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Abstract

In this paper, we define surfaces with mean of the hyperbolic curvature radii of double harmonic
type (in short DHRMC-surfaces) in the hyperbolic space, these surfaces include the generalized
Weingarten surfaces of the harmonic type (HGW-surfaces). We give a characterization of DHRMC-
surfaces. Given a real function, we will present a family of DHRMC-surfaces that depend on two
holomorphic functions. Moreover, we classify the DHRMC-surfaces of rotation.

Keywords . hyperbolic curvature radii, holomorphic functions, Weingarten surfaces.

1. Introduction. The theory of minimal surfaces has made great progress due to the connec-
tion between the study of them and complex analysis. From the Weierstrass representation it is
possible to obtain examples of these surfaces, taking advantage of a pair of holomorphic functions.
There are Weierstrass representations for some classes of surfaces, among them are certain classes
of Weingarten surfaces, objects that we investigate in this paper.

Corro, in [1] introduce a large class of generalized Weingarten surfaces of Bryant type (in short,
BGW-surfaces) in the hyperbolic 3-space, whose mean curvature H , Gaussian curvature KI and
radius function h satisfy a relation of the form

2ach2 c−1
c (H − 1) + (a+ b− ach2 c−1

c )KI = 0,

where a+ b ̸= 0 and c ̸= 0.
In [2], the authors study the immersions X : M −→ H3, where M is a Riemann surface whose

mean curvature H and Gaussian curvature KI satisfies the relation

2(H − 1)Ce2µ +KI(1− Ce2µ) = 0.

where µ is a harmonic function with respect to the quadratic form σ = −KII + 2(H − 1)II ,
C ∈ R. The surfaces which satisfy the above relation are called Generalized Weingarten surfaces of
harmonic type in hyperbolic space (in short HGW-surfaces).

Given a hypersurface in Rn+1 with principal curvatures ki, 1 ≤ i ≤ n, define the curvature radii
Ri and the mean of the curvature radii HR as

Ri =
1

ki
and HR =

1

n

n∑
i=1

Ri.
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In [4], Espinar, Gálvez and Mira extend the problem to the hyperbolic case Hn+1, i.e. they define
the hyperbolic curvature radii and the mean of the hyperbolic curvature radii as

R̃i =
1

1− ki
and H̃R =

1

n

n∑
i=1

R̃i,

and propose the Christoffel problem where it says that given a diffeomorphism of G : Sn −→ Sn and
a differentiable function T : Sn −→ R, it is possible to find hypersurfaces with Gauss application G

and T prescribed as the mean of the hyperbolic curvature radii of this hypersurface, i.e., T = H̃R.
In this paper, we define the surfaces with mean of the hyperbolic curvature radii of double

harmonic type (in short DHRMC-surfaces), these surfaces are such that the mean of the hyperbolic
curvature radii depends on a real function C and two harmonic functions µ and ν, that is,

H̃R =
1

2

(
1− C(µ)e2ν

)
,

these surfaces include the generalized Weingarten surfaces of the harmonic type (HGW-surfaces).
We give a characterization of DHRMC-surfaces. Given the real function, we will present a family of
DHRMC-surfaces that depend on two holomorphic functions. Moreover, we classify the DHRMC-
surfaces of rotation.

Thus, we conclude that these surfaces give us some solutions to the classic Christoffel problem,
where

T =
1

2

(
1− C(µ)e2ν

)
.

2. Preliminary. In this section, we present some concepts and definitions that we will use
throughout this work. In this paper the inner product ⟨, ⟩ : C× C → R is defined by

⟨f, g⟩ = f1g1 + f2g2, where f = f1 + if2, g = g1 + ig2,

are holomorphic functions. In the computation we use the following properties:
If f, g, h : C → C, z = u1 + iu2 ∈ C are holomorphic functions then

⟨f, g⟩,u1
= ⟨f ′, g⟩+ ⟨f, g′⟩, ⟨f, g⟩,u2

= ⟨if ′, g⟩+ ⟨f, ig′⟩, ⟨fg, h⟩ = ⟨g, fh⟩,

△⟨f, g⟩ = 4⟨f ′, g′⟩, ⟨f, g⟩+ i⟨f, ig⟩ = fg, ⟨1, f⟩⟨1, if⟩ = 1

2
⟨1, if2⟩, (2.1)

⟨1, f⟩2 − ⟨1, if⟩2 = ⟨1, f2⟩.
Let M ⊂ R3 a regular surface and X : U −→ M a parameterization of M where U is an open

set of R2.
Let N the unit normal vector field on M , then

N,i =
2∑

j=1

Wij(u)X,j, 1 ≤ i ≤ 2, (2.2)

where u = (u1, u2) ∈ U ⊂ R2, X,j denotes the partial derivative of X with respect to uj and
W = (Wij) is called the Weingarten matrix.

Consider Π = {(x1, x2, x3) ∈ R3 : x3 = 0} e Y : U ⊂ R2 −→ Π an orthogonal local
parameterization of Π, that is, gij = ⟨Yi, Yj⟩, 1 ≤ i, j ≤ 2, such that

g12 = g21 = 0 and gii ̸= 0, 1 ≤ i, j ≤ 2.

Furthermore,

Y,ij =
2∑

k=1

Γk
ijY,k 1 ≤ i, j ≤ 2. (2.3)

Using the fact that the metric is diagonal, we have

Γi
ij =

gii,j

2gii
∀ i, j, (2.4)
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and

Γj
ii = − gii

gjj
Γi
ij 1 ≤ i, j ≤ 2. (2.5)

Definition 2.1. A sphere congruence in R3 is a two-parameter family of spheres with a differ-
entiable radius function , whose centers lie on a surface.

Definition 2.2. An envelope of a sphere congruence is a surface M of R3 such that each point
of M is tangent to a sphere of the sphere congruence.

Theorem 2.1. A surface M ⊂ R3 is an envelope of congruence of spheres, in which the other
envelope is contained in the plane Π = {(x1, x2, x3) ∈ R3 : x3 = 0} if and only if there is
an orthogonal local parameterization of Π, Y : U ⊂ R2 −→ Π and a differentiable function
h : U ⊂ R2 −→ R, such that X : U ⊂ R2 −→ M , given by

X(u) = Y (u)− 2h(u)

S

[
h,1

g11
(u)Y,1(u) +

h,2

g22
(u)Y,2(u)− e3

]
(2.6)

is the parameterization of M , with e3 = (0, 0, 1), gii = ⟨Y,i, Y,i⟩ , 1 ≤ i ≤ 2 and

S =
(h,1(u))

2

g11
+

(h,2(u))
2

g22
+ 1. (2.7)

Also, the normal vector is given by

N(u) = e3 +
2

S

[
h,1

g11
(u)Y,1(u) +

h,2

g22
(u)Y,2(u)− e3

]
(2.8)

and the Weingarten matrix is

W = 2V (SI − 2hV )
−1

, (2.9)

where the matrix V = (Vij) is given by

Vij =
1

gjj

(
h,ij −

2∑
l=1

Γl
ijh,l

)
, 1 ≤ i, j ≤ 2, (2.10)

end

P = S2 − 2hStr(V ) + 4h2 det(V ) ̸= 0. (2.11)

In [5], Machado and Riveros, generalize this result to hypersurfaces. The parameterization is
analogous to (2.6) for the case M ⊂ Rn+1.

From this, we have the following result.

Corollary 2.1. Let X : U ⊂ Rn −→ Mn ⊂ Rn+1 be a parameterization of a hypersurface
Mn. Then the following conditions are equivalent:

i) X is parameterized by lines of curvature,

ii) Vij = 0 for i ̸= j,

iii) N,i = −kiX,i,

where ki =
2Vii

2hVii − S
, 1 ≤ i ≤ n, are the principal curvatures of X .

In what follows, we consider H3 = {(x1, x2, x3) ∈ R3 : x3 > 0} as the upper half-space model

with the metric ds2 =
1

x2
3

(dx2
1 + dx2

2 + dx2
3) and ideal boundary C∞ = {(x1, x2, x3) ∈ R3 : x3 =

0} ∪ {∞}.

The following Lemma was obtained in [3].

Lemma 2.1. Let M ⊂ R3 be a regular surface. Consider the immersion X : M −→ H3 given

by X(u) =
3∑

j=1

xj(u)ej , where u = (u1, u2) ∈ U and N(u) =
3∑

j=1

Nj(u)ej the normal vector of
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M . Using the connection induced by the hyperbolic space metric the Weingarten matrix of X in H3

is given by

W̃ = x3W −N3I, (2.12)

where W is the Weingarten matrix on R3 and I is the identity matrix.

The following Lemma obtained in [2] characterize locally the surfaces M in H3.

Lemma 2.2. Let M be a connected Riemann surface whose hyperbolic Gauss map is an immer-
sion. Then X : M −→ H3 is a C2 immersion if, and only if, there exist functions g : M −→ C∞
holomorphic and h : M −→ R+

∞, such that X(M) is locally parameterized by

X(z) = (g, 0)− 2h

S

[
g′

∥g′∥2
(h,1 + ih,2) ,−1

]
, (2.13)

where z = u1 + iu2 ∈ C, R+
∞ = R+ ∪ {+∞} and g′(z) ̸= 0 for all z ∈ C.

S =
(h,1)

2 + (h,2)
2

∥g′∥2
+ 1. (2.14)

The hyperbolic Gauss map is given by

η(z) =
2h

S

{
(0, 0, 1) +

2

S

[
g′

∥g′∥2
(h,1 + ih,2),−1

]}
. (2.15)

The Weingarten matrix is

W̃ =
2h

P
[2hV + (S − 2htr(V )) I]− I, (2.16)

where

P = −S2 + 2S (1− γ) + 4h2 det(V ), (2.17)

and

γ =
h∆h

∥g′∥2
− S + 1. (2.18)

The matrix V = (Vij) is defined by

Vij =
1

∥g′∥2

(
h,ij −

2∑
l=1

Γl
ijh,l

)
, 1 ≤ i, j ≤ 2, (2.19)

with

Γi
ii =

|g′|,i
|g′|

and Γi
ij =

|g′|,j
|g′|

= −Γj
ii, 1 ≤ i ̸= j ≤ 2. (2.20)

Definition 2.3. Let M be a hypersurface in the hyperbolic space Hn. The hyperbolic curvature
radii R̃i and the mean of the hyperbolic curvature radii H̃R of M are given respectively by

R̃i =
1

1− ki
and H̃R =

1

n

n∑
i=1

R̃i. (2.21)
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3. Main results. In this section we define and characterize the DHRMC-surfaces.

Definition 3.1. A hypersurface M ⊂ Hn+1, n ≥ 2, is said to be a hypersurface with mean of
the hyperbolic curvature radii of double harmonic type (in short DHRMC-surfaces) if given a real
function C : R → R, the mean of the hyperbolic curvature radii is given by

H̃R =
1

2

(
1− C(µ)e2ν

)
, (3.1)

where µ and ν are harmonic functions.

Remark 3.1. We observe that (3.1) is equivalent to

2(H − 1)C(µ)e2ν +KI(1− C(µ)e2ν) = 0,

where µ and ν are harmonic functions with respect to the quadratic form σ = −KII+2(H−1)II .
Thus, when n = 2 and the real function C is constant we obtain HGW-surfaces, i.e. surfaces that
satisfy the equation

2(H − 1)Ce2ν +KI(1− Ce2ν) = 0.

Theorem 3.1. Let M ⊂ H3 an envelope of a sphere congruence, that satisfies the conditions
of the Lemma 2.2. Given a real function C : R → R, µ and ν harmonic functions, then M is a
DHRMC-surface if and only if

h∆h− ∥▽h∥2 = C(µ)e2(ν+ln∥g′∥). (3.2)

Proof: Let X : U ⊂ R2 → M , by the corollary 2.1 we have that the principal curvatures ti of
M are given by

ti =
2σi

2hσi − S
(3.3)

where σi are the eigenvalues of the matrix Vij .
Now consider the immersion X : M → H3, by (2.12) we conclude that

ki = N3 −X3ti (3.4)

using the equations (2.6), (2.8) and substituting the equation (3.3), we have

ki = 1− 2

S
+

2h

S

(
2σi

2hσi − S

)
= 1 +

2

2hσi − S
.

Consider the parameterization Y = (g, 0), where g is a holomorphic function. Thus, from the
equation above and (2.21), we have

R̃i =
1

1− ki
=

1

1− 1− 2

2hσi − S

=
S

2
− hσi. (3.5)

From (2.21) and (3.5) we have

H̃R =
1

2

((
S

2
− hσ1

)
+

(
S

2
− hσ2

))
=

1

2
(S − h(σ1 + σ2)) (3.6)

=
1

2
(S − htr(V )) .

By (2.7) S is given by

S =
∥▽h∥2

∥g′∥2
+ 1 (3.7)

and from (2.19) and (2.20) we have

tr(V ) =
1

∥g′∥2
(
h,11 −

(
Γ 1
11h,1 +Γ 2

11h,2
)
+ h,22 −

(
Γ 1
22h,1 +Γ 2

22h,2
))

=
∆h

∥g′∥2
. (3.8)
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From (3.6), (3.7) and (3.8)

H̃R =
1

2

(
1 +

∥▽h∥2 − h∆h

∥g′∥2

)
. (3.9)

Using the definition 3.1,

∥▽h∥2 − h∆h

∥g′∥2
= −C(µ)e2ν . (3.10)

Hence, we obtain that

∥▽h∥2 − h∆h = −C(µ)e2ν ∥g′∥2 = −C(µ)e2(ν+ln∥g′∥) (3.11)

where the result follows. □

Theorem 3.2.
Let M be an envelope of a sphere congruence, that satisfies the conditions of the Theorem

3.1. Consider l a real function, C = ll′′ − l′2, µ = ⟨1, f⟩ and ν = ln

∥∥∥∥f ′

g′

∥∥∥∥ where f and g are

holomorphic functions, then M is a DHRMC-surface.
Furthermore, the local parameterization of M is given by

X(z) = (g, 0)− 2l

S

(
g′l′f ′

∥g′∥2
,−1

)
, (3.12)

where z = u1 + iu2 ∈ C, g′(z) ̸= 0 for all z ∈ C and

S =
(l′)2 ∥f ′∥2

∥g′∥2
+ 1. (3.13)

The Gauss map is given by

η(z) =
2

S2

(
2g′ll′f ′

∥g′∥2
, l(S − 2)

)
. (3.14)

The Weingarten matrix is

W̃ =
2l

P
[2lV + (S − 2ltr(V ))I]− I (3.15)

where

P = −S2 + 2S(1− C(µ)e2ν) + 4l2det(V ). (3.16)

The matrix V = (Vij) is given by

Vij =
1

gjj

(
h,ij −

2∑
l=1

Γl
ijh,l

)
, 1 ≤ i, j ≤ 2 (3.17)

with

Γi
ii =

∥g′∥,i
∥g′∥

and Γi
ij =

∥g′∥,j
∥g′∥

= −Γj
ii 1 ≤ i ̸= j ≤ 2. (3.18)

Proof:
Consider h(u) = l(µ(u)) such that ∆µ = 0.

Thus, differentiating h we have

h,i = l′(µ)(µ,i), (3.19)
h,ii = l′′(µ)(µ,i)

2 + l′(µ)µ,ii.

Now from equations (3.19) we concluded that

∥▽h∥2 = (l′)2 ∥▽µ∥2 (3.20)
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and

h∆h = ll′′ ∥▽µ∥2 . (3.21)

Then, for (3.2), (3.20) and (3.21)(
ll′′ − (l′)2

)
∥▽µ∥2 = C(µ)e2(ν+ln∥g′∥). (3.22)

Using the fact that, ν = ln

∥∥∥∥f ′

g′

∥∥∥∥, µ = ⟨1, f⟩, where f is a holomorphic function, it follows that

M is a DHRMC-surface.
Now, differentiating h = l(µ) = l(⟨1, f⟩) using (2.1), we have

h,1 = l′(µ) ⟨1, f ′⟩ , (3.23)
h,2 = l′(µ) ⟨1, if ′⟩ .

Thus, from (3.23) we obtain
h,1 + ih,2 = l′f ′. (3.24)

Substituting (3.23) and (3.24) in (2.13), (2.14), (2.15) we have (3.12), (3.13) and (3.14), respectively.
Since h = l(µ) and γ = C(µ)e2ν , from (2.16)-(2.20) we obtain the expressions (3.15)-(3.18). Thus
, the proof is complete. □

4. Examples of DHRMC-Surfaces. Using the representation formula (3.12), we give some
graphs of DHRMC-surfaces.

Example 4.1. Considering f(z) = z, g(z) = cos z, l(t) = t2, C = −2t2 in Theorem 3.2, we
obtain a DHRMC-surface

Figure 4.1: DHRMC-surface.

Example 4.2. Considering f(z) = ez, g(z) = z, l(t) = ln t, C = − ln t+ 1

t2
in Theorem 3.2,

we obtain a DHRMC-surface .

Example 4.3. Considering f(z) = z4, g(z) = z5, l(t) = sin t, C = −1 in Theorem 3.2, we
obtain a DHRMC-surface.
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Figure 4.2: DHRMC-surface.

Figure 4.3: DHRMC-surface.

5. DHRMC-surfaces of rotation. The following result characterize the DHRMC-surfaces of
rotation.

Theorem 5.1.

Let M be a surface of the congruence of spheres, that satisfies the conditions of the Theorem
3.1. M is a DHRMC-surface of rotation, if and only if g = ez, µ = a1u1 + b1, ν = ln |a1| −u1 and
l satisfy

ll′′ − l′2 = C(a1u1 + b1). (5.1)

Moreover, the parameterization of M is given by

X(z) = (M(u1) cosu2,M(u1) sinu2, N(u1)) . (5.2)

where

M(u1) = eu1

[
1− 2a1ll

′

a2
1l

′2 + e2u1

]
and N(u1) =

2le2u1

a2
1l

′2 + e2u1
. (5.3)

Proof: Let M be a DHRMC-surface of rotation and consider h = l(µ) = l(a1u1 + b1). Thus,
differentiating h, we have

h,1 = l′(µ)a1, (5.4)
h,11 = l′′(µ)a2

1. (5.5)

Since h,2 = 0, from (3.2), (5.4) and (5.5) we obtain

h∆h− ∥▽h∥2 = (ll′′ − l′2)a2
1. (5.6)
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On the other hand,

C(µ)e2(ν+ln ∥g′∥) = C(a1u1 + b1)(e
2(ln |a1|−u1+ln eu1 )),

= C(a1u1 + b1)a
2
1. (5.7)

From (5.6) and (5.7), we obtain (5.1). Finally, the expression (5.3) it follows from (3.12), this
complete the proof. □

6. Examples of DHRMC-Surfaces of rotation. Using the representation formula (5.2), we
give some graphs of DHRMC-surfaces of rotation.

Example 6.1. Considering a1 = 1, b1 = 2 , l(t) = t + 1, C = −1 in Theorem 5.1, we obtain
a DHRMC-surface of rotation.

Figure 6.1: Profile curve. Figure 6.2: DHRMC-surface of rotation.



42 Corro VC, et al.- Selecciones Matemáticas. 2025; Vol.12:33-43

Example 6.2. Considering a1 = 1, b1 = 1 , l(t) = t2, C = −2t2 in Theorem 5.1, we obtain a
DHRMC-surface of rotation.

Figure 6.3: Profile curve. Figure 6.4: DHRMC-surface of rotation.

Example 6.3. Considering a1 = 1, b1 = 1 , l(t) = 3
√
t, C = − 1

3t 3
√
t

in Theorem 5.1, we

obtain a DHRMC-surface of rotation.

Figure 6.5: Profile curve. Figure 6.6: DHRMC-surface of rotation.
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