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Abstract

Mathematical models are widely used to study the spreading dynamics of infectious diseases.
In particular, the “Susceptibles-Infecteds-Recovereds-Deceases”(SIRD) model provides a frame-
work that can be adapted to describe the core spreading dynamics of several human and wildlife
infectious diseases. The present work uses a SIRD model using Caputo fractional derivative. In
this investigation, the existence and uniqueness of solutions for the model were established. Nu-
merical solutions were obtained using the Adams-Bashforth method. To illustrate the model’s
utility, we made forecasts for the spread of the virus SARS-Cov-2 in the region of Tacna in Perú.
It is well known that these models can help to forecast the number of infected people, understand
the disease dynamics and evaluate potential control strategies.

Keywords . Fractional ordinary differential equations; Fractional derivatives and integrals; Caputo
fractional derivative; SIRD model for infectious diseases

1. Introduction. Infectious diseases have affected several times humankind, and it is worth
citing here the second plague pandemic (The Black Death). For roughly six years, between 1346
and 1352, it annihilated some 60% of Europe’s population [1].

Recently, infectious disease outbreaks such as SARS, Ebola and Zika have risen in different
parts of the world, although these inflicted specific regions and received the attention of the World
Health Organization (WHO), the last COVID-19 outbreak was the most sinister of the 21st cen-
tury until the present. On January 30, 2020, the WHO issued an official statement declaring the
COVID-19 epidemic a public health emergency of global importance. The pandemic classifica-
tion indicates that the disease has spread to multiple countries, continents and even worldwide,
affecting many people. The WHO expressed deep concern about the rapid spread of the virus and
the severity of its effects, as well as the insufficiency of the actions taken up to that point.

Intending to understand the spreading dynamics of infectious diseases, some authors proposed
mathematical models. It is important to cite the pioneering work of Kermack and McKendrick
[2], which gave origin to the Susceptibles-Infecteds-Removeds (SIR) model, which is a system
of ordinary differential equations on the variables S, I and R. Since then, several other works
have risen, intending to improve that model. For example, the SIRD model incorporates the
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class of deceased people to show the impact of the epidemic disease on the population. In the
literature, the models SIR, SIRD or others that divide the population into compartments are called
“compartmental models for infectious diseases”.

On the other hand, some authors proposed SIRD models using delayed differential equations
(see [3] for example). Authors such as [4] use fractional derivatives for the model with Caputo
derivative for the case of COVID-19, [5] study a SEIR model (here E corresponds to the exposed
people) for the case of COVID-19 using Caputo derivative, SIR epidemiological model proposes
to analyse real case data in Pakistan in [6] with Caputo derivative.

In the present work, we study a fractional SIRD mathematical model with Caputo derivative
of the variables S, I , R and D with respect to time. So, we consider the following SIRD model
initial value problem

CDα
t0+ [S(t)] = −β

S(t)I(t)

N
,

CDα
t0+ [I(t)] = β

I(t)S(t)

N
− (γ + κ)I(t),

CDα
t0+ [R(t)] = γI(t),

CDα
t0+ [D(t)] = κI(t), t ∈ (t0, T ),

(1.1)

along with the initial conditions

S(t0) = S0, I(t0) = I0, R(t0) = R0, D(t0) = D0, (1.2)

where T > 0 is a real number and CDαi

t0+ denotes the Caputo fractional derivative with 0 < α < 1.
Here, we need to remark that the constants β, γ and κ have the same meaning, so in the

classical SIRD model
dS(t)

dt
= −β

S(t) · I(t)
N

dI(t)

dt
= β

I(t) · S(t)
N

− (γ + κ) I(t)

dR(t)

dt
= γI(t)

dD(t)

dt
= κI(t),

(1.3)

where the constants β, η, and µ are the mean infection rate, recovery rate and death rate, respec-
tively. Moreover, N is the total population and satisfies the assumption N = S + I +R+D for
0 ≤ t ≤ T.

Firstly, we demonstrate the existence and uniqueness of the solution to the initial value prob-
lem (1.1)-(1.2). To do this, we use a fixed point theorem and following the arguments from [7],
our argument used here is slightly different than the one used in [4]. Afterwards, we used the
Adams–Bashforth numerical method to obtain the approximate solution of the proposed model as
in [4].

To illustrate the model’s utility, we apply the numerical method to the case of the spread
of COVID-19 in the region of Tacna in Perú during December 2021. Some authors studied the
dynamics of COVID-19 in the same region ([3], [8] and [9]), but they used models involving
ordinary derivatives.

The rest of the paper is organised as follows: Section 2 is devoted to notation and definitions
used throughout the text. In Section 3, we demonstrated the existence and uniqueness of the so-
lution for the initial value problem (1.1)-(1.2). In Section 4, we developed the numerical solution
used to do the forecasts. Section 5 is devoted to applying the tools developed in the previous
section, which will make some forecasts for the Peruvian region of Tacna. Finally, section 6 is
dedicated to conclusions.

2. Preliminaries. We need the following definitions of fractional integral and fractional
derivative; more details can be found in [7]. Let [a, b] be a finite interval of R, we will denote
by C([a, b]) the space of the continuous functions with norm ∥f∥C = maxt∈[a,b]|f(x)|.

Definition 2.1. Let [a, b] be a finite interval of R and f : [a, b] → R a function. The left-sided
Riemann-Liouville fractional integral of f , Iαa+f , of order α ∈ C (ℜ(α) > 0) is given by

(Iαa+f)(t) :=
1

Γ (α)

∫ t

a

f(p) dp

(t− p)1−α
, (t > a) (2.1)

whenever the integral in (2.1) exists and is finite. Moreover, Γ is the Gamma function.



238 Coayla-Teran EA. et al.- Selecciones Matemáticas. 2024; Vol.11(2):236-248

Definition 2.2. Let [a, b] be a finite interval of R and f : [a, b] → R a function. The Riemann-
Liouville fractional derivative of f , Dα

a+f , of order α ∈ C (ℜ(α) > 0) is given by

(Dα
a+f)(t) :=

(
d

dt

)n

(In−α
a+ f)(t)

=
1

Γ (n− α)

(
d

dt

)n ∫ t

a

f(p) dp

(t− p)α−n+1
, (n = Jℜ (α)K + 1; t > a).

(2.2)

Definition 2.3. Let [a, b] be a finite interval of R and f : [a, b] → R a function. The left-sided
Caputo fractional derivative of f , CDα

a+f , on [a, b] of order α ∈ C (ℜ(α) > 0) is given by

(CDα
a+f)(t) :=

(
Dα

a+

[
y(x)−

n−1∑
k=0

y(k)(a)

k!
(x− a)k

])
(t), (2.3)

where n = Jℜ (α)K + 1 for α /∈ N0; n = α for α ∈ N0.
Remark 2.1. In particular, when 0 < ℜ(α) < 1, we have

(CDα
a+f)(t) = (Dα

a+ [f(x)− f(a)])(t).

The following consequence of Theorem 3.24 (page 199) from [7] will be important to demonstrate
the existence of the solution of the SIRD model using the Caputo derivative.

Lemma 2.1. Let α be a number such that 0 < α < 1. Let G be an open set in R and
f : (a, b]×G → R such that, for any y ∈ G, f [x, y] ∈ C [a, b] .

If y(x) ∈ C [a, b] , then y(x) satisfies(
CDα

a+y
)
(x) = f [x, y(x)] , y(a) = b0 ∈ R

if and only if, y(x) satisfies the Volterra integral equation

y(x) = b0 +
1

Γ(α)

x∫
a

f [t, y(t)]

(x− t)1−α dt, (a ≤ x ≤ b). (2.4)

Proof: We will use the Theorem 3.24 from [7], G ⊂ R and for a real-valued function f .
Also, we will take γ = 0. Therefore, the space Cγ [a, b] used in that theorem becomes C [a, b] .
The conclusion follows from that theorem. □

The following Banach fixed point theorem will be used to demonstrate the existence of a
solution for the initial value problem (1.1)-(1.2).

Theorem 2.1. Let (U, d) be a nonempty complete metric space, let 0 ≤ k < 1, and let
T : U → U be the map such that, for every u, v ∈ U is satisfied

d(Tu, Tv) ≤ k d(u, v)

Then, the operator T has a unique fixed point u∗ ∈ U.
Furthermore, if Tn (n = 1, 2, . . .) is the sequence of operators defined by

T 1 = T, and Tn = TTn−1, n = 2, 3, . . . .

Then, for any u0 ∈ U, the sequence {Tnu0}∞k=1 converges to the above fixed point u∗.

3. Modelo SIRD with Caputo fractional derivative. This section is devoted to studying in
more detail the SIRD model (1.1). In this model, the following assumptions are implicit:

• The number of susceptible (S) and contagious infective (I) individuals is very high. So,
the random differences between individuals can be neglected.

• The disease spreads through contact from individual to individual.

• Some infected individuals can be deceased (denoted by (D)).

• Recovered individuals (R) become immune.

• The population is closed with no migration.
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Lemma 3.1. Let T > 0 be a fixed real number. Let (S, I,R,D) ∈ C[t0, T ] × C[t0, T ] ×
C[t0, T ]×C[t0, T ]. Then, the initial value problem (1.1)-(1.2) is equivalent to the following system
of integral Volterra equations

S(t) = S(t0) +
1

Γ(α)

∫ t

t0

−(t− p)α−1β
S(p) I(p)

N
dp,

I(t) = I(t0) +
1

Γ(α)

∫ t

t0

(t− γ)α−1β
S(p) I(p)

N
− (γ + κ)I(p) dp,

R(t) = R(t0) +
1

Γ(α)

∫ t

t0

(t− p)α−1γI(p) dp,

D(t) = D(t0) +
1

Γ(α)

∫ t

t0

(t− p)α−1κI(p) dp,

(3.1)

for t ∈ [t0, T ].

Proof: Since (S, I,R,D) ∈ C[t0, T ] × C[t0, T ] × C[t0, T ] × C[t0, T ], we can apply the
Lemma 2.1 to each equation in (1.1). For example, the first equation in (3.1) was obtained by

taking a = t0, b = T , G = (0, N) and f(t, S) = −β
S I

N
, analogously for each of the equations

in (3.1) using the same a, b and G. But the function f changes for each equation. Thus, we
conclude the proof. □

The demonstration of the existence of a solution for the initial value problem (1.1)-(1.2) is
given in the following theorem. The proof uses the arguments shown in the proof of Theorem
3.25 [7] (page 202).

We will use the following notation X = C([t0, T ]×C([t0, T ]×C([t0, T ]×C([t0, T ]), with
norm ∥(S, I,R,D)∥X = ∥S∥C + ∥I∥C + ∥R∥C + ∥D∥C .

Theorem 3.1. There is a unique solution for the initial value problem (1.1)-(1.2) in the space
X.

Proof: First, we need to remark that from the Lemma 3.1, to find a solution for the initial value
problem (1.1)-(1.2) it is equivalent to finding maps S, I,R and D and satisfying (3.1). So, to find
S, I,R and D, let us consider the space X1 = C([t0, x1]× C([t0, x1]× C([t0, x1]× C([t0, x1]),
with norm ∥(S, I,R,D)∥X1

= ∥S∥C+∥I∥C+∥R∥C+∥D∥C , where x1 is such that t0 < x1 ≤ T
and

2β(x1 − t0)
α

Γ(α+ 1)
+

2(γ + κ)(x1 − t0)
α

Γ(α+ 1)
< 1. (3.2)

Let F : X1 → X1 be a map such that for φ ∈ X1, F (φ) = (F1(φ), F2(φ), F3(φ), F4(φ)),
where

F1(S, I,R,D)(t) = S0 +
1

Γ(α)

∫ t

t0

−(t− p)α−1β
S(p) I(p)

N
dp

F2(S, I,R,D)(t) = I0 +
1

Γ(α)

∫ t

t0

(t− γ)α−1β
S(p) I(p)

N
− (γ + κ)I(p) dp

F3(S, I,R,D)(t) = R0 +
1

Γ(α)

∫ t

t0

(t− p)α−1γI(p) dp

F4(S, I,R,D)(t) = D0 +
1

Γ(α)

∫ t

t0

(t− p)α−1κI(p) dp.

(3.3)

By using the Lemma 2.8 (a) from [7], the map F is well defined.
Furthermore, we will demonstrate that the map F is a contraction under the condition (3.2).

∥F (S1, I1, R1, D1) −F (S2, I2, R2, D2) ∥X1
=

∥F1(S1, I1, R1, D1)− F1(S2, I2, R2, D2)∥C
+∥F2(S1, I1, R1, D1)− F2(S2, I2, R2, D2)∥C
+∥F3(S1, I1, R1, D1)− F3(S2, I2, R2, D2)∥C
+∥F4(S1, I1, R1, D1)− F4(S2, I2, R2, D2)∥C .
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We need to calculate each term above. Observe that because S, I, R and D belong to
C([t0, x1]) we get

∥F1(S1, I1, R1, D1) −F1(S2, I2, R2, D2)∥C ≤

supt∈[t0,x1]
β

Γ(α)

∫ t

t0

(t− p)α−1|−I1(p)S1(p) + I2(p)S2(p)

N
|dp ≤

β(x1 − t0)
α

Γ(α+ 1)
(∥I1 − I2∥C + ∥S1 − S2∥C),

∥F2(S1, I1, R1, D1) −F2(S2, I2, R2, D2)∥C ≤
β(x1 − t0)

α

Γ(α+ 1)
(∥I1 − I2∥C + ∥S1 − S2∥C)+

(γ + κ)(x1 − t0)
α

Γ(α2 + 1)
∥I1 − I2∥C ,

∥F3(S1, I1, R1, D1) −F3(S2, I2, R2, D2)∥C ≤
γ(x1 − t0)

α

Γ(α+ 1)
∥I1 − I2∥C ,

and
∥F4(S1, I1, R1, D1) −F4(S2, I2, R2, D2)∥C ≤

κ(x1 − t0)
α

Γ(α+ 1)
∥I1 − I2∥C .

From the four inequalities above, we obtain

∥F (S1 , I1, R1, D1)− F (S2, I2, R2, D2) ∥X1
=

(
β(x1 − t0)

α

Γ(α+ 1)
+

β(x1 − t0)
α

Γ(α+ 1)
+

(γ + κ)(x1 − t0)
α

Γ(α+ 1)

+
γ(x1 − t0)

α

Γ(α+ 1)
+

κ(x1 − t0)
α

Γ(α+ 1)
)(∥I1 − I2∥C + ∥S1 − S2∥C

+∥R1 −R2∥C + ∥D1 −D2∥C).

Hence and from the Theorem (2.1), there is a unique solution y for the initial value problem
(1.1)-(1.2) on the interval [t0, x1]. The rest of the demonstration is done by using the arguments
from the demonstration of Theorem 3.3 from [7] (page 148). Replacing x1 by x2 in the condition
(3.2) with x1 < x2 ≤ T and using the same procedure, we can find a unique solution y on the
interval [x1, x2] for the following system

S(t) = S(x1) +
1

Γ(α)

∫ t

x1

−(t− p)α−1β
S(p) I(p)

N
dp,

I(t) = I(x1) +
1

Γ(α)

∫ t

x1

(t− γ)α−1β
S(p) I(p)

N
− (γ + κ)I(p) dp,

R(t) = R(x1) +
1

Γ(α)

∫ t

x1

(t− p)α−1γI(p) dp,

D(t) = D(x2) +
1

Γ(α)

∫ t

x1

(t− p)α−1κI(p) dp,

(3.4)

for t ∈ [x1, x2]. Repeating this procedure, we can conclude that there is a unique solution
(S, I,R,D) ∈ X for the equation (3.1). This completes the demonstration of Theorem 3.1.
□

4. Numerical solution. Now, we will develop the numerical solution for the initial value
problem (1.1)-(1.2). We will use the Adams-Bashforth method [4].

Let us define tr := rh, r = 0, 1, 2, ..., J , where h =
T

J
is the step size and J > 0 is a integer

number.
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Replacing t = tr+1 and t = tr in the first equation of (3.1) we get

S(tr+1)− S0 =
1

Γ(α)

∫ tr+1

0
−(tr+1 − p)α−1β

S(p) I(p)

N
dp, (4.1)

and

S(tr)− S0 =
1

Γ(α)

∫ tr

0
−(tr − p)α−1β

S(p) I(p)

N
dp, (4.2)

respectively. Doing the equation (4.2) minus the equation (4.1) we obtain

S(tr+1) = S(tr) +
1

Γ(α)

∫ tr+1

0
−(tr+1 − p)α−1β

S(p) I(p)

N
dp,

− 1

Γ(α)

∫ tr

0
−(tr − p)α−1β

S(p) I(p)

N
dp.

(4.3)

We will use the Lagrange polynomial P (t) to approximate it to the function −β
S(p) I(p)

N
,

given by

P (t) =
t− tr−1

tr − tr−1
(−β

S(tr) I(tr)

N
) +

t− tr
tr−1 − tr

(−β
S(tr−1) I(tr−1)

N
).

Replacing tr − tr−1 = rh− (r − 1)h = h in P (t) we obtain

P (t) =
−β

S(tr) I(tr)

N
h

(t− tr−1)−
−β

S(tr−1) I(tr−1)

N
h

(t− tr). (4.4)

Replacing (4.4) by (4.3) we obtain an approximation of the integral terms. Calculating the
integrals and after replacing tr+1 = (r + 1)h, tr = rh, we get

S(ts+1) ≃ S (ts)−
βS(ts)I(ts)

NΓ(α)
(hα)

(
2(s+ 1)α − sα

α

−(s+ 1)α+1 − sα+1

α+ 1

)
−βS(ts−1)I(ts−1)

NΓ(α)
(hα)

(
(s+ 1)α+1 − sα+1

α+ 1
− (s+ 1)α

α1

) . (4.5)

Using the same procedure for the second, third and fourth equations in (3.1), we get

I (ts+1) ≃ I (ts) +

(
β
I(ts)S(ts)

N
− (γ + κ)I(ts)

)(
1

Γ(α)

)
(hα)×(

2(s+ 1)α − sα

α
− (s+ 1)α+1 − sα+1

α+ 1

)
+

(
β
I(ts−1)S(ts−1)

N
− (γ + κ)I(ts−1)

)(
1

Γ(α2)

)
(hα)×(

(s+ 1)α2+1 − sα+1

α+ 1
− (s+ 1)α

α

)
,

(4.6)

R(ts+1) ≃ R(ts) +
γI(ts)

Γ(α)
(hα)

(
2(s+ 1)α − sα

α
− (s+ 1)α+1 − sα+1

α+ 1

)
+

γI(ts−1)

Γ(α)
(hα)

(
(s+ 1)α+1 − sα+1

α+ 1
− (s+ 1)α

α

)
,

(4.7)

and
D(ts+1) ≃ D(ts) +

κI(ts)
Γ(α) (hα)

(
2(s+1)α−sα

α − (s+1)α+1−sα+1

α+1

)
+κI(ts−1)

Γ(α) (hα)
(
(s+1)α+1−sα+1

α+1 − (s+1)α

α

) (4.8)

respectively.
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5. Rates estimation. Set

A = −S(tr)I(tr) (h
α)
(
2(r+1)α−rα

α − (r+1)α+1−rα+1

α+1

)
−S(tr−1)I(tr−1) (h

α)
(
(r+1)α+1−rα+1

α+1 − (r+1)α

α

)
Thus, from (4.5) we obtain

βr ≃
[S(tr+1)− S(tr)]NΓ(α)

A
Let us denote βi for i = 1, 2, ..., n; we will use the following infection rate

x =

∑n
i=1 βi
n

, i = 1, 2, . . . , n. (5.1)

Set
B = I(tr) (h

α)
(
2(r+1)α−rα

α − (r+1)α+1−rα+1

α+1

)
+I(tr−1) (h

α)
(
(r+1)α+1−rα+1

α+1 − (r+1)α

α

) .

From (4.7), we get

γr ≃
[R(tr+1)−R(tr)] Γ(α)

B
.

For i = 1, 2, ..., n; we will use the following recovered rate

y =

∑n
i=1 γi
n

, i = 1, 2, . . . , n. (5.2)

Set
C = I(tr) (h

α)
(
2(r+1)α−rα

α − (r+1)α+1−rα+1

α+1

)
+I(tr−1) (h

α)
(
(r+1)α+1−rα+1

α+1 − (r+1)α

α

) .

From (4.8), we obtain

κr ≃
[D(tr+1)−D(tr)] Γ(α)

C
For i = 1, 2, ..., n; we will use the following death rate

z =

∑n
i=1 κi
n

, i = 1, 2, . . . , n. (5.3)

6. Forecasts for the region of Tacna. In this section, we forecast the COVID-19 trend using
the numerical scheme in section 4 and the rates in section 5. To use the approximations (4.6), (4.7),
(4.8) and calculate the rates given by (5.1), (5.2) and (5.3) we take the step size h = 1. To do this,
we will use the Software Scilab 2024.1.0.

6.1. Dataset. The data was obtained from September 01 to December 31 of 2021 from the
official Facebook page of the Tacna region Health Directory (DIRESA) [10]. We chose this
interval because the data is complete during this period.

Table 6.1: Data for the period between September 1 and 30.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I 28 4 12 4 4 3 5 6 5 6 2 4 5 3 8 13
R 26 8 10 12 8 6 9 11 10 8 6 6 5 7 5 8
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Day 17 18 19 20 21 22 23 24 25 26 27 28 29 30

I 4 2 2 8 9 8 6 4 2 3 3 4 10 8
R 11 6 4 5 6 7 8 5 7 7 7 6 5 8
D 0 0 0 0 0 0 0 0 0 1 1 1 0 0
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Table 6.2: Data for the period between October 1 and 31.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I 17 2 9 4 7 7 5 11 11 17 2 7 14 14 22 17
R 7 10 6 5 7 6 5 6 6 6 9 8 10 8 10 9
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Day 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I 12 21 13 21 26 15 13 9 9 19 28 13 37 29 21
R 8 10 9 11 9 9 10 8 7 8 9 10 9 14 18
D 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0

Table 6.3: Data for the period between November 1 and 30.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 27 23 23 18 19 24 12 30 50 41 32 24 23 22 20
R 19 20 20 21 27 35 17 23 39 42 25 25 21 16 25
D 0 0 0 0 2 2 0 0 0 0 0 2 1 0 1

Day 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

I 16 31 45 81 27 11 5 24 51 31 36 22 14 6 18
R 12 35 58 47 13 8 7 18 32 24 29 16 11 5 11
D 1 1 1 0 2 0 1 0 0 0 1 0 0 0 0

Table 6.4: Data for the period between December 1 and 31.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I 35 38 49 32 30 6 28 40 14 38 25 19 19 52 39 66
R 13 21 67 45 44 14 34 12 22 26 13 14 17 41 49 66
D 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Day 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I 21 53 25 18 43 46 38 35 33 13 11 36 82 74 24
R 18 36 19 11 56 37 46 41 38 9 9 42 53 47 24
D 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

6.2. Parameter setup. For the total population, we use N = 346, 000 inhabitants; this num-
ber is the estimate for June 30, 2020, made by the National Institute of Statistics and Computing
of Perú (INEI)[11].

The rate of infection, rate of recovered and rate of deceased were obtained by using the equa-
tions (5.1), (5.2) and (5.3) respectively and are shown in the table (6.5) according to the order of
derivative α indicated.



244 Coayla-Teran EA. et al.- Selecciones Matemáticas. 2024; Vol.11(2):236-248

α x y z

0.87 0.1291815 6.791E-08 0.0006076
0.96 0.0042911 0.0000001 0.0009955
0.67 0.1631146 5.619E-08 0.0004528
0.48 0.48805695 0.00000007 0.00046927
0.39 0.89879506 0.00000008 0.00050098
0.50 0.42513222 0.00000007 0.00046406

Table 6.5: Different values for rates estimates.

6.3. Forecasts. With the parameters obtained in the last section, we made forecasts showing
data in the figures (6.1) and (6.3). It is important to recall that the results showed in these figures
are the rounded numbers obtained from approximations (4.6), (4.7), (4.8). Moreover, we made
the graphics (6.2) and (6.4) to illustrate the disease’s trend for the date from figure (6.1), and the
graphics (6.5) and (6.6) to illustrate the disease’s trend for the date from figure (6.3).

Figure 6.1: Simulations for α = 0.87, 0.96, 0.67
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Figure 6.2: Simulations vs. real data

Figure 6.3: Simulations for α = 0.50, 0.48, 0.39
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Figure 6.4: Simulations vr. real data

Figure 6.5: Simulations vs. real data

Figure 6.6: Simulations vs. real data

7. Comparison. To compare the data obtained by using the numerical approximation given
by the equations (4.6), (4.7) and (4.8) with the real data, we chose the month of December 2021.

To measure the approximation obtained for the forecast, we will use the following number

E =

√∑31
i=1(Yi −Ri)2

31
.
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where Yi and Ri denote the value of the simulations (from the figures (6.1) and (6.3)) and the real
data, respectively. The table (7.1) shows the number E calculated for each variable S, I , R, D
and for different values according to the order of integration α.

Table 7.1: Error (E)

α S I R D
0.87 167.04924906 182.86069085 27.18336778 0.87988269
0.96 43.64408839 19.78350567 27.18336778 0.62217102
0.67 77.16070369 90.86004836 27.18336778 0.59568340
0.48 22651.25392598 22641.35863643 27.18336778 25.37016282
0.39 126621.99988154 126479.30018833 27.18336778 161.98416888
0.50 6646.47608063 6654.72761130 27.18336778 7.46389157

8. Discussion. Although we studied a simplified mathematical model and the dynamics of
infectious diseases is complex, the use of a simple mathematical model is useful to get a perception
of the spread of the diseases [12]. It allows us to try strategies to control the spread and to identify
the general patterns of the disease for the period studied.

Another aspect is that the rates calculated for each α are estimates based on the model studied
and, therefore, are affected by the limitations of the underlying model. When considering other
factors, it is possible to obtain different results.

To apply the model studied, we made simulations for the spread of COVID-19 in the Peru-
vian region of Tacna for December 2021. These simulations were obtained by choosing values
according to the order of integration α and observing their effect on the simulations compared
with the real data. This procedure permitted to obtain some values for α such that the respective
simulations obtained approximated better the real data. Thus, from the table (7.1), we can infer
that the simulations obtained for α = 0.96 approach better the real data.

9. Conclusions.

i. We demonstrated the existence and uniqueness of a solution for a SIRD mathematical
model with Caputo fractional derivative and developed numerical solutions.

ii. We studied and applied a mathematical model SIRD with Caputo fractional derivative for
the spread of COVID-19 in the Peruvian region of Tacna for December 2021.

iii. From the simulations, the graphics and the (7.1), we can conclude that some values α
reproduce in a better manner the dynamics of the spread of COVID-19 in the mentioned
region for that period; for 0.5 < α < 1 the simulations are close to real data.
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