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Abstract

We compute the integral of monomials of the form x2β over the unit sphere and the unit
ball in Rn where β = (β1, . . . , βn) is a multi–index with real components βk > −1/2,
1 ≤ k ≤ n, and discuss their asymptotic behavior as some, or all, βk → ∞. This allows
for the evaluation of integrals involving circular and hyperbolic trigonometric functions
over the unit sphere and the unit ball in Rn. We also consider the Fourier transform of
monomials xα restricted to the unit sphere in Rn, where the multi–indices α have integer
components, and discuss their behaviour at the origin.

Keywords . Integration over the Unit Sphere in Rn, Integration over the Unit Ball in Rn

1. Introduction. In his most influential mathematical work, the Arithmetica Infini-
torum, published in 1656, Wallis introduced the well-known formulas∫ π/2

0

sin2k(θ) dθ =

∫ π/2

0

cos2k(θ) dθ =

√
π

2

(2k − 1)!!

(2k)!!
, k = 0, 1, 2, . . . ,

where k!! = k(k−2) · · · 2 if k is even, and k!! = k(k−2) · · · 1, if k is odd, and determined
upper and lower bounds for the Wallis ratios, wk, defined by

wk =
(2k − 1)!!

(2k)!!
=

Γ(k + 1
2
)

Γ(k + 1)
, k = 1, 2, . . . ,

where Γ(s) is the Gamma function defined by Γ(s) =
∫∞
0

e−tts−1dt.
These results continue to attract interest today. In his paper On Wallis’ formula [1], N.

D. Kazarinoff observes that “In the course of mathematical progress new truths are dis-
covered while older ones are sometimes more precisely articulated and often generalised.
Because of their elegance and simplicity, however, some classical statements have been
left unchanged. As an example, I have in mind the celebrated formula of John Wallis

1√
(πn)

>
1.3.5 . . . (2n− 1)

2.4.6 . . . (2n)
>

1√
π
(
{n+ 1

2
}
) , n = 1, 2, . . . ,
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which for more than a century has been quoted by writers of textbooks . . . Unquestion-
ably, inequalities similar to this one can be improved indefinitely but at a sacrifice of
simplicity, which is why they have survived so long.”

Kazarinoff then proceeds to improve Wallis estimates; his approach entails incorpo-
rating negative powers in Wallis formula [1, p.19], specifically, with −1 < β < ∞,∫ π/2

0

sinβ(θ) dθ =

∫ π/2

0

cosβ(θ) dθ =

√
π

2

Γ
(
β
2
+ 1

2

)
Γ
(
β
2
+ 1

) .
We could find no proof of this statement in the literature. Now, resting on an idea of

Herman Weyl [2], one may show that for β1, β2 > −1,∫ π/2

0

cosβ1(θ) sinβ2(θ) dθ =
1

2

Γ
(
β1

2
+ 1

2

)
Γ
(
β2

2
+ 1

2

)
Γ
(
β1

2
+ β2

2
+ 1

) (1.1)

where the integral is interpreted in the sense of an improper Riemann integral.
And also that, applying Stirling’s formula

Γ(x+ a) ∼
√
2πx xxxa−1e−x, a > 0,

asymptotically one has∫ π/2

0

cosβ1(θ) sinβ2(θ) dθ ∼
√
π

β
β1/2
1 β

β2/2
2(

β1 + β2

)(β1+β2+1)/2

as β1, β2 → ∞.
The reader will have no difficulty in proving these statements, as they follow along the

lines that of Proposition 2.1. In fact, one may think of these results as the 2-dimensional
version of Proposition 2.1.

Kazarinoff’s result attracted quite a bit of attention, and his prediction that the im-
provements of Wallis inequality would come at the expense of simplicity proved correct
for 50 years. Then Ch.-P. Chen and F. Qi determined the best bounds in Wallis’ inequal-
ity [3], and shortly after the proof was simplified to the extent that proved Kazarinoff’s
assessment wrong [4, 5, 6].

Now, since sin(θ) and cos(θ) are the coordinates of a point in the unit sphere in R2,
Kazarinoff’s formula and (1.1) may be interpreted as integrating over the unit sphere in
R2, thus suggesting possible extensions of Wallis formulas to higher dimensions. Baker
and Namazi, independently, considered the integral of monomials over the unit sphere
in Rn and using an inductive argument combined with the divergence theorem discussed
what Namazi called a generalized Wallis formula [7, 8].

Polynomial integration over the unit sphere is used in a variety of applications. In
Physics, for instance, they include those situations that involve integrands containing a
Green’s function over the unit sphere. For example, Mura used a Fourier transform ap-
plied to an anisotropic Green’s function to integrate the displacement field inside an el-
lipsoidal domain over the unit sphere [9]. And, Asaro and Barnett integrated the strain
field inside an ellipsoidal domain subjected to stress free strain (a polynomial of degree
M ) over the unit sphere and observed that the formulation becomes complex for M > 1,
[10].

Othmani discussed these and other examples, including the analytical expressions for
the finite Eshelby tensors, and by means of an inductive argument combined with the
divergence theorem, concluded that (in dimensions 2 and 3) the integral of monomials of
order k over the unit sphere vanishes if k is odd, and satisfies an iterative relation if k is
even [11, 12]. There is a caveat here. By symmetry considerations, the integral over the
unit sphere of a monomial of even order that contains an odd power of one of its space
variables in its expression, also vanishes.

Higher dimensional results were considered by Bochniak and Sitarz when addressing
the spectral interaction between universes [13]. And Wang, when discussing the small
sphere limit of quasilocal energy in higher dimensions along lightcone cuts, raised the
possibility of integrating the reciprocal of monomials over the unit sphere [14].
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As for our results, we begin by introducing some notations. Given a multi-index
α = (α1, . . . , αn) of nonnegative integers and a scalar λ, let

λα = (λα1, . . . , λ αn), α! = α1! · · ·αn! , |α| = α1 + · · ·+ αn.

And, for x = (x1, . . . , xn) in Rn, let xα = xα1
1 · · ·xαn

n . Now, for a multi-index β =

(β1, . . . , βn) of real numbers, since for real numbers t, δ we interpret t2δ =
((

t2
)1/2)2δ

=

|t|2δ, we have x2β = x2β1

1 · · ·x2βn
n = |x1|2β1 · · · |xn|2βn .

We will assume that n is greater than or equal to 3, and denote with dσ the element of
surface area on the unit sphere ∂B(0, 1) in Rn, and with ωn = 2πn/2/Γ(n/2) the surface
area of the unit sphere in Rn.

Symmetry plays a role in our discussion. Indeed, the integral over the unit sphere of
any monomial xα where αj is odd for some j, is 0. And, since∫

∂B(0,1)

x2
j dσ(x) =

∫
∂B(0,1)

x2
k dσ(x) , 1 ≤ j, k ≤ n,

it readily follows that

1

ωn

∫
∂B(0,1)

x2
k dσ(x) =

1

n
, 1 ≤ k ≤ n.

This expresses the most elementary form of a generalized Wallis formula in higher
dimensions.

In 1939 Hermann Weyl proved what he called a well–known formula for calculating
the mean value of the monomial x2α over the unit sphere in Rn, [2, (12), p. 465], to wit,

1

ωn

∫
∂B(0,1)

x2α dσ(x) =

∏n
αk ̸=0,k=1(2αk − 1)!!

(n+ 2|α| − 2) · · · (n+ 2)n
. (1.2)

We refer to (1.2) as Wallis n–dimensional formula.
And, a similar result holds for the unit ball in Rn. Indeed, passing to polar coordinates,

since vn = ωn/n, from (1.2) it follows that

1

vn

∫
B(0,1)

x2α dx = n

∫ 1

0

rn+2|α|−1dr
1

ωn

∫
∂B(0,1)

x2α dσ(x)

=

∏n
αk ̸=0,k=1(2αk − 1)!!

(n+ 2|α|)(n+ 2|α| − 2) · · · (n+ 2)
. (1.3)

Weyl’s result, and approach, was revisited in [15], where it is remarked that Wallis
formula remains valid for multi–indices β = (β1, . . . , βn) of non-negative real numbers
βk, 1 ≤ k ≤ n.

Wallis n–dimensional formula is the underlying principle of this note, which is orga-
nized as follows. In Section 2 we show that Weyl’s approach extends to monomials x2β

where the multi–indices β have real components βk > −1/2, 1 ≤ k ≤ n, and discuss the
asymptotic behaviour as some, or all, βk → ∞. And, similar results hold for the unit ball
in Rn. In Section 3 we develop the tools to address the Fourier transform of monomials
xα restricted to the unit sphere in Rn when the multi–indices α have integer components,
which is then carried out in Section 4; these transforms, when evaluated at the origin,
yield Wallis n–dimensional formula. And, in Section 5 we apply Wallis n–dimensional
formula to evaluate integrals involving circular and hyperbolic trigonometric functions
over the unit sphere and the unit ball in Rn. The Bernoulli and Euler numbers appear
naturally in this context.

2. Generalized Wallis Formula in Rn. Plane wave functions, that is, functions on
Rn that are constant along the hyperplanes perpendicular to a fixed direction in Rn, are
an important tool when integrating over the unit sphere. Fritz John considers in particular
plane wave functions g(y · x) of x ∈ Rn, where g(s) is a continuous function of the
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scalar variable s and y a fixed vector in Rn, which are constant along the hyperplanes
perpendicular to the direction of y, and obtains the fundamental identity∫

∂B(0,1)

g
(
y · x

)
dσ(x) = ωn−1

∫ 1

−1

(
1− t2)(n−3)/2g(|y| t) dt

for the integral of g(x · y) over the unit sphere [16, (1.2), p. 8].
In the particular case that g(t) = |t|k, where k is an even integer, Fritz John observes

that ∫
∂B(0,1)

∣∣ y · x ∣∣k dσ(x) = ck,n |y|k,

and (1.2) may be derived from this setting k = 2 |α|.
The formulation of Weyl’s result anticipated in the Introduction is the following:
Proposition 2.1. Let β = (β1, . . . , βn) be a multi-index of real numbers with βk >

−1/2, 1 ≤ k ≤ n. Then, the integral over the unit sphere in Rn of the monomial x2β can
be computed as ∫

∂B(0,1)

x2β dσ(x) = 2
1

Γ(|β|+ n/2)

n∏
k=1

Γ(βk + 1/2). (2.1)

In particular, when β = α is a multi–index of nonnegative integers, (1.2) holds.
Furthermore, asymptotically,∫

∂B(0,1)

x2β dσ(x)

∼ 2(2π)(m−1)/2e(βm+1+···+βn)

n∏
k=m+1

Γ(βk + 1/2)

∏m
k=1 β

βk

k

|β||β|+(n−1)/2
, (2.2)

as β1, . . . , βm → ∞, for 1 ≤ m ≤ n.
And, if all the βj → ∞, we have∫

∂B(0,1)

x2β dσ(x) ∼ 2(2π)(n−1)/2

∏n
k=1 β

βk

k

|β||β|+(n−1)/2
.

Proof: Fix ε > 0, let B(0, ε) denote the ball of radius ε centered at the origin, and set

f(x, ε) = x2βe−|x|2(1− χB(0,ε)(x)
)
, x ∈ Rn.

Then, passing to polar coordinates, it readily follows that∫
Rn

f(x, ε) dx =

∫ ∞

ε

e−r2r2 |β|+n−1 dr

∫
∂B(0,1)

x2β dσ(x),

where ∫ ∞

ε

e−r2r2 |β|+n−1 dr =
1

2

∫ ∞

ε2
e−rr|β|+n/2−1/2r−1/2 dr.

Hence, since by assumption |β| = β1 + · · ·+ βn > −n/2, we have

lim
ε→0

∫
Rn

f(x, ε) dx =
1

2
Γ(|β|+ n/2)

∫
∂B(0,1)

x2β dσ(x). (2.3)

Let now χQ(0, 2ε) denote the characteristic function of the cube of sidelength 2ε
centered at the origin, and observe that∫

Rn

f(x, ε) dx =

∫
Rn

x2βe−|x|2(1− χQ(0,2ε)(x)
)
dx

+

∫
Rn

x2βe−|x|2(χQ(0,2ε)(x)− χB(0,ε)(x)
)
dx.
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Then, with α = 1/
√
2n it readily follows that∣∣∣χQ(0,2ε)(x)− χB(0,ε)(x)

∣∣∣ ≲ (
χQ(0,2ε)(x)− χQ(0,2αε)(x)

)
and, consequently, that∣∣∣ ∫

Rn

x2βe−|x|2
(
χQ(0,2ε)(x)− χQ(0,2αε)(x)

)
dx

∣∣∣
≲

n∑
k=1

∫ ε

2αε

|xk|2βk dxk ≲
n∑

k=1

ε1+2βk , (2.4)

which, since 1 + 2βk > 0 for all k, tends to 0 as ε → 0.
Now, the integral ∫

Rn

x2βe−|x|2(1− χQ(0,2ε)(x)
)
dx

can be computed as
n∏

k=1

∫
R
e−x2

k x2βk

k

(
1− χQ(0,2ε)(xk)

)
dxk = 2n

n∏
k=1

∫ ∞

ε

e−x2
k x2βk

k dxk

=
n∏

k=1

∫ ∞

ε2
e−xk x

βk−1/2
k dxk

and, therefore, we get

lim
ε→0

∫
Rn

x2βe−|x|2(1− χQ(0,2ε)(x)
)
dx =

n∏
k=1

Γ(βk + 1/2) (2.5)

Hence, combining (2.4) and (2.5) we conclude that

lim
ε→0

∫
Rn

f(x, ε) dx =
n∏

k=1

Γ(βk + 1/2),

which together with (2.3) gives

1

2
Γ(|β|+ n/2)

∫
∂B(0,1)

x2β dσ(x) =
n∏

k=1

Γ(βk + 1/2),

and (2.1) holds.
Now, unraveling the expression on the right–hand side of (2.1) when β = α is an

integer multi–index it follows that in this case also (1.2) holds.
As for the asymptotic behavior of (2.1), suppose that β1, . . . , βm → ∞, 1 ≤ m ≤ n.

Then by Stirling’s formula we have

Γ(βk + 1/2) ∼
√
2π ββk

k e−βk , 1 ≤ k ≤ m,

and
Γ(|β|+ n/2) ∼

√
2π |β|β|+(n−1)/2e−|β|,

and, consequently,

1

Γ(|β|+ n/2)

m∏
k=1

Γ(βk + 1/2) ∼ 1√
2π |β||β|+(n−1)/2e−|β|

m∏
k=1

√
2π ββk

k e−βk

∼ (2π)(m−1)/2 e(βm+1+···+βn)

∏m
k=1 β

βk

k

|β||β|+(n−1)/2
. (2.6)
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(2.2) follows at once from (2.1) and (2.6). □
As for the integral over the unit ball in Rn we have:
Proposition 2.2. Let β = (β1, . . . , βn) be a multi-index of real numbers with βk >

−1/2, 1 ≤ k ≤ n. Then, the integral of the monomial x2β over the unit ball in Rn can be
computed as ∫

B(0,1)

x2β dx =
1

Γ((|β|+ 1) + n/2)

n∏
k=1

Γ(βk + 1/2). (2.7)

In particular, when β = α is a multi–index of nonnegative integers, (1.3) holds.
Furthermore, asymptotically,∫

B(0,1)

x2β dx

∼ (2π)(m−1)/2e(βm+1+···+βn)

n∏
k=m+1

Γ(βk + 1/2)

∏m
k=1 β

βk

k

|β||β|+(n+1)/2
(2.8)

as β1, . . . , βm → ∞, for 1 ≤ m ≤ n.
And, if all the βj → ∞, we have∫

B(0,1)

x2β dx ∼ (2π)(n−1)/2

∏n
k=1 β

βk

k

|β||β|+(n+1)/2
.

Proof: For ε > 0, consider

g(x, ε) = x2βχB(0,1)\B(0,ε)(x).

Then, passing to polar coordinates it readily follows that∫
Rn

g(x, ε) dx =

∫ 1

ε

rn+2|β|−1dr

∫
∂B(0,1)

x2β dσ(x),

where, by assumption n+ 2|β| > 0, and, consequently,

lim
ε→0

∫ 1

ε

rn+2|β|−1dr =
1

(2|β|+ n)
.

Thus, by (2.1) we have∫
B(0,1)

x2β dx = lim
ε→0

∫
Rn

g(x, ε) dx

=
1

(2|β|+ n)

∫
∂B(0,1)

x2β dσ(x)

=
1

Γ((|β|+ 1) + n/2)

n∏
k=1

Γ(βk + 1/2),

which gives (2.7).
Moreover, since

1

2|β|+ n
∼ 1

2|β|
as |β| → ∞,

the asymptotic values (2.8) follow at once from (2.2), and we have finished. □
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3. Bessel Functions. In this section we cover the preliminary material to discuss the
Fourier transform of mononials restricted to the unit sphere in Rn.

Jν(x), the Bessel function of order ν, is defined as the solution of the second order
linear equation

t2
d2y

dt2
+ t

dy

dt
+ (t2 − ν2) y = 0.

Basic properties of the Bessel functions follow readily from their power series expan-
sion [17],

Jv(t) =
( t

2

)ν
∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

( t

2

)2t

.

They include:

lim
t→0+

Jν(t)

tν
= 2−ν 1

Γ(ν + 1)
,

and the recurrence formula
d

dt

(Jν(t)
tν

)
= −t−ν Jν+1(t).

In this note we will work with the function Ψν(t) defined by

Ψν(t) =
Jν(t)

tν
= 2−ν

∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

( t

2

)2k

. (3.1)

Then the above relations become, respectively,

lim
t→0+

Ψν(t) = 2−ν 1

Γ(ν + 1)
, (3.2)

and
Ψ′

ν(t) = −tΨν+1(t). (3.3)
Now, repeated applications of (3.3) yield

Ψ′′
ν(t) = −Ψν+1(t) + t2Ψν+2(t), (3.4)

Ψ′′′
ν (t) = 3tΨν+2(t)− t3Ψν+3,(t),

Ψiv
ν (t) = 3Ψν+2(t)− 6t2Ψν+3(t) + t4Ψν+4(t), (3.5)

Ψv
ν(t) = −15tΨν+3(t) + 10t3Ψν+4(t)− t5Ψν+5(t),

and so on.
Thus, the following pattern emerges. If D denotes differentiation with repect to t,

DkΨν(t) is a polynomial of degree k in t with coefficients cj Ψν+j(t) for some scalars cj
with 0 ≤ j ≤ k. And, since as is readily seen from (3.1), Ψν(t) is an even function, its
derivatives of odd order are odd functions, and those of even order are even.

Moreover, for integers k = 1, 2, . . ., D2kΨν(t) is an even polynomial of degree 2k in
t consisting of k + 1 terms that can be written as

D2kΨν(t)

= t2kΨν+2k(t)− c2k−1t
2(k−1)Ψν+2k−1(t) + · · ·+ (−1)kckΨν+k(t). (3.6)

In fact, it can be readily seen that if (3.6) holds for 2k, then, on account of (3.4 ), it
also holds for 2(k + 1), and it is thus valid for all 2k.

A similar argument applies to D2k+1Ψν(t) for integers k = 1, 2, . . . In this case
D2k+1Ψν(t) is an odd polynomial of degree 2k + 1 in t consisting of k + 1 terms that
can be written as

D2k+1Ψν(t)

= −t2k+1Ψν+2k+1(t) + d2kt
2k−1Ψν+2k(t) + · · ·+ (−1)k+1dk tΨν+k+1(t), (3.7)
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and which can be verified as in the even case.
We are particularly interested in the constant term when the polynomial is even, and in

the term corresponding to t when the polynomial is odd. We adopt here the usual notation
that φ(ξ) = o(|ξ|η), where η > 0, as |ξ| → 0, provided that

lim
|ξ|→0

|φ(ξ)|
|ξ|η

= 0.

We begin by proving:
Proposition 3.1. With ν > 0, let

Ψν(ξ) =
Jν(|ξ|)
|ξ|ν

, ξ ∈ Rn.

Then,

lim
|ξ|→0

Ψν(ξ) = 2−ν 1

Γ(ν + 1)
. (3.8)

Moreover, for ε > 0, 1 ≤ j ≤ n, and k = 1, 2, . . .,

∂2kΨν(ξ)

∂ξ2kj
= (−1)k(2k − 1)!! Ψν+k(ξ) + o(|ξ|2−ε) (3.9)

as |ξ| → 0.
And

∂2k+1Ψν(ξ)

∂ξ2k+1
j

= (−1)k+1(2k + 1)!! (ξj)Ψν+k+1(ξ) + o(|ξ|3−ε) (3.10)

as |ξ| → 0.
Proof: (3.8) is a restatement of (3.2). Now, since

∂Ψν(ξ)

∂ξj
=

∂
(
|ξ|−ν Jν(|ξ|)

)
∂ξj

= −ξj
Jν+1(|ξ|)
|ξ|ν+1

= −ξj Ψν+1(ξ),

and, similarly,
∂2Ψν(ξ)

∂ξ2j
= −Ψν+1(ξ) + ξ2jΨν+2(ξ),

these expressions correspond to (3.3) and (3.4) with Ψν(t) replaced by Ψν(ξ) and t re-
placed by ξj there. The same applies to all other statements, so we will consider Ψν(t) in
what follows.

Now, in the even case we are interested in the constant term. Setting t = 0 in (3.6) it
follows that

D2kΨν(0) = (−1)kckΨν+k(0). (3.11)
Also, by (3.1) it readily follows that

D2kΨν(0) = 2−ν(−1)k
1

k!

1

Γ(ν + k + 1)22k
2k!,

which, since
1

22k
2k!

k!
= 2−k(2k − 1)!!

can be restated as

D2kΨν(0) = (−1)k2−(ν+k) 1

Γ(ν + k + 1)
(2k − 1)!!,

Thus, since by (3.8)

2−(ν+k) 1

Γ(ν + k + 1)
= Ψν+k(0),
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it follows that
D2kΨν(0) = (−1)k(2k − 1)!! Ψν+k(0), (3.12)

and by (3.11) and (3.12) we get

(−1)kckΨν+k(0) = (−1)k(2k − 1)!! Ψν+k(0),

and, therefore, ck = (2k − 1)!!
We are also interested in the coefficient of the term corresponding to t when k is odd.

Note that, from (3.4) applied to (3.4) it follows that

D2k+2Ψν(t) = (−1)k+12 ck+1Ψν+k+1(t) + (−1)k+1ckΨν+k+1(t) + Φ(t), (3.13)

where Φ(t) = o(|t|4−ε), and Φ(0) = 0. Hence,

D2k+2Ψν(0) = (−1)k+1
(
2ck+1 + ck

)
Ψν+k+1(0). (3.14)

And, since as in (3.12), it follows that

D2k+2Ψν(0) = (−1)k+1(2k + 1)!! Ψν+k+1(0),

combining (3.13) and (3.14), we get

2ck+1 + ck = (2k + 1)!!, (3.15)

which, since ck = (2k − 1)!!, implies that

ck+1 =
1

2

(
(2k + 1)!!− (2k − 1)!!

)
= k (2k − 1)!!

To determine dk now, observe that differentiating (3.5), from (3.3) it readily follows
that

D2k+1Ψν(t) = (−1)k+1(ck + 2ck+1)tΨν+k+1(t) + Φ(t),

where Φ(0) = 0, and, therefore, comparing this expression with (3.6) it readily follows
that dk = ck + 2ck+1. Hence, from (3.15) we conclude that

dk = (2k + 1)!!

and the proof is finished. □
The above reasoning allows for the determination of all the desired coefficients in

(3.6) and (3.7). For example, one may verify that ck+2 in (3.6) is equal to

ck+2 =
1

3!
k(k − 1)(2k − 1)!!

At this time, no obvious pattern to compute the various coefficients is apparent to us.

4. The Fourier Transform of Monomials Restricted to the Unit Sphere. The the-
ory of polynomials on the unit sphere of Rn is developed in [18, Chapter 5], where in
particular a refined version of Weyl’s result (1.2) for harmonic polynomials is given. Here
we complement those results by computing the Fourier transform of monomials restricted
to the unit sphere of Rn and discussing their behaviour at the origin..

Recall that when n ≥ 3, the Fourier transform of the surface area measure carried on
the sphere ∂B(0, 1) centered at the origin of radius 1 in Rn, is given by [19, p. 154],∫

∂B(0,1)

e−ix·ξ dσ(x) = (2π)n/2Ψ(n−2)/2(ξ). (4.1)

To fix ideas we consider first the Fourier transform of the monomial x2k
1 restricted to

the unit sphere. Differentiating (4.1) with respect to ξ1 it follows that

1

(2π)n/2

∫
∂B(0,1)

x2k
1 e−ix·ξ dσ(x)

= (2k − 1)!! Ψ(n/2)+k−1(ξ)− k(2k − 1)!! ξ21 Ψ(n/2)+k(ξ)

+
1

3!
k(k − 1)(2k − 1)!! ξ41 Ψ(n/2)+k+1(ξ) + o(|ξ|),
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and we are done in this case.
For the applications we have in mind it suffices to invoke Proposition 3.1 with ν =

(n− 2)/2 there, and observe that∫
∂B(0,1)

x2k
1 e−ix·ξ dσ(x) = (2π)n/2 (2k − 1)!! Ψ(n/2)+k−1(ξ) + o(|ξ|). (4.2)

It is important to note that all the summands that appear in the o(|ξ|) term have a
positive power of ξ1 in them. The reason being that, when derivatives are taken with
respect to variables other than ξ1, the expression remains an o(|ξ|) term.

Next, concerning the monomial x2k+1
1 , differentiating (4.2) one more time with respect

to ξ1, by (3.10) in Proposition 3.1 with ν = (n− 2)/2 there it follows that∫
∂B(0,1)

x2k+1
1 e−ix·ξ dσ(x)

= (2π)n/2(2k + 1)!! (i ξ1)Ψ(n/2)+k(ξ) + o(|ξ|), (4.3)

which gives the desired result in this case.
We introduce some notations to address the general case. Given a multi-index α =

(α1, . . . , αn), let αo = (αo
1, . . . , α

o
n) where αo

j = αj if αj is an odd integer and = 0
otherwise, µ(αo) the number of indices with αo

j ̸= 0, and αe = (αe
1, . . . , α

e
n), where

αe
j = αj − αo

j .
Let

Aα(ξ) = (2π)n/2
( ∏

αe
m ̸=0,m=1

n(αe
m − 1)!!

)( n∏
αo
m ̸=0,m=1

αo
m!! (iξm)

)
.

We consider now the general case, which follows essentially by iterating (4.2) and
(4.3):

Theorem 4.1. Let n ≥ 3. Then, for a multi-index α we have∫
∂B(0,1)

xα e−ix·ξ dσ(x)

= Aα(ξ)Ψ(n+|α|+µ(o)−2)/2(ξ) + o(|ξ|). (4.4)

Proof:
Given a multi-index α, let α = αe +αo. Then, iterating the relation (4.3) for those ξm

with αo
m ̸= 0 it readily follows that∫
∂B(0,1)

xαo

e−ix·ξ dσ(x)

= (2π)n/2
( n∏

αo
m ̸=0,m=1

(αo
m)!! (iξm)

)
Ψ(n+|αo|+µ(o)−2)/2(ξ) + o(|ξ|). (4.5)

Now, iterating the relation (4.2) for those ξm with αe
m ̸= 0, since (n + |αo| + µ(o) −

2)/2 + |αe|/2 = (n+ |α|+ µ(o)− 2)/2, from (4.5) it readily follows that∫
∂B(0,1)

xαe−ix·ξ dσ(x) =

∫
∂B(0,1)

xαo

xαe

e−ix·ξ dσ(x)

= Aα(ξ)Ψ(n+|α|+µ(o)−2)/2(ξ) + o(|ξ|).

and we have finished. □
Wallis n–dimensional formula follows letting ξ → 0 in (4.4). Indeed, the limit is

equal to
Aα(0)Ψ(n+|α|+µ(o)−2)/2(0),
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which in turn is 0 if µ(o) ̸= 0. Thus, we may assume that all the αm are even, and then on
account of (3.8) we have that the limit is equal to

(2π)n/2
( n∏

αm ̸=0,m=1

(αm − 1)!!
)
Ψ(n+|α|−2)/2(0)

= (2π)n/22−(n+|α|−2)/2 1

Γ((n+ |α|)/2)

( n∏
αm ̸=0,m=1

(αm − 1)!!
)
,

and the conclusion follows by a computational argument left to the reader.

5. Applications. We close the note with the integration of circular and hyperbolic
trigonometric functions over the unit sphere and the unit ball in Rn. The results follow
from the known fact that a power series converges uniformly on compact subsets of its
disc of convergence, and, therefore, it can be integrated termwise there. As for the uniform
convergence of the series, one may invoke the known fact that if f(t) is analytic in the
disc |t| < R , it is the sum of its Taylor series there, or else establish the convergence
invoking the asymptotics for the Bernoulli numbers, Bk, or Euler numbers, Ek, [20, 21].

Recall that

t coth(t) =
∞∑
k=0

22k

(2k)!
B2k t

2k,

where the series, by either criteria described above, converges uniformly and absolutely
for |t| < π, and so for a multi-index α, since B0 = 1, the series

xα coth(xα) = 1 +
∞∑
k=1

22k

(2k)!
B2k x

2kα (5.1)

converges uniformly and absolutely for |x| < R for some R > 1. We may then integrate
(5.1) termwise, and by (1.2) or (2.1) conclude that

1

ωn

∫
∂B(0,1)

xα coth(xα) dσ(x)

= 1 +
∞∑
k=1

22kB2k

(2k)!

∏n
αm ̸=0,m=1(2kαm − 1)!!

(n+ 2|α| k − 2) · · · (n+ 2)n
.

Similarly, for the integral over the unit ball, by (1.3) or (2.7) it follows that

1

vn

∫
B(0,1)

xα coth(xα) dx

= 1 +
∞∑
k=1

22kB2k

(2k)!

∏n
αm ̸=0,m=1(2kαm − 1)!!

(n+ 2|α|k)(n+ 2|α|k − 2) · · · (n+ 2)
.

As for circular trigonometric functions, consider, for instance, the series expansion
for t/ sin(t) given by

t

sin(t)
= 1 + 2

∞∑
k=1

(−1)k−1 (2
2k−1 − 1)

(2k)!
B2k t

2k,

which converges uniformly and absolutely for |t| < π. Hence, for a multi-index α the
series

xα

sin(xα)
= 1 + 2

∞∑
k=1

(−1)k−1 (2
2k−1 − 1)

(2k)!
B2k x

2kα, (5.2)

converges uniformly and absolutely for |x| < R for some R > 1, and we may evaluate
the integral of (5.2) over the unit sphere and the unit ball as above.
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A slight variant works when odd powers are involved in the expansion. For instance,
consider the tangent, which can be expanded as

tan(t) =
∞∑
k=1

τ2k−1B2k t
2k−1,

where

τ2k−1 = (−1)k22k
(22k−1 − 1)

(2k)!
, k = 1, 2, . . .

which converges absolutely and uniformly for |t| < π/2.
Thus, for a multi-index α the series

tan(xα) =
∞∑
k=1

τ2k−1B2k x
(2k−1)α (5.3)

converges absolutely and uniformly for |x| < R, for some R > 1, and therefore (5.3) may
be integrated termwise over the unit sphere and the unit ball in Rn.

Now, the monomials in (5.3) integrate to 0 unless all the coordinates of the (2k− 1)α
are even integers, which is the case when all the αj are even. Let then α = 2α′, where the
α′
j are nonnegative integers.

Then, on account of (1.2) for k = 1, 2, . . ., we have

1

ωn

∫
∂B(0,1)

x(2k−1)α dσ(x) =
1

ωn

∫
∂B(0,1)

x2(2k−1)α′
dσ(x)

=

∏n
α′
m ̸=0,m=1(2(2k − 1)α′

m − 1)!!

(n+ 2(2k − 1)|α′| − 2) · · · (n+ 2)n

=

∏n
αm ̸=0,m=1((2k − 1)αm − 1)!!

(n+ (2k − 1)|α| − 2) · · · (n+ 2)n
,

and the answer follows readily from this by integrating (5.3) termwise.
As for the integral over the unit ball, observe that, similarly, by (1.3),

1

vn

∫
B(0,1)

x(2k−1)α dx

=

∏n
αm ̸=0,m=1((2k − 1)αm − 1)!!

(n+ (2k − 1)|α|)(n+ (2k − 1)|α| − 2) · · · (n+ 2)
,

and the integral can be readily obtained by integrating (5.3) termwise.
Which brings us to the closing remarks. G. S. Ely considered the question of expand-

ing powers of trigonometric functions given the expansions of the functions themselves
[22]. In the case of the tangent one derives

tan3(t) =
∞∑
k=1

(
k (2k + 1) τ2k+1B2k+2 − τ2k−1B2k

)
t2k−1.

We leave to the reader the evaluation of the integral∫
∂B(0,1)

tan3(xα) dσ(x) .

Finally, unlike the functions considered above, the expansion of the secant involves
the Euler numbers, Ek, and is given by

sec(t) =
∞∑
k=0

(−1)k
1

(2k)!
E2k t

2k.
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Simple algebraic manipulations give that the expansion for sec3(t) is given by

sec3(t) =
1

2

∞∑
k=0

(−1)k
1

(2k)!

(
E2k − E2(k+1)

)
t2k.

Then, for an appropriate real multi-index β the reader is invited to evaluate∫
B(0,1)

sec3(xβ) dx.
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