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Abstract

Climate change is affecting the life cycle of tight interacting species. Commonly, the sea-
sonal population dynamics of species is analyzed through models with periodic rates; however,
assuming periodicity in seasonal phenomena which depend on environmental drivers is very
restrictive. In this work, we analyze seasonal commensalism between two species in which the
per capita growth rate of each species is affected by a weak Allee effect and the demographic
and ecological rates are assumed almost periodic. To do this, we construct and analyze an al-
most periodic model to describe commensalism using a wide family of functions that describe
weak Allee effects and the benefits granted by the interaction. We prove that the model admits a
unique almost periodic global attractor for a wide family of functions. Numerical simulations
of the solutions of the model shown the result proved in this work. We show that if periodic rates
are used when the phenomenon is really almost periodic, underestimation or overestimation of
the population size of both species can occur, which can lead to design wrong strategies by the
decision makers.

Keywords . Almost periodic function, commensalism, climate change, Allee effect.

1. Introduction. In nature, species are involved in different ecological relationships as
predator-prey, victim-exploiter, competition, mutualism, ammensalism and commensalism. When
two species are either in a predator-prey or a victim-exploiter relationship, the interaction is
beneficial for one species and detrimental for the other. When two species are in a competi-
tion relationship, the interaction is detrimental for both species. In contrast, when two species
are in a mutualistic relationship, the interaction is beneficial for both species. There are other
ecological relationships in which one species does not present any alteration by the presence
of individuals of the other species. In this case, the interaction is said to be neutral for the
first species. In this context, if two species are interacting and the interaction is detrimental
for one species and neutral for the other, this relationship is called amensalism. In contrast,
if two species are interacting and the interaction is beneficial for one species and neutral for
the other species, this relationship is called commensalism. Among all ecological interactions,
mutualism has been studied to a lesser extent compared to the others [1]. The same occurs with
commensalism.
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Commensalism occurs in the plant and animal kingdoms. Commensalism can also be found
among bacterial species. Although there are several variants of commensalism, this can be clas-
sified in three types of commensal relationships. We will briefly mention those cases. Phoresis
is a type of commensalism in which one species is mechanically transported by another species
(the host) for which the interaction is neutral. Phoresis occurs between different groups of
arthropods. In particular, hippoboscid flies are in a phoretic association with skin mites [2].
Phoresy occurs between pseudoscorpions and other arthropods, including 44 families of in-
sects and three families of arachnids [3]. Phoresy is frequently found among pseudoscorpions
with mammals and even birds [4, 5]. Inquilinism is a type of commensalism in which one
species uses a second species as a plattaform of cavity for the living circumstances of the ben-
eficiary species. This type of commensalims can be found among barnacles that live on shells
of mussels [6]. Finally, chemical commensalism occurs when bacteria produce a chemical that
feeds another bacteria [7].

The ecological relationships are affected by changes in the population densities of the
species interacting. Wolin analyzes mutualism through mathematical models with density-
dependent rates [8]. In these models, it is assumed, in a first case, that the birth rate of each
mutualistic species decreases while the death rate increases when the population size increases.
Also, it is assumed that the presence of the partner species benefits the per capita growth rate of
the recipient species. In that work, it is proved that mutualism can increase either the carrying
capacity or the intrinsic growth rate or both. In this direction, there are mathematical models
that describe other ecological mechanisms that affect the per capita growth rate of one species.
For example, the called Allee effect. This effect has been recognized as a relevant phenomenon
of positive density dependence in low-density population. An Allee effect can be either strong
or weak. In particular, a strong Allee effect is related with a critical population level, below
which the per capita growth rate is negative and a scenario of extinction can occur. A weak
Allee effect occurs when the growth rate is reduced; however, the growth rate remains positive
[9].

Commonly, the demographic rates of species are affected by environmental drivers. It is
known that climate change can alter the phenology of tightly related species [10, 11, 12, 13,
14, 15, 16]. This occurs because environmental drivers can affect the life cycle of interacting
species. It is known that some populations present a seasonal population behavior, for example,
pseudoscorpions and arthropods present seasonal features of life cycle [17, 18]. To examplify,
we mention that Varroa destructor, Nosema sp and Apis mellifera colonies present a seasonal
dynamics [19]. When environmental drivers are modeled, seasonal rates are used. In many
cases, the modeler uses periodic functions to describe seasonal effects [20, 21, 22]. However,
using periodic functions can be very restrictive. A better choice is modelling such effects with
almost periodic functions [23, 24, 25]. In this work, we propose a general model to describe a
seasonal commensalism between two interacting species such that the per capita growth rate of
each species is affected by a weak Allee effect. To do this, in Section 2, we present a general
almost periodic model of commensalism. In section 3, some results about almost periodic
functions and cooperative systems are shown. In Section 4, the existence and stability of a
unique almost periodic solution is proved. In Section 5, numerical simulations of the solutions
of the model are shown for different functions. Finally, in Section 6, the results obtained are
discussed.

2. The model. To analyze the population dynamics of two species in a seasonal commen-
salist relationship, in which each species is affected by a weak Allee effect, we propose the
following model

x′ = x (b1(t)− a1(t)x) f1(x) + a2(t)f2(y)x,

y′ = y (b2(t)− a3(t)y) f3(y).
(2.1)

Where the parameters a1(t), a2(t), a3(t), b1(t) and b2(t) are almost periodic functions. Model
(2.1) describes a scenario in which each species has a reduced per capita growth rate at low pop-
ulation densities; but for all population densities, the population effect is positive, unlike in a
strong Allee effect. Such effects are modeled by the terms x (b1(t)− a1(t)x) f1(x), for species
x, and y (b2(t)− a3(t)y) f3(y), for species y, in model (2.1). The benefits received for the
species x from the interaction with the partner species y is modeled by a2(t)f2(y)x. Model
(2.1) generalizes the model analyzed in [26] and [27].

To prove existence of a unique global attractor we need to make the following assumptions
on the C1-functions fi : R≥0 → R≥0, for i = 1, 2, 3.

A1) f2(0) = 0 and f ′
i ≥ 0, i = 1, 2.
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A2) limz→+∞ (a2(t)f2(z)− a1∗zf1(z)) = −∞.

A3) f3(y) > 0 for y > 0.

In the following, for an almost periodic function v : R → R, we denote

v∗ := inf
t∈R

v(t) and v∗ := sup
t∈R

v(t).

In the following section, we summarize some well known basic facts about almost periodic
functions and cooperative systems.

3. Almost periodic functions and cooperative systems. Almost periodic functions are
nowadays a very active theme. Here, we only give a very basic introduction to the topic and
refer the reader to [28, 29] for much more details.

Definition 3.1. A function ϕ ∈ C0(R) is almost periodic if, for all ϵ > 0 there exists a set
of real numbers T (ϵ) ⊆ R altogether with a length l(ϵ) > 0 such that for any interval of length
l(ϵ), there is at least one point τ ∈ T (ϵ) contained in that interval such that

|ϕ(x+ τ)− ϕ(x)| < ϵ

for each x ∈ R. We will call numbers in T (ϵ) translation numbers and a length for T (ϵ) will be
a number l(ϵ).

The above collection of all almost periodic functions will be denoted by AP (R) which is
a Banach space endowed with the usual sup−norm. It is possible to associate to an almost
periodic function φ its unique Fourier series:

φ ∼
∑
n∈N

a(λn)e
iλnx.

The exponents λn are called the frequencies of ϕ. Another well-known result in this area is
that, for every almost periodic function there exists the mean value

M(ϕ) := lim
T→∞

1

T

∫ T

0

ϕ(x)dx,

this is a bounded linear function M : AP (R) → R with the following properties:

1. ϕ ≥ 0 implies M [ϕ] ≥ 0.

2. The Parseval equality holds:

M [|ϕ|2] =
∑
n∈N

|a(λn)|2.

Now we review some aspects about cooperative systems, for a brief introduction to coop-
erative systems see [30]. For two points x, y ∈ R2 denote the partial order u ≤ v if ui ≤
vi for each i, also denote u < v if u ≤ v and u ̸= v. Let f, g : R×D ⊆ R3 → R be a couple of
differentiable and almost periodic functions on the first variable. We consider the system:

x′(t) = f(t, x(t), y(t)),

y′(t) = g(t, x(t), y(t)),
(3.1)

where we suppose that f(t, x, y), g(t, x, y) are both uniformly almost periodic with respect to
(x, y) ∈ C for every compact C ⊆ D, i.e., the set of translation numbers, τ(ϵ), is independent
of (x, y) ∈ C.

More specifically, if f has generalized Fourier expansions,

f(t, x, y) ∼ f(x, y) +

∞∑
n=0

a(f, λn) cos(λnt) + b(f, λn) sin(λnt),

f is uniformly almost periodic, whenever the coefficients a(·, λn), b(·, λn) do not depend on
(x, y), see [29] Chapter VI.
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Definition 3.2. System (3.1) is said to be of cooperative type if for all t ∈ R, x ∈
(a(t), A(t)), y ∈ (b(t), B(t)) we have

fy(t, x, y) ≥ 0, gx(t, x, y) ≥ 0.

We will say that (a(t), b(t)) are a subsolution pair if

a′(t) ≤ f(t, a(t), b(t)),

b′(t) ≤ g(t, a(t), b(t)).
(3.2)

For every t ∈ R. A super-solution (A(t), B(t)) is defined similarly with the reversing
inequalities. We will say that a sub-solution (a(t), b(t)) and a supersolution (A(t), B(t)) are
ordered if a(t) ≤ A(t) and b(t) ≤ B(t) for all t ∈ R.

An important feature for cooperative systems, as given in (3.1), related to almost-periodic
orbits, was established in [22] in Theorem 2. Explicitly, the following result holds.

Theorem 3.1. Consider an ordered pair of a subsolution pair (a(t), b(t)) and a supersolu-
tion pair (A(t), B(t)) of the system (3.1) such that a(t) < A(t), and b(t) < B(t). Suppose that
there is no equilibrium point (x0, y0) such that a(t) ≤ x0 ≤ A(t) and b(t) ≤ y0 ≤ B(t). If the
system is cooperative type, then it has an almost periodic solution satisfying a(t) < x(t) < A(t)
and b(t) < x(t) < B(t) for all t ∈ R. Furthermore, if (x(t), y(t)), (x(t), y(t)), denote the min-
imal and maximal almost periodic solutions having initial data satisfying a(0) < x(0) < A(0)
and b(0) < y(0) < B(0). Then any solution of (3.1), converges to the product of strips
(x(t), x(t))× (y(t), y(t)).

In the case that there is an equilibrium point we could have a stable equilibrium, instead of
a genuine almost-periodic orbit.

4. Results. In this section, we prove some results of the existence, uniqueness and stability
of an almost periodic solution of model (2.1).

Theorem 4.1. Assume bi(t) ≥ 0, ai(t) ≥ 0 are continuous almost-periodic functions (at
least one of them not constant) with bi∗ > 0, ai∗ > 0, for i ̸= 2, and (2.1) does not admit
equilibrium points with positive coordinates. Suppose the conditions A1)-A3) are valid. Then
there is at least one almost periodic solution (N1, N2) of (2.1) whose components are positive,
the almost-periodic solution is unique in R2

>0, and it attracts all other positive solutions of
(2.1), when t → ∞.

Proof: For i). Since f ′
2 ≥ 0, the system (2.1) is cooperative. We construct sub- and

super-solution pairs. For a super-solution pair; we consider

(A(t), B(t)) = (N,N) , N > 0.

These functions satisfy the inequalities

A′(t) = 0 ≥ (b∗1 + f2(N)− a1∗Nf1(N))N

≥ (b1(t) + f2(N)− a1(t)Nf1(N))N,

B′(t) = 0 ≥ (b∗2 − a3∗N) f3(N)N

≥ (b2(t)− a3(t)N) f3(N)N.

Using A3) and taking N big enough, the right side is positive, then they constitute a super-
solution pair.

For constructing a sub-solution pair, we consider

(a(t), b(t)) = (ϵ, ϵ) , ϵ > 0.

These functions satisfy the inequalities in (3.2). Then,

a′(t) = 0 ≤ [b1∗ + f2(ϵ)− a∗1f1(ϵ)ϵ] ϵ ≤ [b1(t) + f2(ϵ)− a1(t)ϵf1(ϵ)] ϵ,

b′(t) = 0 ≤ [b2∗ − a∗3ϵ] f3(ϵ)ϵ ≤ [b2(t)− a3(t)ϵ] f3(ϵ)ϵ.

Since fi are continuous and f2(0) = 0 the right side is positive for ϵ > 0 small enough.
Thus we have a sub-solution pair. Therefore, by Theorem 3.1 there exists at least one almost
periodic solution for system (2.1). This finishes the proof of the existence of an almost periodic
solution.

ii) For uniqueness, we consider a maximal pair (x̂, ŷ) and minimal pair (x̌, y̌) of almost
periodic solutions. We just need to prove that x̂(t) = x̌(t) and ŷ(t) = y̌(t), to do this, we
consider the following result
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Claim 1. Let ϕ̂, ϕ̌ be almost periodic functions such that

ϕ̂(t) ≥ ϕ̌(t) ≥ 0, M
[
ϕ̂
]
= M

[
ϕ̌
]
.

Then ϕ̂(t) = ϕ̌(t) for every t ∈ R.
We continue with the proof. Note that the mean M [(ln x̂)′] = M [(ln x̌)′] = 0, then

M [b1 + a2f2(ŷ)] = M [a1x̂f1(x̂)] . (4.1)

On the other hand, by part i) we have that ϵ ≤ y̌ ≤ ŷ ≤ N for ϵ > 0 and N > 0 suitable.
Also by A3) the function y′

yf3(y)
has a continuous primitive F (y) for y > 0, which is bounded

in [ϵ,N ], then M [F (ŷ)′] = M [F (y̌)′] = 0, thus

M [b2] = M [a3ŷ]. (4.2)

We have similar relationships to x̌ and y̌. From the equation (4.1) we get

0 ≤ a3∗M [(ŷ − y̌)] ≤ M [a3(t) (ŷ − y̌)] = 0,

by the Claim we obtain ŷ = y̌, substituting in (4.1) and since f1 is increasing, we have

0 ≤ a1∗f(ϵ)M [(x̂− x̌)] ≤ M [a1(t)f1(x̌) (x̂− x̌)] ≤ M [a1(t) (x̂f1(x̂)− x̌f1(x̌))] = 0.

Then x̂ = x̌ by the above Claim.

Now we prove the Claim 1.
Proof: Since ϕ̂(t), ϕ̌(t) are almost periodic, then they are bounded. Hence,

0 ≤ M
[
ϕ̂2 − ϕ̌2

]
≤ M

[
(ϕ̂− ϕ̌)(ϕ̂+ ϕ̌)

]
≤(2 sup{ϕ̂(t)}) · M

[
ϕ̂− ϕ̌

]
= 0.

Therefore, M
[
ϕ̂2
]
= M

[
ϕ̌2
]
. Thus,

0 ≤ M
[
(ϕ̂− ϕ̌)2

]
≤ 2

(
M

[
ϕ̂2
]
−M

[
ϕ̂ϕ̌

])
≤ 2

(
M

[
ϕ̂2
]
−M

[
ϕ̌2
])

= 0.

If we apply Parseval’s Theorem on the sum of the squares of the Fourier coefficients of
ϕ̂− ϕ̌ we get ϕ̂ ≡ ϕ̌. □

Finally, with our construction, we can make the super-solutions arbitrarily large, and the
sub-solutions arbitrarily small. We have a single attractor almost-periodic orbit in the set R2

>0

for the above, then the almost-periodic orbit is attractor at R2, this concludes ii) and therefore
ends the proof of the theorem. □

5. Examples. In this section, we show numerical simulations of the solutions of model
(2.1) using different functions f1(x), f2(y) and f3(y) to show the results proved. To do this, we
use the following almost periodic functions.

b1(t) = b11 (b12 + b13 sin(b14t) + b15 sin(b16t)) ,

b2(t) = b21 (b22 + b23 sin(b24t) + b25 sin(b26t)) ,

a1(t) = a11 (a12 + a13 sin(a14t) + a15 sin(a16t)) ,

a2(t) = a21 (a22 + a23 sin(a24t) + a25 sin(a26t)) ,

a3(t) = a31 (a32 + a33 sin(a34t) + a35 sin(a36t)) .

(5.1)

With the values of the parameters given by b11 = 80, b12 = 1, b13 = 0.4, b14 =
√
2, b15 =

0.2, b16 =
√
3, b21 = 0.1, b22 = 1.25, b23 = 0.4, b24 =

√
2, b25 = 0.5, b26 =

√
3, a11 =

0.6, a12 = 0.8, a13 = 0.25, a14 =
√
2, a15 = 0.01, a16 =

√
3, a21 = 70, a22 = 0.9, a23 =

0.35, a24 =
√
2, a25 = 0.1, a26 =

√
3, a31 = 0.3, a32 = 1.25, a33 = 0.1, a34 =

√
2, a35 =
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0.1, a36 =
√
3. The initial conditions used in the numerical simulations are given by (0.2, 0.1),

(1000, 300) and (100, 130).

Example 1. Here, we use the functions f1(x) = x
10+x , f2(y) = y

10+y and f3(y) = y
20+y .

Notice that, the functions fi, for i = 1, 2, 3, are non negative functions. Particularly, f2(0) = 0.
Since lim

z→∞
fi(z) = 1, limz→+∞ (a12(t)f2(z)− a11∗zf1(z)) = −∞. Therefore, these functions

satisfy the conditions A1)-A3).
The model with the functions chosen is given by

x′ = x (b1(t)− a1(t)x)
x

10+x + a2(t)
y

10+yx,

y′ = y (b2(t)− a3(t)y)
y

20+y .
(5.2)

Figure 5.1 shows that all solutions of the model go to a unique almost periodic solution.

Figure 5.1: Cases (a) and (b) show the population dynamics of the species x and y, respec-
tively. Notice that all solutions tend to the unique almost periodic attractor, for different initial
conditions.

Example 2. Now, we use the functions f1(x) =
x

10+x , f2(y) = y2

10+y2
and f3(y) =

y3

2+y3
.

These functions satisfy the conditions A1)-A3). Model (2.1) with these particular functions is
shown as follows.

x′ = x (b1(t)− a1(t)x)
x

10+x + a2(t)
y2

10+y2
x,

y′ = y (b2(t)− a3(t)y)
y3

2+y3
.

(5.3)

Figure 5.2 shows the behavior of the solutions of the model in this scenario.

Figure 5.2: For different initial conditions, solutions of the model go to a unique global attrac-
tor.

Example 3. In this scenario, we use the functions f1(x) = x3

10+x3 and f2(y) and f3(y)
are the same used in the Example 1. We can prove that these functions satisfy the conditions
A1)-A3). In this case, the model is
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x′ = x (b1(t)− a1(t)x)
x3

10+x3 + a2(t)
y

10+yx,

y′ = y (b2(t)− a3(t)y)
y

20+y .
(5.4)

Figure 5.3 shows the numerical simulations of the solutions of the model in this case.

Figure 5.3: The model presents a unique almost periodic attractor. Notice that solutions with
different initial conditions go to a unique almost periodic solution.

Model (2.1) also admits a unique periodic solution which is globally asymptotically stable.
To compare the periodic case with the almost periodic case we give the following example.

Example 4. Model (2.1) also admits a unique periodic solutions which is asymptotically
stable. To compare the solutions in the periodic case against the solutions in the almost periodic
case, we use the functions given in (5.1) with the following values of the parameters b14 = b24 =
a14 = a24 = a34 = 2, b16 = b26 = a16 = a26 = a36 = 3 to simulate the periodic scenario.
All other parameters of the model are the same used in the Example 1. Therefore, the periodic
model is given by

x′ = x (b1(t)− a1(t)x)
x

10+x + a2(t)
y

10+yx,

y′ = y (b2(t)− a3(t)y)
y

20+y .
(5.5)

To model the almost periodic case we add an almost periodic term to the seasonal birth
rates b1(t) and b2(t) given in (5.1). In this case, the almost periodic model is given by

x′ = x
(
b1(t) + 5 sin(

√
5t)− a1(t)x

)
x

10+x + a2(t)
y

10+yx,

y′ = y
(
b2(t) + 6 sin(

√
3t)− a3(t)y

)
y

20+y .
(5.6)

Figure 5.4 shows that the periodic rates and the almost periodic rates used in the example
remain very close in different intervals of time but they are separated in other intervals of time.
In such a situation, the periodic and the almost periodic solutions are close in different intervals
and they are separated in other intervals of time.
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Figure 5.4: Case (a) shows b1(t) and b1(t) + 5 sin(
√
5t) in yellow and blue color respectively.

Case (b) shows b2(t) and b2(t)+6 sin(
√
3t) in yellow and blue color respectively. In each case,

both functions are close. Case (c) shows the solution x for the almost periodic case (red color)
and for the periodic case (magenta color) respectively. Case (d) shows an analogous scenario
for the solution y in the almost and the periodic case in blue and brown color respectively.

6. Discussion. Climate-mediated shifts have affected the synchrony between species in-
teracting in different ecological relationships since the life cycle of some species is altered when
some biotic or abiotic factors change. Modeling the population dynamics of species when they
are affected by changes in environmental factors such as climate and temperature could be
useful when designing public strategies to maintain biodiversity in nature.

Seasonal models are useful tools to describe the population dynamics when environmental
factors affect either ecological or demographic rates of species interacting. Commonly, the
seasonal rates used in some mathematical models are described through periodic functions.
However, although these rates can have a periodic behavior in normal conditions, the climate
change is leading to loss of periodicity in these rates. In such a situation, modelling seasonal
dynamics through almost periodic models is a better alternative.

In this work, we propose a general almost periodic model to describe commensalism be-
tween two species when the per capita growth rate of each one is affected by a weak Allee
effect which is described by a wide family of functions f1 and f3. We also prove that for a wide
family of almost periodic functions, which describe ecological and demographic rates, model
(2.1) has a unique almost periodic global attractor when the conditions over the parameters
given in theorem 4.1 are satisfied. Numerical simulations of the solutions of the model show
that the solutions converge to a unique almost periodic solution, when different functions fi, for
i = 1, 2, 3, are used; see Figures 5.1, 5.2 and 5.3. Observe that, although species x is affected
by an weak Allee effect, the benefits received from the interaction with the species y lead the
species x to increase its number of individuals and the population quickly reaches the almost
periodic solution. Notice that, the species y reaches this almost periodic solution after a time.

Figure 5.4 shows a scenario of particular interest. Figure 5.4 cases (a) and (b) show the
growth rates b1(t) and b2(t) in the periodic and b1(t) + 5 sin(

√
5t) and b2(t) + 6 sin(

√
3t) in

the almost periodic case. By comparison, in each case, we observe that both functions are very
close in different intervals of time and they are separated in other intervals of time. Figure
5.4 cases (c) and (d) show that these characteristics are inherited such that the solutions of
the model in the periodic and the almost periodic scenario have a similar behavior. To wit,
solutions are very close in different intervals of time and there are intervals of time in which
they are separated. In this case, the almost periodic solution gives bigger population values
than the population values given by the periodic solution. In contrast, in some intervals of time,
the almost periodic solution gives smaller population values than the population values given
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by the periodic solution. Therefore, if periodic rates are used in the modeling process when
almost periodic rates must be considered, the size of the population can be underestimated or
overestimated, which can lead to design wrong sustainable strategies.

In summary, we proved that the model proposed has a unique almost periodic global at-
tractor for a wide family of functions describing weak Allee effects. Numerical simulations
of the solutions of the model show that climate-mediated shifts in environmental drivers must
be modeled by almost periodic functions when it is possible. Since, if periodic rates are used,
when they are really almost periodic, underestimation or overestimation of the sizes of the pop-
ulations may occur, which can lead to the design of wrong sustainable strategies. Therefore,
from an ecological and biodiversity perspective, it is relevant the use of mathematical models
to forecasting population changes in interacting species when climate-mediated shifts occur.
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