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Abstract
Stochastic processes with the long-range dependency (LRD) property are fundamental to
modeling data that exhibit slow power decay of the covariance function. Such behavior
often appears in the analysis of financial data, telecommunications, and various natural
phenomena. Thus, introducing new stochastic models and statistical methods that take
the LRD into account is of great interest. Based on previous work, we introduce a new
stochastic process called quadratic fractionally integrated moving average, that arises
from the Quadratic Ornstein-Uhlenbeck Type (QOUT) process, proposed in the literature.
We consider Lévy noises of finite second-order moments and use a construction based
on a moving average stochastic process whose kernel is that of a QOUT process. Then,
using Riemann-Liouville fractional integrals, we propose a fractionally integrated moving
average process, for which we highlight some results, including the LRD. We also propose
the estimation of the parameters for this process for the case of fractional Brownian noise,
showing its efficiency through a Monte Carlo simulation. By an application based on
Brazil’s stock market prices, we illustrate how this process can be used in practice with
the São Paulo’s Stock Exchange Index data set, also known as the BOVESPA Index.

Keywords . Fractionally integrated moving average processes, long-range dependence, quadratic
Ornstein-Uhlenbeck type processes.

1. Introduction. It is well known that a Lévy process has an infinitely divisible dis-
tribution and that it can be written by a Lévy-Khintchine representation where the process
distribution is generated by a unique triplet (γ, σ2, ν), the so-called Lévy process gener-
ating triplet (see [1]). If {L(t)}t∈R denotes a Lévy process in R, for θ ∈ R, γ ∈ R and
σ ⩾ 0, with zero mean and finite second-order moment, the characteristic exponent of
L(1) can be written as

ζ(θ) =
1

2
θ2σ2 +

∫
R

(
1− eiθx + iθx1(|x|<1)(x)

)
ν(dx)− iγθ, (1.1)
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so that the characteristic function of the Lévy process is given by φ(θ) = e−ζ(θ).
Lévy processes can appear in many forms, having been widely used in theoretical and

applied works as it is one natural extension of the Brownian motion process. The work
by [2] presents different methods for constructing fractional Lévy processes considering
stochastic integrals driven by Lévy and fractional Lévy processes. The author introduces
some conditions to be satisfied by these classes of processes to have LRD property. In [3],
by using stochastic integration, the authors show the relevancy that Lévy processes can
have in the study of the generalized Langevin equation and discuss its potential applica-
tions in anomalous diffusions observed in some physical systems. Magdziarz and Weron,
[4] and Feltes and Lopes [5] consider Lévy processes with infinite second-order moments,
hence capturing high variability behavior. These are considered a very rich class of pro-
cesses. Feltes and Lopes [5] extended the construction of [2] using Riemann-Liouville
fractional integrals to the case of non-Gaussian stable processes and proved the LRD us-
ing a generalized autocovariance function. Related to the biology field, [6] examined the
effects of variations in the toggle switch bistable model by imposing a non-Gaussian Lévy
stable motion. The newly specified model allowed the characterization of the appearance
of large jumps and fundamentally changed the switch mechanism of the proposed system.

Another example where Lévy processes play an important role is in the modeling of
financial data and fund indices, which in turn helps investors and managers measure the
performance, risk, and gross returns of asset prices in the worldwide markets (see, e.g.,
[7] and [8]. Continuous-time models have successfully been used in finance and options
pricing (see the review in [9]). In particular, the stationary continuous-time moving av-
erage has been considered a key model in various contexts, especially when driven by
Lévy processes (see, e.g., [10], [2], [11] and [12]). In [11], the authors provide necessary
and sufficient conditions on the kernel for the continuous-time moving average to be a
semimartingale in the natural filtration of the Lévy process.

Based on [2], we consider a kernel induced from the QOUT process (see [13]), with
LRD property. For the process based on this QOUT kernel, we study their second-order
properties and their sample path generation as well. This specific kernel arises from the
quadratic fractionally integrated moving average process considered in [13]. Besides giv-
ing a statistical analysis that includes the parameter estimation of the process, we also
present a Monte Carlo simulation for the main parameter d, considering different sce-
narios, allowing for a better understanding of the LRD property. As an application, we
consider the study of São Paulo’s BOVESPA Index data set, showing its potential appli-
cation in business and the financial market.

This work is organized as follows: Section 2 presents the main definitions and pre-
liminary results for the moving average process with a quadratic kernel function showing
that it is well-defined. Based on the Riemann-Liouville fractional integral, this section
also presents the first version of the main process, denoted by Yλ,d(·), which is in the frac-
tionally integrated moving average process (FIMA) class. We show the properties related
to its respective autocovariance and spectral density functions whose complex-valued ex-
pressions guarantee the LRD property for this class. Section 3 introduces a second version
of the FIMA process based on the Riemann-Liouville derivatives. We give its autoco-
variance function and show that its rate of decay guarantees the LRD property. For the
estimation of the parameters, presented in Section 4, we consider the particular case when
the process is driven by the fractional Brownian motion noise. An approximated version
of the process is given to generate its sample paths and to study the estimators d̂ and λ̂ for
the main parameters of the process. Section 5 features a Monte Carlo simulation study
for the estimation of parameters, while in Section 6 we present an application based on a
data set of the Brazilian financial market (the BOVESPA Index), from March 13, 2008, to
April 18, 2008. Section 7 concludes this work.

2. Definitions and Preliminary Results. A continuous-time stationary moving av-
erage stochastic process {Y (t)}t∈R is defined in the literature as the process with the
integral representation

Y (t) =

∫
R
g(t− u)dL(u), t ∈ R, (2.1)

where the kernel g : R → R is a measurable function and the noise process {L(t)}t∈R is
a Lévy process in R. The authors in [14] show that {Y (t)}t∈R is well-defined when the
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kernel g(·) and the generating triplet (γ, σ2, ν) of the Lévy process {L(t)}t∈R, given in
(1.1), satisfy the condition∫

R

∫
R0

(
|g(t− u)x|2 ∧ |g(t− u)x|

)
ν(dx)du <∞, (2.2)

where R0 = R− {0}.
By a meticulous choice of the kernel in (2.1), the following definition specifies the

stationary moving average process that shall be used throughout the present work.
Definition 2.1. We denote {Yλ(t)}t∈R as the stationary moving average process with

kernel given by
gλ(t) = e−λt21(0,∞)(t), for λ > 0, (2.3)

so that

Yλ(t) =

∫
R
e−λ(t−u)21(0,∞)(t− u)dL(u) =

∫ t

−∞
e−λ(t−u)2dL(u), t ∈ R, (2.4)

and the noise {L(t)}t∈R is a Lévy process in R satisfying E[L(1)] = 0 and E[L(1)2] <∞.
From theorem 6.1 in [2], the process {Yλ(t)}t∈R, defined in (2.4) is well-defined, that

is, the kernel function gλ(·), given in (2.3), satisfies the condition in (2.2).
The definition below gives the LRD property (see [2], [15], and [16]) for any process

{Y (t)}t∈R.
Definition 2.2. The stationary moving average process {Y (t)}t∈R has the long-range

dependence (LRD) property, with parameter d ∈ (0, 1
2
), when there exists a constant

c > 0 such that

lim
h→∞

γY (h)

c |h|2d−1
= 1, (2.5)

where γY (h) is the autocovariance function of order h for the process {Y (t)}t∈R.
Now, note that the kernel function given in (2.3) satisfies the two conditions: gλ(t) =

0, for all t < 0 and |gλ(t)| ≤ Ce−ct, for some constants C > 0 and c > 0. The first
condition is trivial. The kernel function gλ(·) satisfies the second condition for C = eλ

and c = λ. We also point out that the process in (2.1), with kernel function g(·), must
have short memory property, otherwise one cannot use the results by [2] to construct a
fractionally integrated stochastic process.

To construct a fractionally integrated stochastic process, we shall use the kernel func-
tion of a stationary moving average process. Together with the Riemann-Liouville integral
on the right (see [17]), given in Definition 2.3, for the kernel function in (2.3), we obtain
the desired process. For this, we define first the Riemann-Liouville fractional integrals
and their corresponding derivatives.

Definition 2.3. Let 0 < r < 1, 1 ≤ p < 1
r
, and f ∈ Lp(R). The Riemann-Liouville

fractional integrals to the left and the right of the function f , denoted by (Ir±f)(·), are
respectively given by(
Ir−f

)
(x) =

1

Γ(r)

∫ ∞

x

f(t)(t− x)r−1dt and
(
Ir+f

)
(x) =

1

Γ(r)

∫ x

−∞
f(t)(x− t)r−1dt.

(2.6)
Now we define the fractionally integrated kernel, denoted by gd(·), of a kernel func-

tion g(·) through its Riemann-Liouville fractional integral to the right. From the gd(·)
function, we shall obtain the main interesting process.

Definition 2.4. The fractionally integrated kernel of a function g(·) is given by

gd(t) :=
(
Id+g

)
(t) =

∫ t

0

g(t− s)
sd−1

Γ(d)
ds, for t ∈ R, (2.7)

where 0 < d < 1
2
.

The next theorem presents the fractionally integrated kernel of the function gλ(·) given
in (2.3).
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Theorem 2.1. Let gλ(·) be the kernel function given by (2.3). Then the fractionally
integrated kernel of gλ(·), defined by (2.7), is given by

gλ,d(t) =
td

Γ(d+ 1)
× 2F 2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λt2

)
, (2.8)

where d ∈ (0, 1
2
) and 2F 2(x, y; z, w; v) is the generalized hypergeometric function with

parameters x, y, z, w and v.
Proof: By definition, considering g(t) = gλ(t) in expression (2.7), we have that

gλ,d(t) =

∫ t

0

e−λ(t−s)21(0,∞)(t− s)
sd−1

Γ(d)
ds, t ∈ R. (2.9)

Firstly, note that, for s ∈ (0, t), we naturally have (t − s) ∈ (0,∞). Hence, by
changing variables x = t− s, the expression given in (2.9) is reduced to

gλ,d(t) =

∫ t

0

e−λ(t−s)2 s
d−1

Γ(d)
ds =

1

Γ(d)

∫ t

0

e−λx2

(t− x)d−1dx.

Secondly, we consider the formula 3.478(4) of [18], with u = t, ν = 1 > 0, µ = d >
0, n = 2 and β = −λ, obtaining that

gλ,d(t) =
td

Γ(d)
B(d, 1) 2F 2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λt2

)
, (2.10)

where B(a, b) is the Beta function B(a, b) = Γ(a)Γ(b)/Γ(a+ b) with parameters a and b.
Rearranging the terms in (2.10), for all t ∈ R, we get (2.8), concluding the proof. □

Remark 2.1. The generalized hypergeometric function with parameters x, y, z, w and
v, is given by

2F 2(x, y; z, w; v) =
∞∑
n=0

(x)n(y)n
(z)n(w)n

× vn

n!
, (2.11)

with (·)n the Pochhammer symbol given by (a)n ≡ Γ(a+n)
Γ(a)

= a · (a+1) · . . . · (a+ n− 1),
for n > 0 and (a)0 ≡ 1. The generalized hypergeometric function given in expression
(2.11) is well-defined since, by definition, we have that

2F2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λx2

)
=

∞∑
n=0

Γ(1
2
+ n)Γ(1 + n)

Γ(1
2
)Γ(1)

.
Γ(d+1

2
)Γ(d+2

2
)

Γ(d+1
2

+ n)Γ(d+2
2

+ n)
.
(−λx2)n

n!

=
Γ(d+1

2
)Γ(d+2

2
)

√
π

∞∑
n=0

an, (2.12)

for d ∈ (0, 1
2
) and x ∈ R fixed, where

an =
Γ(1

2
+ n)Γ(1 + n)

Γ(d+1
2

+ n)Γ(d+2
2

+ n)

(−λx2)n

n!
. (2.13)

From (2.13), together with the Cauchy ratio test, where

lim
n→∞

an+1

an
= lim

n→∞

(
1
2
+ n

)
(1 + n)

(d+1
2

+ n)(d+2
2

+ n)

(−λx2)
(n+ 1)

= 0,

the hypergeometric series given in (2.12) is absolutely convergent, for all x ∈ R.
Proposition 2.1. Let gλ,d(·) be the fractionally integrated kernel given in expression

(2.8). Then gλ,d(·) ∈ L2(R).
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Proof: Considering p = 2 in [19], it suffices to prove that∫
R
|h(u)gλ,d(u)| du ≤ K||h||2,

for every function h(·) ∈ L2(R) and K a positive constant. From expression (2.7), we
have ∫

R
|h(u)gλ,d(u)| du =

∫ ∞

0

∫ u

0

|h(u)| g(u− s)
sd−1

Γ(d)
ds du

=
1

Γ(d)

∫ ∞

0

∫ ∞

0

|h(u)| g(u− s)sd−1 ds du, (2.14)

since g(t) = 0, for t ≤ 0. Rewriting expression (2.14), we have that∫
R
|h(u)gλ,d(u)| du =

1

Γ(d)
(I1 + I2) , (2.15)

with

I1 =

∫ ∞

0

∫ 1

0

|h(u)| g(u− s)sd−1 ds du and I2 =

∫ ∞

0

∫ ∞

1

|h(u)| g(u− s)sd−1 ds du.

(2.16)
By Fubini’s theorem and Hölder’s inequality, we obtain

I1 =

∫ 1

0

sd−1

∫ ∞

0

|h(u)| g(u− s) du ds ≤
∫ 1

0

sd−1||h||2||g||2 ds =
1

d
||h||2||g||2,

(2.17)
since gλ(·) ∈ L2 (R). By Fubini’s theorem again in the integral I2, given in (2.16), and
changing variables t = u− s, it follows by Hölder’s inequality that

I2 =

∫ ∞

0

g(t)

∫ ∞

1

∣∣h(t+ s)sd−1
∣∣ ds dt ≤ ∫ ∞

0

|g(t)| ||h||2
(∫ ∞

1

s2(d−1)ds

) 1
2

dt.

(2.18)

From expression (2.18), since gλ(·) ∈ L1 (R), we have that

I2 ≤
∫ ∞

0

|g(t)| ||h||2
1√

1− 2d
dt ≤ 1√

1− 2d
||g||1||h||2. (2.19)

Applying the results of (2.17) and (2.19) in (2.15), we conclude that

|h(u)gλ,d(u)| du ≤ 1

Γ(d)

(
1

d
||g||2 +

1√
1− 2d

||g||1
)
||h||2.

Therefore, gλ,d(·) ∈ L2(R). □

Next, we shall define the process with LRD by using the above results. This process
originates from the class of fractionally integrated moving average processes (FIMA) (see
[20]).

Definition 2.5. Let d ∈ (0, 1
2
) and λ > 0. The FIMA process {Yλ,d(t)}t∈R for the

fractionally integrated kernel gλ,d(·), given in expression (2.8), is defined by

Yλ,d(t) =

∫ t

−∞

(t− u)d

Γ(d+ 1) 2F 2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λ(t− u)2

)
dL(u), t ∈ R, (2.20)

where 2F 2(x, y; z, w; v) is defined in (2.11) and {L(t)}t∈R is a Lévy process with E[L(1)] =
0 and E[L(1)2] <∞.
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Remark 2.2. (a) The process given in (2.20) is well-defined, since gλ,d(·) ∈ L2(R)
(see [14]).
(b) We also point out that the process defined in expression (2.20) is stationary and, for
all t ∈ R, the distribution of Yλ,d(t) is infinitely divisible (see [21]).

The expressions for the autocovariance and spectral density functions of the process
in (2.20), given in the lemma below, is a particular case of theorem 6.4 of [2].

Lemma 2.1. Let {Yλ,d(t)}t∈R be the process given in (2.20). Then, the following
statements are true.

i) The autocovariance function of the process is given by

γYλ,d
(h) =

E [L(1)2]

(Γ(d+ 1))2

∫ ∞

0

ud(u+ h)dψd(u)ψd(u+ h) du, (2.21)

for h ≥ 0, where ψd(x) ≡ 2F 2

(
1
2
, 1; d+1

2
, d+2

2
;−λx2

)
is the generalized hyperge-

ometric function defined in (2.11).

ii) The spectral density function fYλ,d
(·) is given by

fYλ,d
(ω) =

E [L(1)2]

2π(Γ(d+ 1))2
|Fλ,d(ω)|2 , (2.22)

for ω ∈ R, where Fλ,d(ω) =
∫∞
0
xdeixωψd(x) dx, is the Fourier transform of the

function ψd(·) given in item i.

Proof: To prove item i., we only need to recall the definition of spectral autocovari-
ance function when E[L(1)] = 0. Hence, by changing variables u = t− s, we obtain

γYλ,d
(h) =

E[L(1)2]
(Γ(d+ 1))2

∫ ∞

0

ud(u+ h)d ψd(u)ψd(u+ h) du.

To prove item ii., we use the fact that the spectral density function of a stationary
process is the inverse Fourier transform of the autocovariance function (see Herglotz’s
theorem in [22]) and we use item i. to find

fYλ,d
(ω) =

E [L(1)2]

2π(Γ(d+ 1))2

∫ ∞

0

e−ihω

∫ ∞

0

ud(u+ h)dψd(u)ψd(u+ h) du dh, (2.23)

for ω ∈ R and h ≥ 0. By applying Fubini’s theorem and changing variables v = u+ h to
the integral with respect to variable h, the expression (2.23) can be rewritten as

fYλ,d
(ω) =

E [L(1)2]

2π(Γ(d+ 1))2

∫ ∞

0

∫ ∞

0

e−i(v−u)ωvdudψd(v)ψd(u)dvdu

=
E [L(1)2]

2π(Γ(d+ 1))2
Fλ,d(−ω)Fλ,d(ω) =

E [L(1)2]

2π(Γ(d+ 1))2
|Fλ,d(ω)|2 , (2.24)

for ω ∈ R, proving item ii.. □

In the next section, the main properties of the process defined in (2.20) are studied.

3. The Long-Range Dependence Property. By using a short memory integrated
fractional kernel in the previous section theory, we can obtain the process defined in
(2.20). We shall prove that this process has LRD. However, before this, it is necessary
to prove some results. The following theorem shows an integral representation for the
process given in expression (2.20) in terms of a fractional Lévy process integrator.

Theorem 3.1. Consider the process {Yλ,d(t)}t∈R given in (2.20), following Definition
2.5. Then, it can be represented as

Yλ,d(t) =

∫ t

−∞
e−λ(t−s)2dMd(s), t ∈ R, (3.1)
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where the integrator

Md(s) =
1

Γ(d+ 1)

∫
R

[
(t− s)d+ − (− s)d+

]
L(dt) (3.2)

is a fractional Lévy process, with {L(t)}t∈R a Lévy noise process such that E[L(1)] = 0,
E[L(1)2] <∞, and d ∈ (0, 1

2
).

Proof: From theorem 6.2 of [2], the process given in (2.20) can be rewritten as

Yλ,d(t) =

∫ t

−∞
g(t− s)dMd(s), t ∈ R, (3.3)

where

g(x) =
1

Γ(1− d)

d

dx

∫ x

0

gd(s)(x− s)−dds, x ∈ R, (3.4)

is the Riemann-Liouville derivative to the right of the fractional kernel gd(·), since for any
class of functions f ∈ Lp(R), the Riemann-Liouville derivative to the right of f is given
by

(Dr
+f)(x) =

1

Γ(1− r)

d

dx

∫ x

−∞
f(t)(x− t)−rdt.

Hence, from the above expression and from expression (3.4), the Riemann-Liouville
derivative to the right of the function gd(·), of order d, is given by(

Dd
+gd

)
(x) = e−λx2

1(0,∞)(x).

Applying this result to the expression in (3.3), we obtain that

Yλ,d(t) =

∫ t

−∞
e−λ(t−s)21(0,∞)(t− s) dMd(s) =

∫ t

−∞
e−λ(t−s)2 dMd(s),

for all t ∈ R, since t− s > 0, for all s < t. □

Remark 3.1. the authors in [23] give conditions to completely characterize when the
fractional Lévy process, defined in (3.2), is a semimartingale or of finite variation.

The next Proposition 3.1 and Theorem 3.2 present results on the first and second-order
moments for the process given in (3.1).

Proposition 3.1. Consider the stochastic process {Yλ,d(t)}t∈R given in (3.1). Then
its expected value is given by

E [Yλ,d(t)] = 0, for all t ∈ R.

Proof: For a fixed t ∈ R, we have

E [Yλ,d(t)] = E
[∫ t

−∞
e−λ(t−s)2dMd(s)

]
= E

[∫ t

−∞

(t− u)d

Γ(d+ 1) 2F 2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λ(t− u)2

)
dL(u)

]
= 0,

(3.5)

where the second equality above is equivalent to the expression (2.20). One can write the
expression (3.5) in the form E

[∑n−1
k=0 ak (L(sk+1)− L(sk))

]
, for appropriated choices

of a0, . . . , an−1 ∈ R, n ∈ N, and −∞ < s0 < · · · < sn = t. Besides, since the Lévy
process {L(t)}t∈R has stationary increments and E[L(1)] = 0, we conclude that its mean
is equal to 0. □

From proposition 5.6 of [2], we obtain the autocovariance function for the process
given in (3.1).
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Theorem 3.2. Consider the stochastic process {Yλ,d(t)}t∈R given in (3.1). Then its
autocovariance function is given by

γYλ,d
(k) ≡ Cov [Yλ,d(t+ k), Yλ,d(t)]

=
Γ(1− 2d)

Γ(d)Γ(1− d)
× E[L(1)2]

∫ ∞

0

∫ ∞

0

e−λ(x2+y2)|k − x+ y|2d−1dx dy, (3.6)

for k > 0, with d ∈ (0, 1
2
).

Proof: From Proposition 3.1 and Theorem 3.1, it follows that

γYλ,d
(k) ≡ Cov [Yλ,d(t+ k), Yλ,d(t)] = E[Yλ,d(t+ k)Yλ,d(t)]

= E
[∫ t+k

−∞
e−λ(t+k−s)2dMd(s)

∫ t

−∞
e−λ(t−u)2dMd(u)

]
. (3.7)

Now, from proposition 5.6 of [2], expression (3.7) can be rewritten as

E[Yλ,d(t+ k)Yλ,d(t)] = C

∫ t

−∞

∫ t+k

−∞
e−λ(t+k−s)2 e−λ(t−u)2 |s− u|2d−1 ds du, (3.8)

where C = Γ(1−2d)
Γ(d)Γ(1−d)

× E[L(1)2]. The result in (3.6) is attained by changing variables
x = t+ k − s and y = t− u in expression (3.8). □

We recall that the goal of this section is to obtain the LRD property (see Definition
2.2) for the process given in (2.20). This goal is attained by Theorem 3.3 below, by using
theorem 6.3 of [2].

Theorem 3.3. Consider the stochastic process {Yλ,d(t)}t∈R given in expression (3.1).
Then, its autocovariance function γYλ,d

(·), given in (3.6), has a decay rate given by

γYλ,d
(k) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
E[L(1)2]

( π

4λ

)
|k|2d−1 , (3.9)

when k → ∞. Therefore, the process has LRD with constant

cγ =
Γ(1− 2d)

Γ(d)Γ(1− d)
× E

[
L(1)2

] ( π

4λ

)
. (3.10)

Proof: Initially, we need to prove that,∫ ∞

0

∫ ∞

0

e−λ(x2+y2) |k − x+ y|2d−1 dx dy ∼
(∫ ∞

0

e−λx2

dx

)2

|k|2d−1 , (3.11)

when k → ∞. First, notice that it is possible to write∫ ∞

0

∫ ∞

0

e−λ(x2+y2) |k − x+ y|2d−1

|k|2d−1
dx dy =

∫ ∞

0

∫ ∞

0

e−λ(x2+y2)
∣∣∣1− x

k
+
y

k

∣∣∣2d−1

dx dy

=

∫ ∞

0

∫ ∞

0

e−λ(x2+y2)dx dy + I, (3.12)

where the integral I is given by

I =

∫ ∞

0

∫ ∞

0

e−λ(x2+y2)

(∣∣∣1− x

k
+
y

k

∣∣∣2d−1

− 1

)
dx dy. (3.13)

From Lemma 2.1(item ii.), we have, for a given ϵ > 0, that

|I| ≤
∫ ∞

0

∫ ∞

0

e−λ(x2+y2)

∣∣∣∣∣∣∣1− x

k
+
y

k

∣∣∣2d−1

− 1

∣∣∣∣ 1{|y−x|≤ϵk} dx dy

+

∫ ∞

0

∫ ∞

0

eλ(1−x) eλ(1−y)

∣∣∣∣∣∣∣1− x

k
+
y

k

∣∣∣2d−1

− 1

∣∣∣∣ 1{|y−x|>ϵk} dx dy. (3.14)
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For |y − x| ≤ ϵk, we have∣∣∣∣∣∣∣1− x

k
+
y

k

∣∣∣2d−1

− 1

∣∣∣∣ ≤ max{(1−ϵ)2d−1−1, 1−(1+ϵ)2d−1} ≤ (1−ϵ)2d−1−1. (3.15)

Applying the inequality (3.15) into (3.14), we obtain

|I| ≤
(
(1− ϵ)2d−1 − 1

) ∫ ∞

0

∫ ∞

0

e−λ(x2+y2) dx dy +R(k), (3.16)

where

R(k) =

∫ ∞

0

∫ ∞

0

eλ(2−(x+y))

∣∣∣∣∣
∣∣∣∣1− (x− y)

k

∣∣∣∣2d−1

− 1

∣∣∣∣∣ 1{|y−x|>ϵk} dx dy. (3.17)

By making the change of variables u = x+ y and v = x− y, we get x = u+v
2

and y =
u−v
2

, where the Jacobian of this transformation is equal to −1
2
. Since (x, y) ∈ R+ × R+,

we have u ≥ |v|. Then, (3.17) can be written as

R(k) =
1

2

∫
R

∫ ∞

|v|
eλ(2−u)du

∣∣∣∣∣∣∣1− v

k

∣∣∣2d−1

− 1

∣∣∣∣ 1{|v|>ϵk} dv

=
1

2

(∫ −ϵk

−∞

∫ ∞

−v

eλ(2−u)du

∣∣∣∣∣∣∣1− v

k

∣∣∣2d−1

− 1

∣∣∣∣ dv + ∫ ∞

ϵk

∫ ∞

v

eλ(2−u)du

∣∣∣∣∣∣∣1− v

k

∣∣∣2d−1

− 1

∣∣∣∣ dv)
≤ 1

2

(∫ −ϵk

−∞

eλ(2+v)

λ

(∣∣∣1− v

k

∣∣∣2d−1

+ 1

)
dv +

∫ ∞

ϵk

eλ(2−v)

λ

(∣∣∣1− v

k

∣∣∣2d−1

+ 1

)
dv

)
.

(3.18)

Now, notice that for v < −ϵk, we get |1− vk−1|2d−1 ≤ 1, since 2d − 1 < 0. Using
this fact into (3.18), we obtain that

R(k) ≤
∫ −ϵk

−∞

eλ(2+v)

λ
dv +

1

2

∫ ∞

ϵk

eλ(2−v)

λ

(∣∣∣1− v

k

∣∣∣2d−1

+ 1

)
dv. (3.19)

By computing the first integral in expression (3.19), we have

R(k) ≤ eλ(2−ϵk)

λ2
+
I1(k)

2
, (3.20)

where

I1(k) =

∫ ∞

ϵk

eλ(2−v)

λ

(∣∣∣1− v

k

∣∣∣2d−1

+ 1

)
dv = I2(k) + I3(k), (3.21)

with I2(k) =
∫ 2k

ϵk
eλ(2−v)

λ

(∣∣1− v
k

∣∣2d−1
+ 1

)
dv and I3(k) =

∫∞
2k

eλ(2−v)

λ

(∣∣1− v
k

∣∣2d−1
+ 1

)
dv.

Since |1− vk−1|2d−1 ≤ 1, for v > 2k, we get

I3(k) ≤ 2

∫ ∞

2k

eλ(2−v)

λ
dv =

(
−2eλ(2−v)

λ2

)∣∣∣∣∞
2k

=
2e2λ(1−k)

λ2
.

Therefore, from (3.21), we have

I1(k) ≤ I2(k) +
2e2λ(1−k)

λ2
. (3.22)

Finally, to determine an upper bound for I2(·), note that the integral of this expression can
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be rewritten as

I2(k) =

∫ 2k

ϵk

eλ(2−v)

λ

∣∣∣1− v

k

∣∣∣2d−1

dv +

∫ 2k

ϵk

eλ(2−v)

λ
dv

=

∫ k

ϵk

eλ(2−v)

λ

(
1− v

k

)2d−1

dv +

∫ 2k

k

eλ(2−v)

λ

(v
k
− 1

)2d−1

dv +

∫ 2k

ϵk

eλ(2−v)

λ
dv

≤
∫ k

ϵk

eλ(2−ϵk)

λ

(
1− v

k

)2d−1

dv +

∫ 2k

k

eλ(2−k)

λ

(v
k
− 1

)2d−1

dv +

∫ 2k

ϵk

eλ(2−v)

λ
dv

=
eλ(2−ϵk)

λ

(
k

2d

)
(1− ϵ)2d +

eλ(2−k

λ

(
k

2d

)
− eλ(2−2k)

λ2
+
eλ(2−ϵk)

λ2
. (3.23)

Substituting the result of (3.23) into (3.22), we conclude from (3.20) that

R(k) ≤ eλ(2−ϵk)

λ2
+

1

2

(
2e2λ(1−k)

λ2
+
eλ(2−ϵk)

λ

(
k

2d

)
(1− ϵ)2d

)
+

1

2

(
eλ(2−k)

λ

(
k

2d

)
− e2λ(1−k)

λ2
+
eλ(2−ϵk)

λ2

)
≤ eλ(2−ϵk)

2λ2

(
3 +

(
λk

2d

)
(1− ϵ)2d

)
+
e2λ(1−k)

2λ2
+
keλ(2−k)

4λd
. (3.24)

We may choose ϵ > 0 such that

((1− ϵ)2d − 1)

∫ ∞

0

∫ ∞

0

e−λ(x2+y2)dx dy ≤ K

2
,

for some K > 0. For ϵ > 0 fixed, given in expression (3.24), R(k) → 0, when k → ∞.
This implies that we can consider |I| as small as one wants in (3.12). Therefore, the
approximation given in (3.11) is true. Hence, from the autocovariance function given in
expression (3.6) and from the result in (3.11), we obtain

γYd
(k) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
× E

[
L(1)2

](∫ ∞

0

e−λu2

du

)2

|k|2d−1

=
Γ(1− 2d)

Γ(d)Γ(1− d)
× E

[
L(1)2

] ( π

4λ

)
|k|2d−1 .

From the expression (3.9) and considering the constant cγ > 0, given in expression
(3.10), Definition 2.2 guarantees the desired result. □

Remark 3.2. From Theorem 3.3, we can consider the properties of the Gamma func-
tion, when E[L(1)2] = 1, and rewrite the expression (3.9) as

γYλ,d
(k) =

π

8λΓ(2d) cos(πd)
|k|2d−1. (3.25)

4. Specific Case and Parameter Estimation. After the introduction of a new stochas-
tic process, we present in this section the specific case of the process {Yλ,d(t)}, given in
(3.1), when the noise process Md(·) is a fractional Brownian motion. Next, we present
the study of process parameter estimation. For the sake of completeness, below we define
the fractional Brownian motion process.

Definition 4.1. The fractional Brownian motion with Hurst parameter H ∈ (0, 1) is
a Gaussian process BH = {BH(t)}t∈R with the following properties:

i. BH(0) = 0;

ii. E
[
BH(t)

]
= 0, for all t ∈ R;



Medeiros J. et al.- Selecciones Matemáticas.2024; Vol.11(1):01-19 11

iii. E
[
BH(t).BH(s)

]
= 1

2

(
|t|2H + |s|2H − |t− s|2H

)
, for s, t ∈ R.

Remark 4.1. (a) By Definition 4.1, we have BH(t) ∼ N (0, t2H).
(b) The process {BH(t)}t∈R is a fractional Lévy process.
(c) The Hurst parameter H is directly related to the parameter d, that is, H = d+ 1

2
.

For the fractional Brownian motion, it is important to note that this process has a
long-range dependence property whenever 1

2
< H < 1 (see [15]), that is, for 0 < d < 1

2
.

Therefore, the study performed here will consider this case.
We shall consider the process {Yλ,d(t)} given in (3.1) where the noise processMd(·) :=

BH(·). Hence, the interesting process in this section is given by

Yλ,d(t) =

∫ t

−∞
e−λ(t−s)2dBH(s), t ∈ R, (4.1)

where λ > 0, 0 < d < 1
2

and H = d + 1
2
. The main parameters are λ and d. An

approximation for the process in (4.1) is given by

Y m
λ,d(t) =

mt∑
j=−m2

e−λ(t− j
m)

2
[
BH

(
j + 1

m

)
−BH

(
j

m

)]
. (4.2)

Theorem 4.1 below ensures that this approximation is convergent.
Theorem 4.1. Let ϕm(·) : R → R be a sequence of real functions, for m ∈ N, and

let gλ(·) : R → R be a real function, both defined by

ϕm(s) =
mt∑

j=−m2

e−λ(t− j
m
)21( j

m
, j+1

m )(s) (4.3)

and
gλ(s) = e−λ(t−s)21(−∞,t)(s), (4.4)

such that, for fixed t and m ∈ N,

Y m
λ,d(t) =

∫
R
ϕm(s) dB

H(s) and Yλ,d(t) =

∫
R
gλ(s) dB

H(s).

Then, ||ϕm − gλ||H → 0, when m→ ∞, with

||g||H =

(
E[B(1)2]

∫
R
(Id−(g(u)))

2(u)du

) 1
2

= ||Id−g||2,

where Id−(f) is the Riemann-Liouville fractional integral to the left of a function f , defined
in (2.6), and H = d + 1

2
. Furthermore, Y m

λ,d converges to Yλ,d, in L2(Ω,P), as m → ∞,
since by theorem 5.3 in [2],

||Y m
λ,d − Yλ,d||L2(Ω,P) = ||ϕm − gλ||H . (4.5)

Proof: We know, from [24], that

||ϕm − gλ||H ≤ C [||ϕm − gλ||1 + ||ϕm − gλ||2] . (4.6)

We need to prove that
||ϕm − gλ||1 + ||ϕm − gλ||2 → 0,

when m→ ∞. First, we note that

gλ(s) =
mt−1∑
j=−∞

e−λ(t−s)21( j
m
, j+1

m
](s).
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Then, for all s ∈ (−∞, t) fixed, we observe that

|ϕm(s)− gλ(s)| ≤∣∣∣∣∣
−m2−1∑
j=−∞

e−λ(t−s)21( j
m
, j+1

m
](s)

∣∣∣∣∣+
∣∣∣∣∣∣
mt−1∑
j=−m2

[
e−λ(t− j

m
)2 − e−λ(t−s)2

]
1( j

m
, j+1

m
](s)

∣∣∣∣∣∣+ 1(t,t+ 1
m
](s).

The first and third terms in the above expression go to zero when m → ∞, while the
second term has the following upper bound∣∣∣∣∣∣
mt−1∑
j=−m2

[
e−λ(t− j

m
)2 − e−λ(t−s)2

]
1( j

m
, j+1

m
](s)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
mt−1∑
j=−m2

[
e−λ(t− j

m
)2 − e−λ(t− j+1

m
)2
]
1( j

m
, j+1

m
](s)

∣∣∣∣∣∣ ,
(4.7)

whose sum has at most one non-zero term of the form

|e−λ(t− j
m
)2 − e−λ(t− j

m
− 1

m
)2 | → 0, when m→ ∞.

We also have an upper bound for the function ϕm(·). In fact, for every fixed m ∈ N,
consider

|ϕm(s)| =
mt∑

j=−m2

e−λ(t− j
m
)21( j

m
, j+1

m
](s),

for every fixed s ∈ R. There exists only one j∗ such that j∗

m
< s < j∗+1

m
. Hence,

|ϕm(s)| = e−λ(t− j∗
m

) ≤ e−λ(t−s)2 ,

since j∗

m
< s ⇒ (t − j∗

m
)2 > (t − s)2 ⇒ −λ(t − j∗

m
)2 < −λ(t − s)2. From item ii) of

Lemma 2.1, we get |ϕm(s)| ≤ e−λ(s−1)(s+ 1) =: h(s), that is in Lp(R), for all p ≥ 1. In
particular, the upper bound for the function ϕm(·) is also in L1 and L2. We observe that,
for all s ∈ R,

|ϕm(s)− gλ(s)| ≤ |ϕm(s)|+ |gλ(s)| ≤ 2|h(s)| =⇒ |ϕm(s)− gλ(s)|2 ≤ 4|h(s)|2, (4.8)

where h ∈ Lp, for all p ≥ 1. Therefore, from the dominated convergence theorem, we
conclude that

||ϕm − gλ||1 → 0 and ||ϕm − gλ||2 → 0,

when m→ ∞. Hence, the convergence occurs for both L1 and L2, concluding the proof.
□

Further details on the integration concerning the fractional Brownian motion can be
found in [24].

Remark 4.2. Since the fractional Brownian motion BH(·) has stationary increments,
note that

Y m
λ,d(t) ∼

mt∑
j=−m2

e−λ(t− j
m)

2
[
BH

(
j + 1

m

)
−BH

(
j

m

)]
=

=
m2+mt∑
j=0

e−λ(t−(−m+ j
m))

2
[
BH

(
j + 1

m

)
−BH

(
j

m

)]
=

=
m2+mt∑
j=0

e−λ(t−(−m+ j
m))

2
(
m2 +mt

m

)H [
BH

(
j + 1

m

)
−BH

(
j

m

)]
, (4.9)

when we adapt the discretization set {−m2,−m2+1, · · · , 0, · · · ,mt} to {0, 1, 2, · · · ,m2+
mt}, and use the self-similarity property of fractional Brownian motion noise in the in-
terval [0, 1]. For the data generating process, given in (4.1), we use (4.9).
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To achieve the goal of this section, we shall present the estimator for the parameter
vector η′ = (d, λ), when d ∈

(
0, 1

2

)
and λ > 0. To estimate the parameter d of the process

defined in (4.1), we consider the parameter λ > 0 known and the sample autocovariance
function for this process. By applying the logarithm function to the expression (3.25) we
obtain

d̂ =
ln
(
| ̂γYλ,d

(k)|
)

2 ln(|k|)
−

ln(C
λ
)

2 ln(|k|)
+

1

2
, (4.10)

where γ̂Yλ,d
(k) is the sample autocovariance function of order k and C is the constant

defined by
C =

π

8Γ(2d̂) cos(πd̂)
. (4.11)

Notice that, for large k, the constant C in (4.11) goes to zero and expression (4.10)
can be rewritten as

d̂ =
1

2
+

ln
(
|γ̂Yλ,d

(k)|
)

2 ln(|k|)
=

1

2

1 +
ln
(
|γ̂Yλ,d

(k)|
)

ln(|k|)

 , (4.12)

since the second term in expression (4.10) vanishes for large k. Hence, expression (4.12)
shall be used as an estimator for d, when λ > 0 is known.

To estimate the parameter λ, we consider the absolute value of the expression (3.25)
to obtain

λ̂ =
C

|γ̂Yλ,d
(k)|

k2d−1, (4.13)

where the constant C is given in (4.11), d is fixed in (0, 1
2
), k is a positive integer, and

γ̂Yλ,d
(k) is the sample autocovariance function of order k.

As a characteristic property of the process in this special case, one can observe in
the following result that the version of the process given in (2.20) follows a Gaussian
distribution. Theorem 4.2 below gives the distribution of the process {Yλ,d(t)}t∈R for the
particular case when the noise process is the Brownian motion.

Theorem 4.2. Let {Yλ,d(t)}t∈R be the stochastic process given in (2.20), where the
noise process is the Brownian motion, that is, L(·) := B(·). Then

Yλ,d(t)
d
=X ∼ N

(
0, 2σ2

λ,d

)
,

where

σ2
λ,d =

1

2

∫ ∞

0

x2d

(Γ(d+ 1))2

(
2F2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λx2

))2

dx.

Proof: Considering the control measure when α = 2, we obtain the stochastic process
given by

Yλ,d(t) =

∫ t

−∞

(t− u)d

Γ(d+ 1) 2F 2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λ(t− u)2

)
dB(u).

From proposition 3.4.1 in [20]), it follows a N (0, 2σ2
λ,d) distribution with

σ2
λ,d =

1

2

∫ t

−∞

(t− u)2d

(Γ(d+ 1))2

(
2F2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λ(t− u)2

))2

du. (4.14)

By changing variables x = t− u in (4.14), we obtain that

σ2
λ,d =

1

2

∫ ∞

0

x2d

(Γ(d+ 1))2

(
2F2

(
1

2
, 1;

d+ 1

2
,
d+ 2

2
;−λx2

))2

dx.

□
In the next section, we shall present some Monte Carlo simulation results.
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5. Monte Carlo Simulations. Here we present some simulation studies for the pro-
cess given in expression (4.1). First, Figure 5.1 shows the graphics of three trajectories
of the process in (4.1), when λ = 0.01 and d ∈ {0.15, 0.30, 0.45}. To generate sam-
ples of size t = 2, 000 for this process we consider the approximation (4.9). After some
simulations, we find out that the approximation is convergent for values of m equal to
m = 200. Next, we present the estimation results for the parameters of the interested
process. Table 5.1 below presents the estimated values for the parameter d (given by d̂ ),
defined in expression (4.12), together with its mean (d̂), bias (bias), and mean squared
error (mse) values, for different Monte Carlo simulation scenarios. The sample size n is
considered in the set {4, 000; 5, 000; 6, 000; 8, 000}, the number of replications is consid-
ered for re ∈ {500, 800}, and the sample autocovariance function of order k is considered
for k ∈ {1, 000; 2, 000; · · · ; 8, 000}. One observes, from Table 5.1, that when d = 0.15,
we could not find good estimated values for it, in terms of the smallest bias, in absolute
value sense: d̂ = 0.3786, with bias = 0.2286, for n = 8, 000 and re = 500. When
d = 0.30, the best estimated result was d̂ = 0.3016, with bias = 0.0016, for n = 6, 000
and re = 500. However, when d = 0.45, the best estimated value was d̂ = 0.4492, with
bias = −0.0008, for n = 6, 000 and re = 500, while for re = 800, the best estimated
result for this value of d was d̂ = 0.4495, with bias = −0.0005, for both n = 5, 000
or n = 8, 000, always for large values of k. For this table, the best-estimated values for
the parameter d, for each d, n, and re, in terms of the smallest bias, in the absolute value
sense, are always in the last line of it, for any scenario.

Figure 5.1: Trajectories for the process given in (4.1), when λ = 0.01, sample size equal
to t = 2, 000, m = 200 and d ∈ {a, b, c}. First plot, on the left-hand side, for a = 0.15,
middle plot for b = 0.30 and on the right-hand side for c = 0.45.

Remark 5.1. Each process was generated by applying an adequate transformation to
a randomly generated fractional Brownian motion. After generating the processes, the d
parameter was estimated over each k ∈ {1, 000; 2, 000; · · · ;n}, granting the possibility
to choose the best estimate in terms of its bias and mse values.

Table 5.2 below presents the results for the estimation of the parameter λ (given by
λ̂), defined in expression (4.13), together with its mean (λ̂), bias (bias) and mean squared
error (mse) values, for different Monte Carlo simulation scenarios. The sample size n
is considered in the set {2, 000; 3, 000}, the number of replications is considered for
re ∈ {500, 800} and the sample autocovariance function of order k is considered for
k ∈ {1, 000; 2, 000; · · · ;n}.

Table 5.2 contains values of λ̂ such that |bias| < 0.00661 and mse < 0.05505, for
all values of the parameter d ∈ {0.15, 0.30, 0.45}. From this table one observes the
following: when d = 0.15, the absolute value of the bias increases for n = 2, 000 and
decreases for n = 3, 000, for any value of re. The mse decreases whenever n increases.
Besides, for this value of d, the lag k for the sample autocovariance function is always
large and close to the value of n, for any value of re. We could not find any estimate for λ
when d = 0.15, n = 2, 000, and re = 800. For the same Table 5.2, when the parameter d
is equal to 0.30, we observe the following: for re = 500, the best estimate for λ, in terms
of the smallest bias and absolute value sense, occurs when k = 1, 260 and k = 2, 480,
for n = 2, 000 and n = 3, 000, respectively. However, for re = 800, the best estimate
for λ, in terms of the smallest bias and absolute value sense, occurs when k = 1, 040
and k = 640, for n = 2, 000 and n = 3, 000, respectively. Finally, when the parameter
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d = 0.15 d = 0.30 d = 0.45

d̂ bias mse k d̂ bias mse k d̂ bias mse k

n = 4, 000; re = 500

0.7312 0.5812 0.3435 1,000 0.6580 0.3580 0.1349 1,000 0.5634 0.1134 0.0198 1,000
0.6999 0.5499 0.3073 2,000 0.6275 0.3275 0.1128 2,000 0.5599 0.1099 0.0180 2,000
0.6712 0.5212 0.2757 3,000 0.5992 0.2992 0.0955 3,000 0.5238 0.0738 0.0118 3,000

0.4566 0.0066 0.0058 3,820
0.4057 0.2557 0.0744 4,000 0.3232 0.0232 0.0090 4,000 0.4472 -0.0028 0.0065 3,840

n = 5, 000; re = 500

0.7268 0.5768 0.3391 1,000 0.6490 0.3400 0.1285 1,000 0.5641 0.1141 0.0189 1,000
0.6970 0.5470 0.3046 2,000 0.6320 0.3330 0.1163 2,000 0.5543 0.1043 0.0167 2,000
0.6719 0.5219 0.2779 3,000 0.6180 0.3180 0.1057 3,000 0.5420 0.0920 0.0141 3,000
0.6479 0.4979 0.2523 4,000 0.5870 0.2870 0.0872 4,000 0.5157 0.0657 0.0099 4,000

0.4506 0.0006 0.0053 4,780
0.4022 0.2522 0.0724 5,000 0.3050 0.0050 0.0078 5,000 0.4437 -0.0063 0.0060 4,800

n = 5, 000; re = 800

0.7323 0.5823 0.3457 1,000 0.6493 0.3493 0.1285 1,000 0.5582 0.1082 0.0196 1,000
0.6971 0.5471 0.3052 2,000 0.6303 0.3303 0.1150 2,000 0.5514 0.1014 0.0172 2,000
0.6768 0.5268 0.2823 3,000 0.6141 0.3141 0.1037 3,000 0.5440 0.0940 0.0141 3,000
0.6429 0.4929 0.2482 4,000 0.5831 0.2831 0.0852 4,000 0.5158 0.0658 0.0093 4,000

0.4534 0.0034 0.0058 4,780
0.3964 0.2464 0.0695 5,000 0.3052 0.0052 0.0096 5,000 0.4495 -0.0005 0.0057 4,800

n = 6, 000; re = 500

0.7291 0.5791 0.3421 1,000 0.6467 0.3467 0.1281 1,000 0.5641 0.1141 0.0202 1,000
0.6951 0.5451 0.3023 2,000 0.6294 0.3294 0.1144 2,000 0.5486 0.0986 0.0161 2,000
0.6759 0.5259 0.2811 3,000 0.6129 0.3129 0.1037 3,000 0.5528 0.1028 0.0159 3,000
0.6579 0.5079 0.2627 4,000 0.5981 0.2981 0.0938 4,000 0.5358 0.0858 0.0130 4,000
0.6336 0.4836 0.2382 5,000 0.5693 0.2693 0.0777 5,000 0.5061 0.0561 0.0082 5,000

0.4493 -0.0006 0.0059 5,720
0.3898 0.2398 0.0650 6,000 0.3016 0.0016 0.0076 6,000 0.4492 -0.0008 0.0046 5,760

n = 8, 000; re = 500

0.7194 0.5694 0.3303 1,000 0.6475 0.3475 0.1261 1,000 0.5703 0.1203 0.0212 1,000
0.6918 0.5418 0.2980 2,000 0.6191 0.3191 0.1075 2,000 0.5485 0.0985 0.0151 2,000
0.6719 0.5219 0.2776 3,000 0.6156 0.3156 0.1047 3,000 0.5458 0.0958 0.0148 3,000
0.6639 0.5139 0.2684 4,000 0.6073 0.3073 0.0994 4,000 0.5470 0.0970 0.0143 4,000
0.6507 0.5007 0.2550 5,000 0.5881 0.2881 0.0875 5,000 0.5319 0.0819 0.0122 5,000
0.6364 0.4864 0.2100 6,000 0.5787 0.2787 0.0814 6,000 0.5202 0.0702 0.0098 6,000
0.6124 0.4624 0.2175 7,000 0.5583 0.2583 0.0704 7,000 0.4938 0.0438 0.0069 7,000

0.4505 0.0005 0.0050 7,700
0.3786 0.2286 0.0593 8,000 0.2915 -0.0085 0.0068 8,000 0.4495 -0.0005 0.0005 7,720

Table 5.1: Estimation values for the parameter d, with its mean (d̂), bias and mean squared
error (mse) values when sample size n ∈ {4, 000; 5, 000; 6, 000; 8, 000}, replications
re ∈ {500, 800}, λ = 0.01, d ∈ {0.15, 0.30, 0.45} and m = 200.

d = 0.45, we observe a more repetitive pattern, that is, the value k = 20 occurs for all
possible values of n and re. However, the bias value for λ̂, in absolute value sense, was
always larger than any other bias values λ̂(bias) when compared to d ∈ {0.15, 0.30}.
That is, the best estimate values for the parameter λ occur when d ∈ {0.15, 0.30}, in
terms of small bias value.

For Table 5.2, the best-estimated values for the parameter λ, for each d, n, and re, in
terms of the smallest bias, in the absolute value sense, are always in the last line of the
table, for each scenario.

Remark 5.2. Each process was generated by applying an adequate transformation
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d = 0.15 d = 0.30 d = 0.45

λ̂ bias mse k λ̂ bias mse k λ̂ bias mse k

n = 2, 000; re = 500

0.01060 0.00060 0.05505 620 0.00982 -0.00018 0.00064 160 0.09465 0.08465 0.01401 20
0.01661 0.00661 0.02384 2,000 0.01006 0.00006 0.00456 1,260

n = 3, 000; re = 500

0.00721 -0.00279 0.01960 2,987 0.00992 -0.00008 0.00081 260 0.08065 0.07065 0.00609 20
0.00991 -0.00009 0.01735 2,999 0.01000 0.00000 0.00155 2,480

n = 2, 000; re = 800

0.01173 0.00173 0.01344 40 0.09400 0.08400 0.00092 20
0.01005 0.00006 0.00192 1,040

n = 3, 000; re = 800

0.00514 -0.00486 0.01875 2,720 0.01022 0.00022 0.00214 380 0.08185 0.07184 0.00063 20
0.01083 0.00083 0.00722 3,000 0.01008 0.00008 0.00255 640

Table 5.2: Estimated results for the parameter λ = 0.01 with its mean (λ̂), bias and
mean squared error (mse) values when sample size n ∈ {2, 000; 3, 000}, replications
re ∈ {500, 800}, d ∈ {0.15, 0.30, 0.45}, and m = 200.

to a randomly generated fractional Brownian motion. After generating the processes, the
λ parameter was estimated over each k ∈ {20, 40, · · · , n}, granting us the possibility to
choose the best estimate in terms of its bias and mse values.

6. Application. Various financial studies have been carried out in the areas of proba-
bility and statistics seeking a relationship between financial market time series and stochas-
tic processes with a long-range dependence property. One of the first motivations emerged
from the work by [25] seeking the behavior of market variables and their relationship with
dependence on time. Research carried out in the 1990s gave impulse to this theory, as
seen in [26] and [27]. These works showed the existence of the long-range dependence
property giving rise to new alternative models for the financial time series.

In this section, we consider a real data set for the study proposed in Section 5, based
on the process given by equation (4.1). As an application for the process given in (3.1),
we consider the closing values of shares traded on the Brazilian financial market. Specif-
ically, we analyze the BOVESPA Index, São Paulo’s Stock Exchange Index data set. The
chosen data presents the index’s closing values, minute by minute, from 17 hours and 51
minutes on March 13, 2008, to 19 hours and 38 minutes on April 18, 2008, totaling 8, 000
observations. For analyzing this data set, we consider the continuous stochastic process
defined by the difference of two consecutive closing values of the BOVESPA Index, ob-
served minute by minute. The data series was centered at zero mean, by subtracting each
data set value from its sample mean given by 0.6040. The original sample variance was
2203.012. Figure 6.1 below presents this data set.

By considering the estimator proposed in (4.12), we obtain the value of k that opti-
mizes the estimator d̂ with the smallest bias, resulting in d̂ = 0.1162. From the theoretical
point of view, we know that when d ∈

(
0, 1

2

)
, the stochastic process has LRD, and the

estimated value obtained agrees with this finding. Table 6.1 presents the estimation results
for the parameter d, given by the expression (4.12), with its respective bias value, for dif-
ferent values of k in the set {5, 000; 6, 000; 7, 000; 7, 200; 7, 400; ...; 8, 000}. We observe
that k = 8, 000 is the value that minimizes the bias for the d̂ estimator proposed in (4.12).
This estimation result is in accordance with Table 5.1, noting that for values of d closer to
zero, the estimate improves the higher the value of k. This also agrees with the estimator
expression given in (4.12). For comparison reasons, we also considered Whittle’s estima-
tor (see [28]) which is widely used in the study of LRD properties in stochastic processes.
We use the notation d̂Whittle to represent this estimator and, for this data set, the value
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Figure 6.1: The BOVESPA Index closing values, minute by minute, from March 13, 2008,
to April 18, 2008.

obtained is d̂Whittle = 0.1151.

k d̂ bias k d̂ bias

5,000 0.5159 0.4008 7,400 0.5645 0.4494
6,000 0.5928 0.4777 7,600 0.6607 0.5456
7,000 0.6280 0.5129 7,800 0.5552 0.4401
7,200 0.6278 0.5127 8,000 0.1162 -0.0011

Table 6.1: Estimation results for the parameter d, given by expression (4.12),
with its mean (d̂) and bias (bias) values, for different values of k ∈
{5, 000; 6, 000; 7, 000; 7, 200; 7, 400; ...; 8, 000}.

From Table 6.1, the value d̂ = 0.1162 is used to obtain the estimator λ̂ via the expres-
sion (4.13), since λ̂ depends on d̂. We found the value λ̂ = 0.1074.

7. Conclusions. Given the current importance of studies carried out on stochastic
processes with the long-range dependence property and its relation to applications in the
economic and finance area, we have presented in this work a new process model, given in
two versions, which has this property.

Firstly, we have presented a kernel function in (2.3), with real parameter λ > 0, as-
sociated with a stationary moving average process given in (2.4). We used the Riemann-
Liouville fractional integral to the right with d ∈

(
0, 1

2

)
to generate a fractionally inte-

grated kernel, presented in (2.8). With this fractionally integrated kernel, we presented the
first version of the main process on this work, denoted by Yλ,d(·). It is a variation of the
initial process, where the primary kernel was modified to a fractionally integrated kernel.
This process belongs to the class of FIMA processes and was defined in Definition 2.5,
through the expression (2.20), which has the associated parameters d and λ. By studying
this first version of the main process, we showed in Lemma 2.1 its autocovariance and its
spectral density functions. However, due to the high complexity arising from the fraction-
ally integrated kernel, it has become an unlikely way to prove the LRD property of the
process through its autocovariance function.

Secondly, from [2], it was possible to calculate and rewrite the first version of the
process as a second model, given in (3.1), whose representation for the process was given
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in (2.20) in terms of the fractional Lévy process integrator. In this new version, equiva-
lent to the first one, we showed results for the first and second-order moments and their
autocovariance function. Through the autocovariance function, given in (3.6), Theorem
3.3 presents its rate decay and we obtained that this process has LRD. Thus, we reached
the main goal of this work by presenting a new stochastic process with the LRD property.

For the study with Monte Carlo simulations and the real data application, we con-
sidered a particular case of our process, where the fractional Brownian motion was cho-
sen as the noise of the process given in (3.1), that is, the second version of the process.
Through the approximation given in (4.2), we find estimators for the parameters d and
λ, presented, respectively, in (4.12) and (4.13). In Section 5, we performed a few Monte
Carlo simulations, generating processes with time t = 2, 000, considering the parame-
ters d ∈ {0.15, 0.30, 0.45} and λ = 0.01. The trajectories are presented in Figure 5.1.
Afterward, we performed estimation tests for the d̂ and λ̂ estimators whose results are in
Tables 5.1 and 5.2.

We concluded this work by performing an application of this particular process to a
real data set. We considered 8, 000 observations from the BOVESPA Index from March
13, 2008, to April 18, 2008. The main parameters were estimated and the values d̂ =

0.1162 and λ̂ = 0.1074 have been found. The value of the parameter estimator d̂ was
compared with Whittle’s estimator, showing their similarities.
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