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Abstract

In this paper, we study oriented surfaces S in R3, called surfaces with quadratic
support function (in short QSF-surfaces). We obtain a Weierstrass type representa-
tion for the QSF-surfaces which depends on two holomorphic functions. Moreover,
classify the QSF-surfaces of rotation. Also, we give some explicit examples of this
class of surfaces.
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1. Introduction. Let S ⊂ R3 be a surface oriented by its normal Gauss map
N . The functions Ψ,Λ : S → R3 given by Ψ(p) = ⟨p,N(p)⟩, Λ(p) = ⟨p, p⟩, p ∈ S,
where ⟨, ⟩ denotes the Euclidean scalar product in R3, are called support function
and quadratic distance function, respectively.

Appell in [1], studied a class of oriented surfaces in R3 associated with area
preserving transformations in the sphere. In [2], the authors showed that these sur-
faces are such that the mean curvature H, the Gaussian curvature K and the support
function Ψ satisfy H + ΨK = 0. Tzitzéica in [3] estudied oriented hyperbolic sur-
faces such that there exist a nonzero constant c ∈ R for which the following relation
is satisfied K + c2Ψ4 = 0.

In [4], the authors study a special class of oriented surfaces S ⊂ R3 that satisfy
a relation of the form 2ΨH+ΛK = 0, this surfaces are called EDSW-surfaces. They
show that these surfaces are invariant by dilations and inversions. Moreover, they
obtain a Weierstrass type representation depending on two holomorphic functions.
Given p ∈ S, a sphere with center p + H

KN(p) and radius H
K is called the middle

sphere at p, the EDSW-surfaces have the geometric property that every middle
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‡Departamento de Matemática, Universidade de Brası́lia, Brası́lia, DF, Brazil.

(jlteruel@mat.unb.br).

20

http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0002-6864-3876
https://orcid.org/0000-0002-1206-7072
https://orcid.org/0000-0001-8677-3669
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17268/sel.mat.2024.01.02


Corro A, Riveros C, Teruel C J.- Selecciones Matemáticas.2024; Vol.11(1):20-29 21
sphere passes through a fixed point. In [5], the authors present a Weierstrass type
representation for EDSGW-surfaces with prescribed Gauss map which depends on
three holomorphic functions. Also, they classify isothermic EDSGW-surfaces with
respect to the third fundamental form parametrized by planar lines of curvature.

In [6], the authors introduce the class of surfaces in Euclidean space motivated
by a problem posed by Élie Cartan. This class of surfaces are called Ribaucour
surfaces and are defined as surfaces where all the medial spheres intercept a fixed
sphere along a large circle, these surfaces satisfy a relation of the form

2ΨH + (1 + Λ)K = 0.

The authors obtain holomorphic data for these surfaces and discuss the relation
with minimal surfaces.

In [7], the authors study a class of surfaces S in the hyperbolic space that satis-
fies

2ce2µ(H − 1) + (1 + ce2µ)K = 0,

where µ is a harmonic function with respect to the quadratic form σ = −KI +
2(H − 1)II, c is a real constant and I, II is the first and second fundamental form
of S, respectively.

In [8], the authors study the Ribaucour surfaces of harmonic type (in short HR-
surfaces), these surfaces satisfy

2ΨH + (ce2µ + Λ)K = 0,

where c is a nonzero real constant, µ a harmonic function with respect to the third
fundamental form. These surfaces generalize the Ribaucour surfaces studied in
[6].

Corro and Mendez in [9], study the Ribaucour-type surfaces (in short RT-
surfaces) what satisfy

2ΨH + (Λ + Ψ2)K = 0.

In this paper, we study the QSF-surfaces, these surfaces satisfy

2ΨH + (Λ−Ψ2)K = 0.

We obtain a Weierstrass type representation for the QSF-surfaces which de-
pends on two holomorphic functions. Moreover, classify the QSF-surfaces of ro-
tation. Also, we give some explicit examples of this class of surfaces.
We observed that this class of surfaces are different from the surfaces studied in
[9].

2. Preliminaries. In this section we present the definitions and results that
will be used in the work. In this paper the inner produt ⟨, ⟩ : C×C → R is defined
by

⟨f, g⟩ = f1g1 + f2g2, where f = f1 + if2, g = g1 + ig2,

are holomorphic functions.
In the computation we use the following properties: if f, g : C → C are holomor-
phic functions of z = u1 + iu2, then

⟨f, g⟩,1 = ⟨f ′, g⟩+ ⟨f, g′⟩, ⟨f, g⟩,2 = ⟨if ′, g⟩+ ⟨f, ig′⟩,

⟨f, g⟩ = ⟨1, f̄g⟩, ⟨1, f⟩2 = 1

2

[
|f |2 + ⟨1, f2⟩

]
(2.1)

Here ⟨f, g⟩,i denotes the derivative of ⟨f, g⟩ with respect to ui, i = 1, 2.
The next result was obtained in [4].
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Theorem 2.1. Let S be a surface with Gaussian curvature K ̸= 0 and N its
normal Gauss map locally parametrized by

N(u) =
1

1 + |g|2
(2g, 1− |g|2) (2.2)

where Π = {(u1, u2, u3) ∈ R3 : u3 = 0}, g : U → Π is a holomorphic function with
|g′| ≠ 0, U is a connected open subset of R2 and u = (u1, u2) ∈ U .

Then there is a differentiable function h : U → R, such that S can be locally
parametrized by

X(u) =

(
g′

|g′|2
∇h− 2R

T
g,−2R

T

)
, (2.3)

where

T = 1 + |g|2 and R =

〈
∇h,

g

g′

〉
− h. (2.4)

Moreover, the coefficients of the first and the second fundamental form of X are
given by

a11 =
|g′|2

T 2
[A2

1 + (TV12)
2], a12 = −|g′|2

T
V12[A1 + A2], a22 =

|g′|2

T 2
[A2

2 + (TV12)
2],

(2.5)

b11 =
2|g′|2

T 2
A1, b12 = −2|g′|2

T
V12, b22 =

2|g′|2

T 2
A2, Ai = 2R− TVii, i = 1, 2,

(2.6)
where

V11 =
1

|g′|2

[
h,11 −

〈
g′′

g′
,∇h

〉]
,

V12 =
1

|g′|2

[
h,12 −

〈
i
g′′

g′
,∇h

〉]
, (2.7)

V22 =
1

|g′|2

[
h,22 +

〈
g′′

g′
,∇h

〉]
.

The regularity condition of X is given by

P = (A1A2 − T 2V 2
12) ̸= 0. (2.8)

The third fundamental form is determined by

Lii = ⟨N,i, N,i⟩ =
4

T 2
|g′|2, i = 1, 2, ⟨N,1, N,2⟩ = 0. (2.9)

H = − 1

P

(
T
∆h

|g′|2
− 4R

)
, K =

4

P
(2.10)

Conversely, let be a holomorphic function g : U → Π, U , where U is a connected
open subset of R2 and a differentiable function h : U → R. Then (2.3) define an
immersion in R3 with Gaussian curvature non-zero, Gauss map given by (2.2) and
(2.5)-(2.10) are satisfied.



Corro A, Riveros C, Teruel C J.- Selecciones Matemáticas.2024; Vol.11(1):20-29 23
3. Surfaces with quadratic support function (QSF-surfaces). In this sec-

tion we introduce the QSF-surfaces, classify the QSF-surfaces of rotation and we
give some explicit examples of this class of surfaces.

Definition 3.1. We say that an oriented surface S ⊂ R3 is a surface with
quadratic support function (in short, QSF-surface) if the mean curvature H, the
Gaussian curvature K, the support function Ψ and quadratic distance Λ satisfy

2ΨH + (Λ−Ψ2)K = 0. (3.1)

The following Theorem provides a Weierstrass type representation for the QSF-
surfaces which depends on two holomorphic functions.

Theorem 3.1. Let S ⊂ R3 be a connected orientable Riemann surface. Then S
is a QSF-surface if, and only if, there exist holomorphic functions g, f : S → C∞,
such that X(S) is locally parametrized by

X(u) =

(
2c|f |2

T 2

(
T

(
f ′

g′f

)
− g

)
, 0

)
− 2R

T
(g, 1), (3.2)

where

R =
2c|f |2

T 2

(
2T

〈
1,

f ′g

fg′

〉
− 3|g|2 − 1

)
, c ̸= 0, |g′| ≠ 0, T = 1 + |g|2. (3.3)

Proof: From Theorem 2.1, we have that

H

K
= −1

4

(
T∆h

|g′|2
− 4R

)
, (3.4)

Ψ =
2h

T
, Λ =

|∇h|2

|g′|2
− 4R

h

T
, L11 =

4|g′|2

T 2
, T = 1 + |g|2. (3.5)

Using (3.5) in (3.4) we obtain

H

K
= − 1

2Ψ

(
h∆h− |∇h|2

|g′|2
+ Λ

)
= − 1

2Ψ

(
Ψ2

h2

(
h∆h− |∇h|2

L11

)
+ Λ

)
. (3.6)

Thus, S is a QSF-surface if and only if

h∆h− |∇h|2

L11
= −h2. (3.7)

Now, let h =
A

B
where A and B are differentiable functions.

We can show that

h∆h− |∇h|2 = 1

B2

(
A∆A− |∇A|2

)
− A2

B4

(
B∆B − |∇B|2

)
. (3.8)

Considering B = T = 1 + |g|2 in (3.8) we obtain

h∆h− |∇h|2

L11
=

A∆A− |∇A|2

4|g′|2
− h2. (3.9)
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Thus
h∆h− |∇h|2

L11
= −h2 ⇐⇒ A∆A− |∇A|2 = 0. (3.10)

The solution of (3.10) is A = c|f |2, where f is a holomorphic function.
Thus,

h =
c|f |2

1 + |g|2
. (3.11)

From (3.11) it follows

∇h =
2c|f |2

T

((
f ′

f

)
− gg′

T

)
. (3.12)

Using (3.12) in (2.3) we obtain (3.2). The proof is complete. □

The following Theorem classify the QSF-surfaces of rotation.

Theorem 3.2. An oriented connected surface S with nonzero Gauss curvature
is a QSF-surface of rotation if, and only if, locally can be parameterized by

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)) (3.13)

where

A(u1) =
2c(k + (2− k)e4u1)e(2k−1)u1+2a

(1 + e2u1)3
, (3.14)

B(u1) = −2c(2k + (2k − 3)e2u1 − 1)e2ku1+2a

(1 + e2u1)3
. (3.15)

Proof: Note that taking g(w) = w,w ∈ C, S is a QSF-surface of rotation if,
and only if, h is a radial function i.e., h(w) = r(|w|) for any differentiable function
r.
Making the change of parameters

w = ez, z = u1 + iu2 ∈ C,

we have that g(z) = ez and h,2 = 0.
From (3.11) and h,2 = 0 we obtain ⟨f, if ′⟩ = 0, consequently, f(z) = ekz+z0 , z0 =
a+ ib, a, b ∈ R, k ̸= 0.
Thus

h =
ce2ku1+2a

1 + e2u1
. (3.16)

From (3.16) and (3.2), we obtain that X is defined by (3.13)-(3.15). The proof is
complete. □

Example 3.1. Considering a = 1, c = 2, k = 2 in Theorem 3.2, we obtain

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)),

and the profile curve is given by

α(u1) = (A(u1), 0, B(u1)) ,

where

A(u1) =
8e3u1+2

(e2u1 + 1)
3
, B(u1) = −

4e4u1+2
(
e2u1 + 3

)
(e2u1 + 1)

3

Here A(u1) > 0,∀u1 ∈ R and the profile curve is regular, therefore, the QSF-
surface of rotation is complete (see Figures 3.1 and 3.2).
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Figure 3.1: Profile curve Figure 3.2: QSF-surface of rotation

Example 3.2. Considering a = 2, c = −2, k = 1
30 in Theorem 3.2, we obtain

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)),

and the profile curve is given by

α(u1) = (A(u1), 0, B(u1)) ,

where

A(u1) = −
2e4−

14u1
15

(
59e4u1 + 1

)
15 (e2u1 + 1)

3
, B(u1) = −

8e
u1
15

+4
(
22e2u1 + 7

)
15 (e2u1 + 1)

3
.

Here A(u1) < 0, ∀u1 ∈ R and the profile curve is not regular only in one point,
therefore, the QSF-surface of rotation has a circle of singularities (see Figures 3.3
and 3.4).

Example 3.3. Considering a = −2, c = −3, k = − 1
30 in Theorem 3.2, we obtain

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)),

and the profile curve is given by

α(u1) = (A(u1), 0, B(u1)) ,

where

A(u1) =
e−

16u1
15

−4
(
1− 61e4u1

)
5 (e2u1 + 1)

3
, B(u1) = −

4e−
u1
15

−4
(
23e2u1 + 8

)
5 (e2u1 + 1)

3
.

Here A(u1) = 0 only in one point and the profile curve is not regular only in
one point, therefore, the QSF-surface of rotation has one isolated singularity (see
Figures 3.5 and 3.6).
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Figure 3.3: Profile curve Figure 3.4: QSF-surface of rotation

Figure 3.5: Profile curve Figure 3.6: QSF-surface of rotation

Example 3.4. Considering a = 1, c = −1, k = 1 in Theorem 3.2, we obtain

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)),

and the profile curve is given by

α(u1) = (A(u1), 0, B(u1)) ,

where

A(u1) = −
2eu1+2

(
e4u1 + 1

)
(e2u1 + 1)

3
, B(u1) =

2e2u1+2
(
1− e2u1

)
(e2u1 + 1)

3
.

Here A(u1) < 0, ∀u1 ∈ R and the profile curve is not regular, therefore, the
QSF-surface of rotation has two circle of singularities (see Figures 3.7 and 3.8).
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Figure 3.7: Profile curve Figure 3.8: QSF-surface of rotation

Example 3.5. Considering a = −1
6 , c = −2, k = 1

2 in Theorem 3.2, we obtain

X(u) = (A(u1) cosu2, A(u1) sinu2, B(u1)),

and the profile curve is given by

α(u1) = (A(u1), 0, B(u1)) ,

where

A(u1) = −
2
(
3e4u1 + 1

)
3
√
e (e2u1 + 1)

3
, B(u1) = − 8e3u1− 1

3

(e2u1 + 1)
3
.

Here A(u1) < 0, ∀u1 ∈ R and the profile curve is not regular only in one point,
therefore, the QSF-surface of rotation has one circle of singularities (see Figures
3.9 and 3.10).
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Figure 3.9: Profile curve Figure 3.10: QSF-surface of rotation
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