decoupled
from other equations.
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
∂S
∂t

= d1∆S + Λ− (µ+ α)S(x, t)− F1(S(x, t), I(x, t)),
∂V
∂t

= d2∆V + αS(x, t)− F2(V (x, t), I(x, t))− (µ+ κ)V (x, t),
∂I
∂t

= d3∆I + F1(S(x, t− τ), I(x, t− τ)) + F2(V (x, t− τ), I(x, t− τ))− (µ+ δ + ξ)I(x, t),
(2.1)

We must determine the constant equilibria of (2.1) in order to examine its TWS. (S0, V 0, 0) =
( Λ
µ+α

, αΛ
(µ+α)(µ+κ)

, 0) is the DFE of (2.1), and it is always present. To achieve the positive equilib-
rium, the following ODE system is comparable and should be taken into account.


dS
dt

= Λ− (µ+ α)S(t)− F1(S(t), I(t)),
dV
dt

= αS(t)− F2(V (t), I(t))− (µ+ κ)V (t),
dI
dt

= F1(S(t− τ), I(t− τ)) + F2(V (t− τ), I(t− τ))− (µ+ δ + ξ)I(t).

(2.2)

The corresponding (BRN) R0 is given as follows

R0 =
∂F1(S

0,0)

∂I
+ ∂F2(V

0,0)

∂I

µ+ δ + ξ
.

It worth noting that if R0 > 1 , then (2.2) admits a unique endemic equilibrium E∗ = (s∗, v∗, i∗).
For the proof of the existence and uniqueness of E∗ we refer [26, 27] .

We consider (S0, V 0, 0) to be the initial DFE. This particulate (s(ζ), v(ζ), i(ζ)), with ζ =
x+ ρt fulfills

ρs′(ζ) = d1s
′′(ζ) + Λ− (µ+ α)s(ζ)− F1(s(ζ), i(ζ)),

ρv′(ζ) = d2v
′′(ζ) + αs(ζ)− F2(v(ζ), i(ζ))− (µ+ κ)v(ζ),

ρi′(ζ) = d3i
′′(ζ) + F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))− (µ+ δ + ξ)i(ζ),

(2.3)
with the boundary conditions

(s, v, i)(−∞) = (S0, V 0, 0), (s, v, i)(+∞) = (S∗, , V ∗, I∗). (2.4)

We intend to establish a positive solution of (2.3) that satisfies the boundary condition (2.4).
Linearizing the second equation of the system (2.3) at E0, to obtain

−ρi′(ζ) + d2i
′′(ζ) +

∂F1(S
0, 0)

∂i
i(ζ − ρτ) +

∂F2(V
0, 0)

∂i
i(ζ − ρτ)− (µ+ δ+ ξ)i(ζ) = 0 (2.5)

Plugging i(ζ) = expλζ into (2.5) to get the following characteristic equation

G(λ, ρ) := −ρλ+ d2λ
2 +

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ −(µ+ δ + ξ) = 0. (2.6)

Since R0 > 1,as easy calculations, we have

G(0, ρ) =

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
− (µ+ ξ + δ) = (µ+ ξ + δ)[R0 − 1] > 0,

∂G(λ, ρ)

∂λ

∣∣∣∣
λ=0

= −ρ− ρτ

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
< 0,

means that G is convex in λ. We note that

∂2G(λ, ρ)

∂λ2
= 2 + ρ2τ 2λ2

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ > 0,

and

G(λ, 0) = λ2 +

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
− (µ+ ξ + δ) = λ2 + (µ+ ξ + δ)[R0 − 1] > 0,

∂G(λ, ρ)

∂ρ
= −λ− τλ

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ < 0, ∀λ > 0.



Darazirar R.- Selecciones Matemáticas. 2025; Vol.12(1):44-61 47

Given the aforementioned characteristics of the function G(λ, ρ), we may make the following ob-
servations: ρ > 0 .

∂G(λ, ρ)

∂λ
= 2λ− ρ− ρτ

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ,

and
∂2G(λ, ρ)

∂λ2
= 2 + ρ2τ 2

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ > 0,

with

lim
λ→+∞

G(λ) = +∞ and G(0) =

[
∂F1(S

0, 0)

∂i
+
∂F2(V

0, 0)

∂i

]
−(µ+δ+ξ) = (µ+ξ+δ)[R0−1] > 0.

where
∂G(λ, ρ)

∂λ
|λ=λ∗ = 2λ∗ − ρ− ρτ

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ∗

= 0,

hence
2λ∗ − ρ

ρτ
=

[
∂F1(S

0, 0)

∂i
+

∂F2(V
0, 0)

∂i

]
exp−ρτλ∗

we remplace the resulte in F (λ∗), we get

G(λ∗) = −ρλ∗ + λ∗2 +
2λ∗ − ρ

ρτ
− (µ+ δ + ξ) ≥ 0,

hence,
ρ2τλ∗ + ρ(τ(µ+ δ + ξ)− λ∗2τ + 1)− 2λ∗ = 0.

The sign rule of Descartes states that there exists ρ∗ > 0. Consequently, the following outcomes are
obtained by examining the characteristic equation (2.6).

Lemma 2.1. Suppose R0 =

[
∂F1(S0,0)

∂i +
∂F2(V 0,0)

∂i

]
µ+δ+ξ

> 1, ∃ ρ∗ > 0 and λ∗ > 0 such that

∂G(λ, ρ)

∂λ2

∣∣∣∣
(λ∗,ρ∗)

= 0 and G(λ∗, ρ∗) = 0

Furthermore, the following alternatives hold:
(i) If 0 < ρ < ρ∗, thus G(λ, ρ) > 0 for all λ ∈ (0, λρ), with λρ ∈ [0,+∞[,

(ii) If ρ > ρ∗, hence G(λ; ρ) = 0 has two positive distinct real roots λ1(ρ) < λ2(ρ) that satisfy

G(λ, ρ)

{
> 0 λ ∈ (0, λ1(ρ)) ∪ (λ2(ρ),∞),

< 0 λ ∈ (λ1(ρ), λ2(ρ)).

Where
ρ∗ = sup{ρ > 0|G(λ, ρ) > 0, ∀λ ∈ R},

exists and positive.

2.1. Upper-lower solution. We use an iterative process to construct a pair of super and sub
solutions of (2.3) for ρ > ρ∗. Specifically, we construct the s, v-components of the supper solution
s+, v+ first, and then the i-component of the supper solution i+ using that equation. Using i+

in turn yields the lower solution s− for s, v-components. Finally, we use s−, v− to construct the
i-component of the lower solution i−. The idea underlying such a structure is

Definition 2.1. (s+, v+, i+) and (s−, v−, i−) denote the upper and lower solutions of (2.3),
respectively, and fulfil

−ρ(s+)′(ζ) + d1(s
+)′′(ζ) + Λ− (µ+ α)(s+)(ζ)− F1((s

+)(ζ), (v−)(ζ)) ≤ 0, (2.7)
−ρ(s−)′(ζ) + d1(s

−)′′ + Λ− (µ+ α)(s−)(ζ)− F1((s
−)(ζ), (v+)(ζ)) ≥ 0, (2.8)

−ρ(v+)′(ζ) + d2(v
+)′′(ζ) + α(s+)(ζ)− F2((v

+)(ζ), (i−)(ζ))− (µ+ κ)v+(ζ) ≤ 0, (2.9)
−ρ(v−)′(ζ) + d2(v

−)′′ + α(s−)(ζ)− F2((v
−)(ζ), (i+)(ζ))− (µ+ κ)v−(ζ) ≥ 0 (2.10)

−ρ(i+)′(ζ) + d3(i
+)′′ + F1((s

+)(ζ − ρτ), (i+)(ζ)) + F2((v
+)(ζ − ρτ), (i+)(ζ − ρτ))

−(µ+ δ + ξ)i+(ζ) ≤ 0, (2.11)
−ρ(i−)′(ζ) + d3(i

−)′′F1((s
−)(ζ − ρτ), (i−)(ζ)) + F2((v

−)(ζ − ρτ), (i−)(ζ − ρτ))

−(µ+ δ + ξ)i−(ζ) ≥ 0, (2.12)
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except for finite points of ζ ∈ R.
Lemma 2.2.

s+(ζ) = S0, i+(ζ) = min{expλ1ζ , B1}

v+(ζ) = V 0, s−(ζ) = max

{
S0 −M1 exp

ϑζ , 0

}
,

i−(ζ) = max{expλ1ζ(1− Leϱζ), 0}, v−(ζ) = max

{
V 0 −M2 exp

ϑζ , 0

} (2.13)

for some positive constants ϑ,Mj, L (j = 1, 2), then (2.7)-(2.12) are satisfied.
We can make sure thatB is the unique positive root ofF1(s, ξ)+F2(v, ξ) = ξ ∂F1(S

0,0)+∂F2(V
0,0)

R0
,

where ∂F1(S
0, 0) = ∂F1(S

0,0)

∂i
and ∂F2(V

0, 0) = ∂F2(V
0,0)

∂i
. The following proposition is thus ob-

tained.
Proposition 2.1. The following algebraic equation

F1(S
0, B) + F2(V

0, B)− (µ+ δ + ξ)B = 0, (2.14)

admits at least one positive solution.
Proof: The proof is obtained by the following points.

(i): Simply s+(ζ) = S0 and v+(ζ) = V 0 satisfies

−ρ(s+)′(ζ) + d1(s
+)′′ + Λ− µs+(ζ)− F1(s

+(ζ), i−(ζ)) ≤ 0,

−ρ(v+)′(ζ) + d2(v
+)′′(ζ)α(s+)(ζ)− F2((v

+)(ζ), (i−)(ζ))− (µ+ κ)v+(ζ) ≤ 0
(2.15)

therefore, (2.7) and (2.9) are clear to proof.

(ii) Obviously, for ζ > ζ0, with ζ0 =
lnB
λ1

, we have i+(ζ) = B1, and then i+(ζ − ρτ) ≤ B. So,
we get

d2(i
+)′′+F1((s

+)(ζ−ρτ), (i+)(ζ))+F2((v
+)(ζ−ρτ), (i+)(ζ−ρτ))−(µ+ξ+δ)i+(ζ)−ρ(i+)′(ζ)

≤
[
∂F1(S

0, 0) + ∂F2(V
0, 0)

]
B − (µ+ ξ + δ)B = 0.

For ζ < ζ0, we obtain i+(ζ) = expλ1ζ , we show that i+(ζ) fulfills (2.9). Therefore, we
have

d2(i
+)′′(ζ)F1((s

+)(ζ − ρτ), (i+)(ζ)) + F2((v
+)(ζ − ρτ), (i+)(ζ − ρτ))

−(µ+ ξ + δ)(i+)(ζ)− ρ(i+)′(ζ)

≤ d2(i
+)′′(ζ) +

[
∂F1(S

0, 0) + ∂F2(V
0, 0)

]
i+(ζ − ρτ)− (µ+ ξ + δ)(i+)(ζ)− ρ(i+)′(ζ),

≤ −ρ(i+)′(ζ) + d2(i
+)′′(ζ) +

[
∂F1(S

0, 0) + ∂F2(V
0, 0)

]
i+(ζ − ρτ)− (µ+ ξ + δ)i+(ζ),

= d2λ
2
1 exp

λ1ζ +

[
∂F1(S

0, 0) + ∂F2(V
0, 0)

]
expλ1(ζ−ρτ) −(µ+ δ + ξ) expλ1ζ −ρλ1 exp

λ1ζ ,

= expλ1ζ G(λ1, ρ),

= 0,

by the definition of λ1 .

(iii) Taking 0 < ϑ < min

{
λ1,

ρ
d1

}
. Suppose that ζ ̸= 1

ϑ
ln 1

M1
:= ζ∗, and we claim that s−

satisfies

−ρ(s−)′(ζ) + d1(s
−)′′(ζ) + Λ− (µ+ α)(s−)(ζ)− F1(s

−(ζ), i+(ζ)) ≥ 0.

To illustrate this claim, we first make the assumption that ζ > ζ∗. This implies that s−(ζ) =
0 in (ζ∗,∞), and the inequality is thus instantly true. s−(ζ) = s0 −M1e

ϑζ is obtained if
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ζ < ζ∗. We obtain F1(s(ζ), i(ζ)) ≤ ∂F1(
Λ

µ+α ,0)

∂i
i(ζ) by the concavity of F1(s(ζ), i(ζ)).

Next, we have

−ρ(s−)′(ζ) + d1(s
−)′′(ζ) + Λ− (µ+ α)(s−)(ζ)− F1(s(ζ), i(ζ)) ≥ 0,

≥ ρM1ϑ expϑζ +d1M1ϑ
2 expϑζ +Λ− (µ+ α)(s0 −M1 exp

ϑζ)− ∂F1(S
0,0)

∂i
expλ1ζ ,

= expϑζ

[
ρM1γ exp

ϑζ −d1M1ϑ
2 expϑζ −∂F1(S

0,0)

∂i

(
S0

M1

)λ1−ϑ
ϑ

]
.

Here we use

expϑζ <

(
S0

M1

)λ1−ϑ
ϑ

for ζ < ζ∗.

Letting M1 → ∞ for any M1 > S0 big enough and ϑ small enough, while maintaining
ϑM1 = 1, gives us

−ρ(s−)′(ζ) + d1(s
−)′′(ζ) + Λ− (µ+ α)(s−)(ζ)− F1(s

−(ζ), i+(ζ)) ≥ 0.

Then the equation (2.8) is hold.

(iv) Taking 0 < ϑ < min

{
λ1,

ρ
d2

}
. Suppose that ζ ̸= 1

ϑ
ln 1

M2
:= ζ∗∗, and we claim that s−

satisfies

−ρ(v−)′(ζ) + d1(v
−)′′(ζ) + αs−(ζ)− (µ+ κ)(v−)(ζ)− F2(v

−(ζ), i+(ζ)) ≥ 0.

The proof is similar with S−(ζ).

(v) We take 0 < η < min{λ2 − λ1, λ1}, and L1 > 0 sufficiently large. Therefore, we claim
that i−(ζ) satisfies

−ρ(i−)′(ζ) + d2(i
−)′′(ζ) + F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))

−(µ+ ξ + δ)i−(ζ) ≥ 0,
(2.16)

with ζ ̸= ζ2 :=
−lnL

ϱ
.

For the two different cases, ζ < ζ2 and ζ > ζ2, respectively, we prove this assertion.
i−(ζ) = 0 indicates that (2.16) is fulfilled if ζ > ζ2. i−(ζ) = eλ1ζ(1−Leϱζ) is acquired in
the event that ζ < ζ2. Here, we show that for sufficiently large L1, which will be determined
later, (2.16) holds. Note that the inequality (2.16) may be expressed as follows.[

∂F1(S
0, 0) + ∂F2(V

0, 0)

]
i+(ζ − ρτ)− F1((s

+)(ζ − ρτ), (i+)(ζ))+

+F2((v
+)(ζ − ρτ), (i+)(ζ − ρτ))

≤ −ρ(i−)′(ζ) + d2(i
−)′′(ζ) +

[
∂F1(S

0, 0) + ∂F2(V
0, 0)

]
i+(ζ − ρτ)

−(µ+ δ + ξ)i−(ζ)

≤ −L1G(λ1 + ϱ, ρ) exp(λ1+ϱ)ζ .
(2.17)

For any ξ ∈ (0, 1), Fj(y, i)/i are a decreasing function on (0,∞). There exists δ0 > 0
such that 0 < i− < δ0 for every ζ < ζ2. Since i− is a bounded function for ζ < ζ2, this is
the result. ξ > 0 must exist as tiny as necessary to guarantee that the following inequality
applies since ∂Fj(y, 0) > 0 and i−, v− are constrained for ζ < ζ2.For every 0 < i− < δ0,

Fj(y, i
−)/i− ≥ 1− ξ > 0.

With the knowledge that 0 < v− < δ0, we obtain

i−
[
F1((s, i) + F2(v, i)

]
= i

(
1− F1(s,i)+F2(v,i)

i

)
≤

(
i+1−F1(s,i)+F2(v,i)

i

2

)2

≤ (1− ξ)2.

Since any small ξ > 0 can satisfy the aforementioned inequality, we get

i−
[
F1((s, i) + F2(v, i)

]
≤ i2, ∀0 < i ≤ δ0.
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Additionally, we suppose that L is sufficiently enough so that 0 < i−(ζ) < δ0. By making
(2.17)’s left side simpler

i−
[
F1((S

0, 0)+F2(V
0, 0)

]
expλ1−η +M2 exp

(ϑ−ϱ)ζ ε expλ1−ρ ≤ −LG(λ1+η, ρ) exp(λ1+ϱ)ζ .

(2.18)
The inequality (2.18) holds for sufficiently big L as both sides trend to 0 as ζ → −∞ and
are limited for all ζ < ζ2. The proof is finished.

□

2.2. Truncated problem. Next, for this subsection we take ρ > ρ∗, we let the truncated prob-
lem

ρs′(ζ) = d1s
′′(ζ) + Λ− (µ+ α)s(ζ)− F1(s(ζ), i(ζ)), ζ ∈ Il = (−l, l)

ρv′(ζ) = d2v
′′(ζ) + αs(ζ)− F2(v(ζ), i(ζ))− (µ+ κ)v(ζ), ζ ∈ Il = (−l, l)

ρi′(ζ) = d3i
′′(ζ) + F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))− (µ+ δ + ξ)i(ζ),

ζ ∈ Il = (−l, l)

s(ζ) = s−(ζ), v(ζ) = v−(ζ), i(ζ) = i−(ζ), ζ ∈ R \ Il,
(2.19)

where l > −ζ2. We define the following spaces

X = C(R)× C(R)× C(R) and Y = C1(Il)× C1(Il)× C1(Il).

The Schauder fixed point theorem will be utilized to demonstrate the existence of a pair of functions
(s, i, v) ∈ X ∩ Y that fulfill (2.19). Firstly, we define

E =

{
(s, v, i) ∈ X/s− ≤ s(ζ) ≤ s+ , v− ≤ v(ζ) ≤ v+ and i− ≤ i(ζ) ≤ i+ in R

}
, (2.20)

that is a closed convex set X equipped with the norm ∥(f1, f2, f3)∥X = ∥f1∥C(R) + ∥f2∥C(R) +
∥f3∥C(R). Then, we let F : E → E such that for all (s0, v0, i0) ∈ E ,

F(s0, v0, i0) = (s, v, i),

with (s, v, i) ∈ X ∩ Y that solves

ρs′(ζ) = d1s
′′(ζ) + Λ− (µ+ α)s(ζ)− F1(s0(ζ), i(ζ)), ζ ∈ Il = (−l, l)

ρv′(ζ) = d2v
′′(ζ) + αs(ζ)− F2(v0(ζ), i(ζ))− (µ+ κ)v(ζ), ζ ∈ Il = (−l, l)

ρi′(ζ) = d3i
′′(ζ) + F1(s0(ζ − ρτ), i0(ζ − ρτ)) + F2(v0(ζ − ρτ), i0(ζ − ρτ))

−(µ+ δ + ξ)i(ζ), ζ ∈ Il = (−l, l)

s(ζ) = s−(ζ), v(ζ) = v−(ζ), i(ζ) = i−(ζ), ζ ∈ R \ Il.

(2.21)

Any fixed point of F is the pair (s, v, i) ∈ X ∩ Y that fulfill (2.19). Here, we shall confirm that
the F meets the Schauder fixed point theorem’s conditions.

Lemma 2.3. For any (s0, v0, i0) ∈ E , there is a unique solution (s, v, i) ∈ X ∩ Y fulfilling
(2.21). Furthermore, (s, v, i) ∈ E . Proof: As (2.21) is a system of decoupled inhomogeneous lin-
ear equations, then the existence and uniqueness of solutions to the (2.21) can be obtained from The-
orem 3.1 in Chapter 12 of [28]. Furthermore, as −ρs′(ζ)+d1s

′′(ζ)−(µ+α)s(ζ)−F1(s(ζ), i(ζ)) =
−Λ ≤ 0 on Il and s(±l) = s−(±l) ≥ 0, thus s > 0 on Il (by the maximum principle). Similarly,
we get i > 0 over Il. Next, we prove that s− ≤ s(ζ) ≤ s+ in Il. By the first equation of (2.19) and
i0 ≤ i+, we arrive at

−ρs′(ζ) + d1s
′′(ζ) + Λ− (µ+ α)s(ζ)− F1(s(ζ), i

+(ζ)) ≤ 0,

Together with (2.15), we notice that w1 = s − s− verifies d1w
′′
1 (ζ) − ρw′

1(ζ) −
[
µ + α +

F1(w1(ζ),i
+(ζ))

w1(ζ)

]
w1(ζ) ≤ 0. In addition, from the third line of (2.21) and since s(ζ1) > 0 and

s−(ζ0) = 0, it is known that w1(ζ) > 0 and w1(l) = 0. Thus, the maximum principle gives w1 ≥ 0
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in (−l, ζ0), that implies s− ≤ s(ζ) . Together with s− = 0 in [ζ1, l), yields s∗ ≤ s(ζ) in Il. Next,
showing that s ≤ s+ in Il. Since i0 ≥ i−, then,

−ρs′(ζ) + d1s
′′(ζ) + Λ− (µ+ α)s(ζ)− F1(s(ζ), i(ζ)) ≥ 0 in Il, (2.22)

Noting s(±l) ≤ s+(±l), then, by (2.22) and the maximum principle yield s ≤ s+ in Il. Next, as
−ρv′(ζ)+d2v

′′(ζ)−(µ+κ)v(ζ)−F2(v(ζ), i(ζ)) = −αs(ζ) ≤ 0 on Il and v(±l) = v−(±l) ≥ 0,
thus v > 0 on Il (by the maximum principle). Similarly, we get i > 0 over Il. Next, we prove that
v− ≤ v(ζ) ≤ v+ in Il. By the first equation of (2.19) and i0 ≤ i+, we arrive at

−ρv′(ζ) + d2v
′′(ζ)− (µ+ κ)v(ζ)− F2(v(ζ), i(ζ)) + αs(ζ) ≤ 0

Together with (2.15), we notice that w2 = v − v− verifies d2w
′′
2 (ζ) − ρw′

2(ζ) −
[
µ + κ +

F2(w2(ζ),i
+(ζ))

w2(ζ)

]
w2(ζ) ≤ 0. In addition, from the third line of (2.21) and since v(ζ1) > 0 and

v−(ζ0) = 0, it is known that w2(ζ) > 0 and w2(l) = 0. Thus, the maximum principle gives w2 ≥ 0
in (−l, ζ0), that implies v− ≤ v(ζ) . Together with v− = 0 in [ζ1, l), yields v∗ ≤ v(ζ) in Il. Next,
showing that v ≤ v+ in Il. Since i0 ≥ i−, then,

−ρv′(ζ) + d2v
′′(ζ)− (µ+ κ)v(ζ)− F2(v(ζ), i(ζ)) + αs(ζ) ≥ 0 in Il, (2.23)

Noting v(±l) ≤ a+(±l), then, by (2.22) and the maximum principle yield v ≤ v+ in Il. Now,
claiming that i− ≤ i ≤ i+ in Il. Since

F1(s
−(ζ), i−(ζ)) ≤ F1(s0(ζ), i0(ζ)) ≤ F1(s

+(ζ), i+(ζ)),

and
F2(v

−(ζ), i−(ζ)) ≤ F2(v0(ζ), i0(ζ)) ≤ F2(v
+(ζ), i+(ζ)),

it follows that

−ρi′(ζ)+ d3i
′′(ζ)+F1(s(ζ − ρτ), i(ζ − ρτ))+F2(v(ζ − ρτ), i(ζ − ρτ))− (µ+ δ+ ξ)i(ζ),≤ 0

and

−ρi′(ζ)+d3i
′′(ζ)+F1(s

+(ζ−ρτ), i+(ζ−ρτ))+F2(v
+(ζ−ρτ), i+(ζ−ρτ))−(µ+δ+ξ)i(ζ),≥ 0, z ∈ Il.

Let w3 = i− i−. By the second equation of (2.3) and i(ζ∗) > 0, i−(ζ∗) = 0, we have w3(ζ
∗) > 0,

w3(−l) = 0. Also, both (2.10), and

−ρi′(ζ)+d3i
′′(ζ)++F1(s

−(ζ−ρτ), i−(ζ−ρτ))+F2(v
−(ζ−ρτ), i−(ζ−ρτ))−(µ+δ+ξ)i(ζ),≤ 0

gives that
d2w

′′
3 (ζ) + ρw′

3(ζ)− (µ+ δ + ξ)w3(ζ) ≤ 0, ζ ∈ (−l, ζ2).

Therefore, the maximum principle ensures that w2 ≥ 0 in (−l, ζ∗), which means i− ≤ i in (−l, ζ2).
Together with i− = 0 ≤ i in [ζ2, l), then i− ≤ i in Il. To prove i ≤ i+ on Il, we let ī(ζ) = expλ1ζ

satisfie

d3ī
′′(ζ)−ρ̄i′(ζ)++F1(s

+(ζ−ρτ), i+(ζ−ρτ))+F2(v
+(ζ−ρτ), i+(ζ−ρτ))−(µ+δ+ξ)̄i(ζ) = 0 in Il.

Since F1(s0(ζ), i0(ζ)) ≤ F1(s
+(ζ), ī(ζ)) and F2(v0(ζ), i0(ζ)) ≤ F2(v

+(ζ), ī(ζ)), then

d3i
′′(ζ)−ρi′(ζ)+F1(s

+(ζ−ρτ), ī(ζ−ρτ))+F2(v
+(ζ−ρτ), ī(ζ−ρτ))−(µ+δ+ξ)i(ζ) ≥ 0 in Il.

Notice that i(±l) ≤ expλ1ζ . The maximum principle implies i(ζ) ≤ expλ1ζ in Il. Further, as
i+(ζ) = expλ1ζ in [ζ0, l), then i ≤ i+ in [ζ0, l). To show i ≤ i+ in (−l, ζ0], notice that i(−l) ≤
i+(−l) and i(ζ0) ≤ θ1 exp

λ1ζ = i+(ζ0). This result, (2.1),

d3i
′′(ζ)−ρi′(ζ)+F1(s

+(ζ−ρτ), i+(ζ−ρτ))+F2(v
+(ζ−ρτ), i+(ζ−ρτ))−(µ+δ+ξ)i(ζ) ≥ 0

and the maximum principle, we obtain i ≤ i+ in (−l, ζ0]. □
Before starting on showing the existence of a fixed point, we consider an axillary result that

will be helpful in the proof of the existence of the fixed point, and the TWS. Letting the following
problem

ϑ′′(ζ)−Aϑ′(ζ) + f(ζ)ϑ(ζ) = h(ζ). (2.24)
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with A is a positive constant, and f, h ∈ C([a, b]), with [a, b] is an arbitrary interval of R. The next
lemma is the result of Lemma 3.1-3.3 in [29]

Lemma 2.4. Let ϑ ∈ C([a, b])∩C2((a, b)) satisfies (2.24) in (a, b) with the boundary conditions
ϑ(a) = ϑ(b) = 0. If

−C1 ≤ f ≤ 0 and |h| ≤ C2 on[a, b],
for some constants C1, C2 > 0, then there is a positive constant C3, depending only on A, C1, and
(b− a), satisfying

∥ϑ∥C([a,b]) + ∥ϑ′∥C([a,b]) ≤ C3.

Finally, it is possible to confirm that the mapping F is continuous and precompact by arguing
as the proofs of Lemma 4.4-4.5 in [29] and utilizing lemma 2.4. The fixed point (sl, il, vl) ∈ X ∩Y
for F is then determined by using the Schauder fixed point theorem. This pair satisfies (2.19) and
s− ≤ sl ≤ s+ , v− ≤ vl ≤ v+ and i− ≤ il ≤ i+ on R. For the truncated problem (2.19), the
existence result is as follows, based on the description above.

Lemma 2.5. There is (sl, vl, il) ∈ X ∩ Y satisfying (2.19). Moreover,

0 ≤ s− ≤ sl ≤ s+ = S0, 0 ≤ v− ≤ vl ≤ v+ ≤ V 0 and 0 ≤ i− ≤ il ≤ i+ ≤ B

on R.

2.3. Existence of TWS. In this subsection, we use the solution (sl, vl, il) of (2.19) to prove
(s+, v+, i+) (resp. (s−, v−, i−)) is the upper (resp. lower) solution of (2.3), respectively. Also, we
will show that (s, v, i) → (s+, v+, i+) as ζ → +∞ by constructing a Lyapunov function. At first,
we show that

Lemma 2.6. The solution (s, v, i) of (2.3) satisfies (s, v, i) ∈ E defined by (2.20). Moreover,

0 < s < S0, 0 < iv < V 0 and 0 < i < B,

for all ζ ∈ R.
Proof: Let {ln}n ∈ N be an increasing sequence in (ζ2,∞) such that l1 > max{−ζ2, |ζ0|}

and ln → +∞, and let (sn, vn, in) ∈ X ×Y , n ∈ N, solving (2.19) with l = ln and (2.5) on R. For
any N ∈ N, we have

{sn}n≥N , {vn}n≥N and {in}n≥N ,

are uniformly bounded in [−lN , lN ], by Lemma 2.4, we ensure that

{s′n}n≥N , {v′n}n≥N and {i′n}n≥N

are also uniformly bounded in [−lN , lN ]. By (2.19), we have that s′′n, v′′n and i′′n can be written terms
of sn, vn, s′n, v

′
n, in and i′n. This means that s′′n, v′′n and i′′n are uniformly bounded in [−lN , lN ]. By a

differentiation of the equations of (2.19), and utilizing the boundedness of sn, vn, s′n, v
′
n, in, i′n, s′′n,

v′′n and i′′n , we can ensure that

{s′′n}n≥N , {v′′n}n≥N , {i′′n}n≥N , {s′′′n }n≥N , {v′′′n }n≥N , and {i′′′n }n≥N

are uniformly bounded in [−lN , lN ]. The Arzela-Ascoli theorem, and diagonal process implies that
there is a subsequence {(snj

, vnj
, inj

)} of {(sn, in, vn)} satisfies

snj
−→ s, s′nj

−→ s′, s′′nj
−→ s′′,

and
vnj

−→ v, v′nj
−→ v′, v′′nj

−→ v′′,

and
inj

−→ i, i′nj
−→ i′, i′′nj

−→ i′′,

uniformly in any compact interval of R as n −→ ∞, for some s, v, i in C2(R). the definition of
s±,v± and i± implies that (s, v, i) → (S0, V 0, 0) as ζ → −∞. Next, we claim that 0 < s < S0,
0 < v < V 0 and 0 < i < B on R. We prove this result by contradiction, we let i(ζ̃2) = 0 for some
ζ̃2 ∈ R. Thus i′(ζ̃2) = 0 . Hence i ≡ 0 (by the uniqueness), that is a contradiction with i ≥ i− > 0

on (−∞, ζ2) . To show that s < S0 and v < V 0 on R, assume by contradiction that s(ζ̃2) = S0

and v(ζ̃2) = V 0 for some ζ̃2 ∈ R. Then, s′(ζ̃2) = 0, v′(ζ̃2) = 0, s′′(ζ̃2) ≤ 0 and v′′(ζ̃2) ≤ 0. Also a
contradiction with the first equation of (2.3) and ζ = ζ̃2. The proof is achieved. □

Proposition 2.2. Let ρ > ρ∗, then −L1s(ζ) < s′(ζ) < L2s(ζ),

−L3v(ζ) < v′(ζ) < L3v(ζ) − L5(F1(S
0, i(ζ)) + F2(V

0, i(ζ)))

< i′(ζ) < L6(F1(S
0, i(ζ)) + F2(V

0, i(ζ))),

for all z ≥ 0, some constant Lj > 0, i = 1, 2, 3, 4, 5, 6.
Proof:
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(i) We claim that −L1s(ζ) < s′(ζ), ζ ≥ 0, with L1 > 0 sufficiently large to satisfy L1 >

max

{
− s′(0)

s(0)
, P (s0,B2)

ρρ1

}
.We let

ϕ1(ζ) = s′(ζ) + L1s(ζ).

We need to prove that ϕ1(ζ) > 0, ζ ≥ 0. Clearly, ϕ1(0) > 0. We show this claim by
contradiction. Assuming that there is ζ̂1 > 0 satisfying ϕ1(ζ̂1) = 0, ϕ′

1(ζ̂1) ≤ 0. Thus, we
have either

ϕ1(ζ) ≤ 0,∀ζ ≥ ζ̂1 (2.25)
or

ϕ1(ζ̂2) = 0 and ϕ′
1(ζ̂2) ≥ 0, for some ζ̂2 ≥ ζ̂1. (2.26)

For (2.25), and using L1 ≥ P (s0,B2)

ρρ1
, we get

ρs′(ζ) ≤ F1(S
0, B)s(ζ),∀ζ ≥ ζ̂1.

By 0 ≤ i ≤ B and s < S0 then we have Λ > (µ + α)s(ζ), the first equation of (2.3)
implies

d1s
′′(ζ) = ρs′(ζ)− Λ + (µ+ α)s(ζ) + F1(s(ζ), i(ζ)),

≤ ρs′(ζ)− Λ + (µ+ α)s(ζ) + F1(s(ζ), B),

≤ ρs′(ζ) + F1(s(ζ), B),

≤ −L1ρs(ζ) + F1(s(ζ), B)

≤ s(ζ)(−ρL1 +
F1(S

0,B)

s(ζ)
)

≤ s(ζ)(−ρL1 +
F1(S

0,B)

ρ1
) < 0.

where L1 ≥ F1(S
0,B2)

ρρ1
and for all ζ ≥ ζ̂1, then s′ is decreasing in [ζ̂1,∞). Therefore

s′(ζ) ≤ s′(ζ̂1) ≤ −L1s(ζ̂1) < 0, ζ ≥ ζ̂1, that is a contradiction. To see the contradiction,
we know that s′(ζ) ≤ −k1, with k1 = L1s(ζ̂1), therefore, by integrating the previous
inequality on [ζ̂1, ζ], and letting ζ → +∞, then we get s(ζ) −→ −∞, which contradicts
the boundedness and the positivity of the solution (Lemma 2.6). for ζ −→ +∞ we get
s(ζ) −→ −∞. Hence which contradicts the boundedness and the positivity of s(ζ). For
the second case, (2.26) yields that

s′(ζ̂2) = −L1s(ζ̂2) < 0, s′′(ζ̂2) = −L1s
′(ζ̂2) > 0. (2.27)

By the first equation of (2.3), we deduce that

0 = d1s
′′(ζ̂2)− ρs′(ζ̂2) + Λ− (µ+ α)s(ζ̂2)− F1(s(ζ̂2), i(ζ̂2)),

≥ −d1L1s
′(ζ̂2) + ρL1s(ζ̂2)− F1(s(ζ̂2), B),

≥ ρL1s(ζ̂2)− F1(s(ζ̂2), B),

by (2.27) and the fact of s < S0 and i ≤ B.

≥ s(ζ̂2)[ρL1 − F1(S
0,B)

ρ1
],

> 0, where L1 ≥ F1(S
0,B)

ρρ1
.

a contradiction again.

(ii) Proving that s′(ζ) < L2s(ζ), ζ ≥ 0. Choosing L2 > 0 sufficiently large to satisfy both
s′(0) < L2s(0) and d1L

2
2 − ρL2 − (µ+ α)− F1(S

0,B)

ρ1
> 0. Let

ϕ2 = s′(ζ)− L2s(ζ)

We need to prove that ϕ2(ζ) < 0, ζ ≥ 0. Notice that ϕ2(0) < 0. Arguing by contradiction.
Assuming that there is ζ̂3 ≥ 0 verifying ϕ2(ζ̂3) = 0 and ϕ′

2(ζ̂3) ≥ 0. Then

s′(ζ̂3) = L2s(ζ̂3), s′′(ζ̂3) ≥ L2s
′(ζ̂3) = L2

2s(ζ̂3).

By i ≤ B and s ≤ S0, the first equation of (2.3) implies

0 = d1s
′′(ζ̂3)− ρs′(ζ̂3) + Λ− (µ+ α)s(ζ̂3)− F1(s(ζ̂3), i(ζ̂3)),

≥ s(ζ̂3)

[
d1L

2
2 − ρL2 − (µ+ α)− F1(S

0,B)

ρ1

]
> 0,

that is a contradiction. By the same way we proof −L3v(ζ) < v′(ζ) < L3v(ζ).
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(iii) Now, we show −L5(F1(S
0, i(ζ)) + F2(V

0, i(ζ))) < i′(ζ), ζ ≥ 0, where L5 > 0 suffi-
ciently large to verify −L5(F1(S

0, i(ζ)) + F2(V
0, i(ζ))) < i′(0) and

L5 ≥ µ+δ+ξ

ρ
(
∂F1(S0,0)+∂F2(V 0,0)

) .

Let
ϕ3(ζ) = i′(ζ) + L5(F1(S

0, i(ζ)) + F2(V
0, i(ζ))).

We now prove ϕ3(ζ) > 0, ∀ζ ≥ 0, clearly ϕ3(0) > 0. Again, we argue by contradiction,
we suppose that there is ζ̂4 > 0 that satisfies ϕ3(ζ̂4) = 0, ϕ′

3(ζ̂4) ≤ 0. Thus, either we have

ϕ3(ζ) ≤ 0, for all ζ ≥ ζ̂4,

or ϕ3(ζ̂5) = 0 and ϕ′
3(ζ̂5) ≥ 0, for some ζ̂5 ≥ ζ̂4.

(2.28)

For the first, (2.28) gives

i′(ζ) ≤ −L5((F1(S
0, i(ζ)) + F2(V

0, i(ζ)))),∀z ≥ ẑ4.

By the third equation of (2.3) and

F1(s(ζ), i(ζ)) ≤ ∂F1(S
0, 0)i(ζ), (2.29)

and
F2(v(ζ), i(ζ)) ≤ ∂F2(V

0, 0)i(ζ), (2.30)

we deduce that

d3i
′′(ζ) = ρi′(ζ)− F1(s(ζ − ρτ), i(ζ − ρτ))− F2(v(ζ − ρτ), i(ζ − ρτ))

+(µ+ δ + ξ)i(ζ),

≤ −ρL5(F1(S
0, i(ζ)) + F2(V

0, i(ζ)))− F1(s(ζ − ρτ), i(ζ − ρτ))

−F2(v(ζ − ρτ), I2(ζ − ρτ)) + (µ+ δ + ξ)i(ζ),

≤ 0,

hence i′(ζ) decreases in [ζ̂4,∞). Therefore, i′(ζ) ≤ i′(ζ̂4) = −L5(F1(S
0, i(ζ̂4)) +

F2(V
0, i(ζ̂4))) < 0, ∀ζ ≥ ζ̂4, that also a contradiction. For (2.28) and ∂F1(V

0, ξ1) > 0
and ∂F2(V

0, ξ1) > 0 for ξ1 > 0 gives

i′(ζ̂5) = −L5(F1(S
0, i(ζ̂5))− F2(V

0, i(ζ̂5))) < 0. (2.31)

Thus, by the third equation of (2.3), (2.29) and (2.30) we get

0 = −d3i
′′(ζ̂5) + ρi′(ζ̂5)− F1(s(ζ̂5 − ρτ), i(ζ̂5 − ρτ))− F2(v(ζ̂5 − ρτ), i(ζ̂5 − ρτ))

+(µ+ δ + ξ)i(ζ̂5),

≤ ρi′(ζ̂5) + (µ+ δ + ξ)i(ζ̂5),

≤ −ρL5(F1(S
0, i(ζ̂5)) + F2(V

0, i(ζ̂5))) + (µ+ δ + γ)i(ζ̂5).

Then, we get

−ρL5(F1(S
0, i(ζ̂5)) + F2(V

0, i(ζ̂5))) + (µ+ δ + ξ)i(ζ̂5)

≤ (µ+ δ + ξ)i(ζ̂5)
[
− ρL5(F1(S

0,i(ζ̂5))+F2(V
0,i(ζ̂5)))

(µ+δ+ξ)i(ζ̂5)
+ 1

]
,

≤ (µ+ δ + ξ)i(ζ̂5)
[
− ρL5(F1(S

0,B)+F2(V
0,B))

(µ+δ+ξ)B
+ 1

]
< 0,

where L5 ≥ (µ+δ+ξ)B

ρ(F1(S0,B)+F2(V 0,B))
, a contradiction.

(iv) We prove that i′(ζ) < L6(F1(S
0, i(ζ)) + F2(V

0, i(ζ))), ∀ζ ≥ 0. Selecting L6 > 0 large
enough to satisfy the inequalities i′(0) < L6(F1(S

0, i(ζ))+F2(V
0, i(ζ))) and d2L2

6(∂F1(S
0, i(ζ̂6))+

∂F2(V
0, i(ζ̂6)))− ρL6 − (µ+ δ + ξ) 1

∂F1(S0,0)+∂F2(V 0,0)
> 0. Let

ϕ4(ζ) = i′(ζ)− L6(F1(S
0, i(ζ)) + F2(V

0, i(ζ))).
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It remain to prove that ϕ4(ζ) < 0, ∀ζ ≥ 0. As ϕ4(0) < 0, and for obtaining a contradiction,
we suppose that there is ζ̂6 > 0 verifies ϕ4(ζ̂6) = 0 and ϕ′

4(ζ̂6) ≥ 0. Then,

i′(ζ̂6) = L6(F1(s(ζ̂6), i(ζ̂6)) + F2(v(ζ̂6), i(ζ̂6))),

and

d3i
′′(ζ̂6) ≥ L6(∂F1(s(ζ̂6), i(ζ̂6)) + ∂F2(v(ζ̂6), i(ζ̂6)))i

′(ζ̂6),

= L2
6(∂F1(S

0, i(ζ̂6)) + ∂F2(V
0, i(ζ̂6)))i

′(ζ̂6)(F1(S
0, i(ζ̂6)) + F2(V

0, i(ζ̂6)))i
′(ζ̂6).

We deduce from the third and forth equations of (2.19) that

0 = d3i
′′(ζ̂6)− ρi′(ζ̂6) + F1(s(ζ − ρτ), i(ζ̂6 − ρτ)) + F2(v(ζ − ρτ), i(ζ̂6 − ρτ))

−(µ+ δ + ξ)i(ζ̂6),

≥ d3i
′′(ζ̂6)− ρi′(ζ̂6)− (µ+ δ + ξ)i(ζ),

≥ d3L
2
6(∂F1(S

0, i(ζ̂6)) + ∂F2(V
0, i(ζ̂6)))i

′(ζ̂6)(F1(S
0, i(ζ̂6)) + F2(V

0, i(ζ̂6)))i
′(ζ̂6)

−ρL6(F1(S
0, i(ζ̂6)) + F2(V

0, i(ζ̂6)))i
′(ζ̂6)− (µ+ δ + ξ)

(F1(S
0, i(ζ̂6)) + F2(V

0, i(ζ̂6)))i
′(ζ̂6)

∂F1(S0, 0) + ∂F2(V 0, 0)
,

≥ (F1(S
0, i(ζ̂6)) + F2(V

0, i(ζ̂6)))i
′(ζ̂6)

(
d2L

2
6(∂F1(S

0, i(ζ̂6)) + ∂F2(V
0, i(ζ̂6)))i

′(ζ̂6)

−ρL6 − (µ+ δ + ξ)
1

∂F1(S0, 0) + ∂F2(V 0, 0)

)
> 0,

a contradiction. □

To prove the existence of non-critical traveling wave, we need to prove that (s, i, v) → (s∗, i∗, v∗)
as ζ → ∞ by applying the Lyapunov-LaSalle Theorem. The obtained results are highlighted as fol-
lows

Lemma 2.7. (s, i, v) → (s∗, i∗, v∗) uniformly as ζ → +∞
Proof: We construct the Lyapunov functional.

V (ζ) = V1(ζ) + V2(ζ),

where

V1(ζ) = ρ

[
s− s∗ −

∫ s

s∗

F1(s
∗, i∗)

F1(ε, i∗)
dε+ v − v∗ −

∫ v

v∗

F2(v
∗, i∗)

F2(ε, i∗)
dε+ i∗h

(
i

i∗

)]
−d1s

′(ζ)

(
1− s∗

s(ζ)

)
− d2v

′(ζ)

(
1− v∗

v(ζ)

)
− d3i

′(ζ)

(
1− i∗

i(ζ)

)
,

V2(ζ) = F1(s
∗, i∗)

∫ τ

0

h

(
F1(s(ζ − ρκ), i(ζ − ρκ))

F1(s∗, i∗)

)
dκ

+F2(v
∗, i∗)

∫ τ

0

h

(
F2(v(ζ − ρκ), i(ζ − ρκ))

F2(v∗, i∗)

)
dκ,

It is evident that h(x) > 0, ∀x > 0, with h(x) = x− 1− ln(x); x ∈ R+. Next, we have

dV1(ζ)

dζ
=

(
1− F1(s

∗,i∗)

F1(s(ζ),i∗)

)(
ρs′(ζ)− d1s

′′(ζ)

)
+

(
1− F2(v

∗,i∗)

F2(v(ζ),i∗)

)(
ρv′(ζ)− d2v

′′(ζ)

)
+

(
1− i∗

i(ζ)

)(
ρi′(ζ)− d3i

′′(ζ)

)
− d1

(s′(ζ))2
∂F1(s(ζ),i∗)

∂s

F1(s∗,i∗)

(
F1(s

∗,i∗)

F1(s(ζ),i∗)

)2

−d2
(v′(ζ))2

∂F2(v(ζ),i∗)
∂v

F2(v∗,i∗)

(
F2(v

∗,i∗)

F2(v(ζ),i∗)

)2

− d3
(i′(ζ))2

i∗

(
i∗

i(ζ)

)2

.

Note that (s∗, v∗, i∗) satisfies
Λ = (µ+ α)s∗ + F1(s

∗, i∗),

αs∗ − F2(v
∗, i∗) = (µ+ κ)v∗

(µ+ δ + ξ)i∗ = F1(s
∗, i∗) + F2(v

∗, i∗).
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Then, we obtain

dV1(ζ)

dζ
=

(
1− F1(s

∗,i∗)

F1(s(ζ),i∗)

)(
(µ+ α)s∗ + F1(s

∗, i∗)− (µ+ α)s(ζ)− F1(s(ζ), i(ζ))

)
+

(
1− F2(v

∗,i∗)

F2(v(ζ),i∗)

)(
− (αs∗ − F2(v

∗, i∗))v(ζ)
v∗ + αs(ζ)− F2(v(ζ), i(ζ))

)
+

(
1− i∗

i(ζ)

)(
F1(s(ζ − ρτ), i(ζ − ρτ))− F1(s

∗, i∗) i(ζ)
i∗

+ F1(s(ζ), i(ζ))

−F1(s(ζ), i(ζ)) + F2(v(ζ − ρτ), i(ζ − ρτ))− F2(v
∗, i∗) i(ζ)

i∗
+ F2(v(ζ), i(ζ))

−F2(v(ζ), i(ζ))

)
− d1

(s′(ζ))2
∂F1(s(ζ),i∗)

∂s

F1(s∗,i∗)

(
F1(s

∗,i∗)

F1(s(ζ),i∗)

)2

− d2
(v′(ζ))2

∂F2(v(ζ),i∗)
∂v

F2(v∗,i∗)

(
F2(v

∗,i∗)

F2(v(ζ),i∗)

)2

−d3
(i′(ζ))2

i∗

(
i∗

i(ζ)

)2

.

Now, we compute dV2(z)

dz

dV2(ζ)

dζ
= −F1(s

∗, i∗)

[(
F1(s(ζ−ρτ),i(ζ−ρτ))

F1(s∗,i∗)

)
− 1− ln

(
F1(s(ζ−ρτ),i(ζ−ρτ))

F1(s∗,i∗)

)
−

(
F1(s(ζ),i(ζ))

F1(s∗,i∗)

)
+1 + ln

(
F1(s(ζ),i(ζ))

F1(s∗,i∗)

)]
− F2(v

∗, i∗)

[(
F2(v(ζ−ρτ),i(ζ−ρτ))

F2(v∗,i∗)

)
− 1−

−ln

(
F2(v(ζ−ρτ),i(ζ−ρτ))

F2(v∗,i∗)

)
−

(
F2(v(ζ),i(ζ))

F2(v∗,i∗)

)
+ 1 + ln

(
F2(v(ζ),i(ζ))

F2(v∗,i∗)

)]
By the same way with [8, 15], then we sum dV1(ζ)

dζ
and dV2(ζ)

dζ
to obtain the result

dV (ζ)

dζ
≤ 0.

Therefore, we deduce that (s, v, i)(∞) = (s∗, v∗, i∗), We let the set D corresponding to (2.3)
as follows:

D =

{
(s, v, i)|0 < s < S0, 0 < v < V 0 0 < i < i+, −L1s < s′ < L2s, −L3v < v′ < L4v

−L5(F1(s, i) + F2(v, i)) < i′ < L6(F1(s, i) + F2(v, i))

}
.

Then, for every ζ ≥ 0, proposition 2.2 suggests that D is positively invariant for (2.2). Keep in
mind that the orbital derivative of L along Ψ(ζ) is non-positive. Moreover, it is evident that V is
continuous and confined below on D. Ψ(ζ) → (s∗, v∗, i∗) as z → ∞, according to this and the
Lyapunov-LaSalle Theorem. Consequently, (s, v, i) → (s∗, v∗, i∗) as ζ → +∞. This brings the
proof to an end. □

Note that Lemma 2.6 suggests that the solution of (2.2) satisfies (s, v, i) → (S0, V 0, 0) as
ζ → −∞, as well as s− ≤ s ≤ s+, v− ≤ v ≤ v+, and i− ≤ i ≤ i+. (s, v, i) → (s∗, v−, i∗) is
ζ → +∞ according to Lemma 2.7. As a result, we conclude that the travelling wave solution of the
system (2.2) is the only positive solution that admits the system and fulfils the boundary conditions
(2.4).

3. Existence of a critical TWS . In this section, we want to show that (2.3) permits a TWS for
R0 > 1 and ρ = ρ∗.

Lemma 3.1.

s+(ζ) = S0, i+(ζ) = min{expλ∗ζ , B1}

v+(ζ) = V 0, s−(ζ) = max

{
S0 −M1 exp

ϑζ , 0

}
,

i−(ζ) = max{expλ∗ζ(1− Leϱζ), 0}, v−(ζ) = max

{
V 0 −M2 exp

ϑζ , 0

} (3.1)

for some positive constants ϑ,Mj, L (j = 1, 2), then (2.7)-(2.12) are satisfied.
Since the proof may be accomplished similarly to the proof of Lemma 2.2, we do not provide

it here. By replacing ρ by ρ∗ and λ1 by λ∗, the same process as in sections 2 is used to deduce the
presence of a TWS for ρ = ρ∗.
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4. Non existence of a TWS. The next theorem shows the case when the system (2.2) do not
admits a traveling waves solutions.

Theorem 4.1. Assume that R0 > 1 and 0 < ρ < ρ∗. Then, (2.3) has no traveling wave solution
of the form (s(x+ ρt), v(x+ ρt), i(x+ ρt)), and satisfying the boundary conditions (2.4).

Proof: We demonstrate the theorem using a contradiction. For the system (2.3), assume that
the traveling wave solution (s(x + ρt), v(x + ρt), i(x + ρt)) satisfies the boundary conditions.
Consequently, we have F1(s(ζ−ρτ),i(ζ−ρτ))

i(ζ−ρτ)
−→ ∂F1(S

0,0)

∂i
and F2(v(ζ−ρτ),i(ζ−ρτ))

i(ζ−ρτ)
−→ ∂F2(V

0,0)

∂i
as

ζ −→ −∞, then, there is ζ1 < 0 satisfying F1(s(ζ−ρτ),i(ζ−ρτ))+F2(v(ζ−ρτ),i(ζ−ρτ))

i(ζ−ρτ)
> ∂F1(S

0,0)

∂i
+

∂F2(V
0,0)

∂i
+

(µ+ξ+δ)− ∂F1((S0,0))
∂i − ∂F2((V 0,0))

∂i

2
=

∂F1((S0,0))
∂i +

∂F2((V 0,0))
∂i +(µ+ξ+δ)

2
for all ζ < ζ1. Then

ρi′(ζ) = d2i
′′(ζ) + F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))− (µ+ ξ + δ)i(ζ),

≥ d2i
′′(ζ) + δ1[i(ζ − ρτ)− i(ζ)] + δ2i(ζ), ζ ∈ R

(4.1)
where

δ1 =
∂F1((S

0,0))

∂i
+ ∂F2((V

0,0))

∂i
+ (µ+ ξ + δ)

2
,

and

δ2 =
∂F1(S

0,0))

∂i
+ ∂F2((V

0,0))

∂i
− (µ+ ξ + δ)

2

Let K(ζ) =

∫ ζ

−∞
i(s)ds, ζ ∈ R. Notice that K(ζ) is increasing in ζ ∈ R, by the integration of the

two sides of (4.1) on (−∞, ζ) where ζ < ζ1, we get (we keep in mind i(−∞) = 0, i′(−∞) = 0)

ρi(ζ) + δ1

∫ ζ

ζ−ρτ

i(s)ds ≥ d2i
′(ζ) + δ2K(ζ), ∀ζ < ζ1 (4.2)

Integrating the two sides of (4.2) form −∞ to ζ gives

ρK(ζ) + δ1

∫ ζ

−∞

(∫ η

η−ρτ

i(s)ds

)
dη ≥ d2i(ζ) + δ2

∫ ζ

−∞
K(s)ds, ∀ζ < ζ1 (4.3)

Note that∫ ζ

−∞

(∫ η

η−ρτ

i(s)ds

)
dη = ρτ limb−→−∞

∫ ζ

b

(∫ 1

0

i(η − ρτ + ρτθ)dθ

)
dη

= ρτ limb−→−∞

∫ 1

0

(∫ ζ

b

i(η − ρτ + ρτθ)dη

)
dθ

≤ ρτ

∫ 1

0

K(ζ)dθ = ρτK(ζ).

(4.4)

Combining (4.3) and (4.4), we get

d2i(ζ) + δ2

∫ ζ

−∞
K(s)ds ≤ ρK(ζ) + ρτδ1K(ζ) = ρK(ζ)(1 + τδ1), ∀ζ < ζ1. (4.5)

Given that K(t) is rising in t, which indicates that K(t− l) < K(t) for any l > 0, we may observe
that we have

lK(ζ − l) <

∫ ζ

ζ−l

K(s)ds <

∫ ζ

−∞
K(s)ds. (4.6)

Using (4.6) in (4.5), we take for any l > 0

lK(ζ − l) ≤ ρK(ζ)(1 + τδ1).

Then, for l > 0 sufficiently large, we get

K(ζ − l) < 1
2
K(ζ), ∀ζ < ζ1.
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Put u0 =
ln2
l

, and let p(ζ) = K(ζ) exp−u0ζ . Therefore

p(ζ − l) = K(ζ − l) exp−u0(ζ−l) < 1
2
K(ζ) exp−u0(ζ−l) ≤ K(ζ) exp−u0ζ = p(ζ), ∀z < ζ1.

hence p(ζ) is bounded as ζ −→ −∞, i.e., there is p0 > 0 satisfies p(ζ) ≤ p0 for all ζ < ζ1,
consequently,

K(ζ) ≤ p0 exp
u0ζ , ∀ζ < ζ1. (4.7)

It follows from (4.5) that

i(ζ) ≤ ρK(ζ)(1 + τδ1), ∀ζ < ζ1. (4.8)

then, from (4.7), and (4.8), we deduce i(ζ) exp−u0ζ is bounded for all ζ < ζ1. By (4.2) and (4.8),
we get

i′(ζ) ≤ ρi(ζ) + δ1[K(ζ)−K(ζ − ρτ)] ≤ ρi(ζ) + 2δ1p0 exp
u0ζ , ∀ζ < ζ1. (4.9)

Thus,| i′(ζ) | exp−u0ζ is bounded for all ζ < ζ1. Further, by (4.1), we know | i′′(ζ) | exp−u0ζ is
bounded for all ζ < ζ1. Then,

i(−∞) = 0, i′(−∞) = 0, i′′(−∞) = 0, (4.10)

implies i(ζ) exp−u0ζ , | i′(ζ) | exp−u0ζ and | i′′(ζ) | exp−u0ζ are all bounded on R, i.e.,

sup

{
sup
ζ∈R

{i(ζ) exp−u0ζ}, sup
ζ∈R

{| i′(ζ) | exp−u0ζ}, sup
ζ∈R

|| i′′(ζ) | exp−u0ζ |
}

< ∞. (4.11)

Besides, by the second equation of (2.3), we have for all ζ ∈ R,

d2i
′′(ζ)− ρi′(ζ) +

[
∂F1((S

0, 0))

∂i
+

∂F2((V
0, 0))

∂i

]
i(ζ − ρτ)− (µ+ ξ + δ)i(ζ) =(

∂F1((S
0, 0))

∂i
+

∂F2((V
0, 0))

∂i
− F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))

i(ζ − ρτ)

)
i(ζ − ρτ).

Then, (4.12) and (4.11) gives

supζ∈R

{
exp−u0ζ

(
∂F1((S

0,0))
∂i + ∂F2((V

0,0))
∂i − F1(s(ζ−ρτ),i(ζ−ρτ))+F2(v(ζ−ρτ),i(ζ−ρτ))

i(ζ−ρτ)

)
i(ζ − ρτ)

}

= sup
ζ∈R

{
exp−u0ζ i′′(ζ)− ρ exp−u0ζ i′(ζ) +

∂F1((S
0, 0))

∂i
˙

+̇
∂F2((V

0, 0))

∂i
exp−u0ζ i(ζ − ρτ)− (µ+ ξ + δ) exp−u0ζ i(ζ)

}
< ∞. (4.12)

For any λ ∈ C with 0 < Reλ < u0, we define a two-side Laplace transform of i(t) by

L(λ) =

∫ +∞

−∞
exp−λζ i(ζ)dζ.

The resultant equation is integrated on R and simplified using integration by parts (while still utilising
the boundary conditions (4.10)) after the two sides of (4.12) have been multiplied by e−λt.

G(λ, ρ)L(λ) =

∫ +∞

−∞
exp−λζ

((
∂F1((S

0, 0))

∂i
+

∂F2((V
0, 0))

∂i
(4.13)

−F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))

i(ζ − ρτ)

)
i(ζ − ρτ)

)
dζ,

0 < Re{λ} < u0, and (2.6) defines G(λ, ρ) for λ ∈ C. Keep in mind that, according to lemma
2.1, G(λ, ρ) ¿ 0 for every ρ ∈ (0, ρ∗). For ρ ∈ (0, ρ∗), we assert that there is no singularity in
L(λ) defined by (4.13). We provide contradictions to support this assertion. We assume that L(λ)
has no singularity for λ < λ0 and a singularity at λ = λ0, where λ0 > 0. Keep in mind that



Darazirar R.- Selecciones Matemáticas. 2025; Vol.12(1):44-61 59

0 < Re{λ} < u0 + λ0 defines the right-hand side of (4.13) if λ ∈ C. Given that (4.13) may be
written like this,

∫ +∞

−∞
exp−λζ

(
G(λ, ρ)i(ζ)−

(
∂F1((S

0, 0))

∂i
+

∂F2((V
0, 0))

∂i

−F1(s(ζ − ρτ), i(ζ − ρτ)) + F2(v(ζ − ρτ), i(ζ − ρτ))

i(ζ − ρτ)

)
i(ζ − ρτ)

)
dζ = 0, (4.14)

and
(

∂F1((S
0,0))

∂i
+ ∂F2((V

0,0))

∂i
− F1(s(ζ−ρτ),i(ζ−ρτ))+F2(v(ζ−ρτ),i(ζ−ρτ))

i(ζ−ρτ)

)
i(ζ − ρτ), i(t) are all fixed

for λ > 0, and limλ→+∞ G(λ, ρ) = +∞ for any ρ ∈ (0, ρ∗), a contradiction with the equality
(4.14) is obtained. Consequently, the boundary requirement cannot be satisfied by any travelling
wave solution. The evidence is now complete. □

5. Numerical Simulation. In order to confirm the TWS of (2.1) that link the system’s two equi-
libria, we first provide a number of numerical simulations in this section. The nonlinear incidence
function of Holling type II for the S compartment, F1(S, I) =

β1SI
1+aI

, and the Beddington-DeAngelis
incidence function for the V compartment, F2(V, I) =

β2V I
1+bI+cV

, are also taken into consideration.
Both of these functions satisfy the assumptions (H) and (D). The geographical heterogeneity of the
environment, where two towns’ modes of transmission are thought to be distinct from one another,
may be better modelled using this kind of incidence function combination.to carry out this action.
The following basic conditions are also taken into consideration.

S0(x) =

{
0.7 if x ∈ [50, 100],

0.25 if x ∈ [0, 50],

V0(x) =

{
0.3 if x ∈ [50, 100],

0.12 if x ∈ [0, 50],

I0(x) =

{
0 if x ∈ [50, 100],

0.06 if x ∈ [0, 50],
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Figure 5.1: For the system (2.2), the global stability findings show that R0 < 1 when we take into
account β1 = 0.02 and β2 = 0.01 for the left-hand figure. The DFE is globally asymptotically
stable in this instance. But if we take into account β1 = 0.2 and β2 = 0.1 for the right-hand figure,
we obtain R0 > 1. In this instance, the EE is globally asymptotically stable but the DFE is unstable.
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Figure 5.2: Cross section curves of the model (2.1) solutions, which guarantee the existence of a
TWS.

We offer Fig. 5.1, which illustrates the global stability of equilibria in the instance of the DDE
issue (2.2), in order to emphasise the global stability of (2.2). Here, however, we offer Fig. 5.2,
which emphasises the presence of a TWS of (2.1), which is the positive solution of (2.1) that fulfils
the boundary condition (2.4).

Conflicts of interest. The authors declare no conflict of interest.

Funding. No funding is received for this study.

ORCID and License
Rassim Darazirar https://orcid.org/0009-0009-8698-2116

This work is licensed under the Creative Commons - Attribution 4.0 International (CC BY 4.0)

References

[1] Dong F, Li W, Wang J. Propagation dynamics in a three-species competition model with nonlocal anisotropic
dispersal. Nonlinear Analysis: Real World Applications. 2019;48:232-66.

[2] Tomás C, Fatini M, Pettersson M. A stochastic SIRI epidemic model with relapse and media coverage. Discrete
and Continuous Dynamical Systems. 2018;23(8):3483-501.

[3] Cai Y, Wang W. Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion.
Nonlinear Analysis: Real World Applications. 2016;30:99-125.

[4] Thieme H, Zhao X. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-
diffusion models. Journal of Differential Equations. 2003;195(2):430-70.

[5] Crooks E, Dancer E, Hilhorst D, Mimura M, Ninomiya H. Spatial segregation limit of a competition-diffusion
system with Dirichlet boundary conditions. Nonlinear Analysis: Real World Applications. 2004;5(4):645-65.

[6] Murray JD. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer; 2002.
[7] Shigesada N, Kawasaki K. Biological Invasions: Theory and Practice. Oxford University Press; 1997.

https://orcid.org/0009-0009-8698-2116
https://creativecommons.org/licenses/by/4.0/


Darazirar R.- Selecciones Matemáticas. 2025; Vol.12(1):44-61 61
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