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Abstract
In this study, we analyzed a three-dimensional nonlinear differential system considering Holling type II
functional response that describes the dynamics of tumor cells, cytotoxic T lymphocytes, and helper T cells,
with a single interaction delay. The linear stability of the internal equilibrium point and the presence of
the Hopf bifurcation are examined, with the discrete time delay serving as the bifurcation parameter. To
demonstrate the rich dynamic behavior of the model, we present numerical simulations with various values
of the time delay τ and the attack rate of cytotoxic T lymphocytes on tumor cells (α1). These simulations
exhibit the presence of periodic oscillations and tumor death with survival of the mentioned immune cells,
for all α1 greater than a fixed threshold with or without delay.
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1. Introduction. In cancer research, it is crucial to comprehend the convoluted dynamics of the re-
lationship between tumor and anti-tumor factors of the immune response. In simple terms, cancer is a
group of more than 100 diseases that develop over time and involve the uncontrolled division of the body
cells [1, 26]. Although cancer can develop in virtually any of the body tissues, and each type of cancer has
its unique features, the basic processes that produce cancer are quite similar in all forms of the disease such
as interruption of normal cell proliferation, differentiation, and cell apoptosis [20, 24]. The perplexing and
challenging development of a cancerous tumor involves genetic mutations of normal cells as well as phys-
iological changes within cancer cells, its microenvironment, and the body’s defense mechanisms including
the immune system [10, 22, 29]. The immune system is a complex network of cells (e.g., white blood
cells, especially T lymphocytes, natural killer cells, macrophages), tissues, organs, and the substances (e.g.,
cytokines, antibodies) they make that help the host fight infections and other diseases as cancer [8]. The
lymphocytes usually recognize any foreign cells in the body known as antigens. The resting cells cannot
kill the cancer cells but are converted to a special type of T lymphocyte called NK cells or hunting cells. It
has been shown experimentally that these immune cells can lyse tumor cells very effectively [16].

To better understand the mechanisms of cancer proliferation and its destruction (i.e., the complex and
continuously changing interactions between tumor cells and other components of the tumor microenviron-
ment), researchers around the world developed different kinds of mathematical models in their way [14,
15, 17, 27]. These models have great benefits as they can help to explore, and investigate interactions at
different biological scales (e.g., molecular, cellular, and tissues), and to research heterogeneity of cellular
dynamics, mutations, and selection [3, 13]. There are numerous reviews of mathematical models of tu-
mor growth and tumor-immune system interactions [14, 6]. There are few reviews that focus on nonspatial
models represented by ordinary differential equations (see for example [5, 2, 1, 6]). An ordinary differential
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equation model can involve a single equation for the growth dynamics of the tumor only. If we consider
more traits of the tumor microenvironment and the immune system, we note that more complex models
have been formulated [6, 18, 27]. Such complexity can be depicted through multi-equation ODE models.
These multi-equation models have an advantage as they can explore the emergent properties of the system
(such as competition among various components), even when the properties of the individual components
are not fully known. To build more realistic models, authors have considered delays in different natural
process representations [4, 25, 11]. It is important the consideration of the time delays to explain the time
required for the assembly of molecules, differentiation of cell populations, proliferation, etc. [9, 23]. [23]
presented a delayed ODE competition model of tumor growth that includes the immune system response
and a cycle-phase-specific drug to take into account the cell cycle phase. They showed theoretically and
through numerical simulation that periodic solutions may arise through the Hopf bifurcations [23]. [19]
discussed cancer self-remission and tumor stability by stochastic approach. Such a model was extended
by [12] incorporating discrete time delay to the recruitment of cytotoxic-T-lymphocytes (CTLs) or hunting
cells because of the interaction with resting cells or T-helper cells. The authors discussed the existence and
stability of equilibrium points, the existence of Hopf-bifurcation, and its direction and stability. Also, [12]
assumed the interaction between tumor cells and CTLs as a simple mass-action type.

The subsequent sections of this paper are structured as follows: In Section 2, we present the proposed
mathematical model. Section 3 provides an analysis of the model in the absence of delay. We investigate
the stability analysis of the non-trivial equilibrium for the model with delay, including the Hopf-bifurcation
analysis. In Section 4, we present numerical solutions and illustrations to validate our analytical results.
Finally, the paper ends with a brief discussion and conclusion.

2. Model. We propose a non-linear mathematical model considering the state variables, i.e., the den-
sity of tumor populationM(t), the density of cytotoxic T-lymphocytes or hunting cellsN(t) and the density
of resting cells Z(t) at any time t in a single tumor-site compartment. As we mentioned above, we modify
the model of [12] by considering that the functional response for the tumor cell is Holling-type II. It is
assumed that the malignant tumor cells are eliminated by CTLs and resting cells which are directly unable
to destroy the tumor cells, but they can be turned into the activated CTLs so that they kill the malignant
tumor cells by phagocytosis process. Before stating the problem, let us set some preliminaries:

Let τ > 0 be a fixed number, and R3 denote the 3-dimensional Euclidean space with norm ∥ · ∥. C =
C([−τ, 0],R3

+,0), is the Banach space of continuous functions mapping the interval [−τ, 0] into R3
+,0 with

the topology of uniform convergence, where

Rn+,0 = {(x1, x2, x3, ..., xn) ∈ Rn : x1, x2, x3, ..., xn ≥ 0}.

If x is a function belonging to C, then for each fixed t ∈ [0, α], 0 ≤ α, the symbol xt denotes the
element of the space C defined by xt(ϕ) = x(t+ϕ),−τ ≤ ϕ ≤ 0. The following system is our deterministic
model.

dM

dt
= rM

(
1− M

k1

)
− α1M

α2 +M
N(t− τ),

dN

dt
= β1N(t− τ)Z(t)− dN,

dZ

dt
= sZ

(
1− Z

k2

)
− β2N(t− τ)Z.

(2.1)

The first equation represents the rate of change of tumor density at any time t. Tumor cells grow in a
logistic manner with an intrinsic growth rate r and a carrying capacity k1. The second term α1M

α2+M
represents

the Holling’s type-II functional response of the hunting effector-cell to tumor-cell population. The second
equation models the change in CTLs population with time t. The delay in obtaining effector functionality
after the entry of the remaining T cells into the activation process to be activated hunting T cells is mainly
assumed, which is reflected in the cellular interaction modeled in each of the three differential formulations,
e.g., α1M

α2+M
N(t− τ), β1N(t− τ)Z, β2N(t− τ)Z. Add that in the third equation, the natural mortality of

resting lymphocytes is contemplated in the logistic growth term. The second factor in the second equation
represents the natural death of CTLs at a rate d1. This last equation describes the dynamics of resting cells
at time t, the first term represents its logistic growth, while the death rate of the resting cells is contemplated
to be involved in its logistic growth.

The initial condition for the system is given byM(θ) = ϕ1(θ), N(θ) = ϕ2(θ), Z(θ) = ϕ3(θ), ϕ1(θ) ≥
0, ϕ2(θ) ≥ 0, ϕ3(θ) ≥ 0, and ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0, where ϕ = (ϕ1, ϕ2, ϕ3) ∈ C.

3. Model analysis.
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3.1. Analysis of the model without delay. First, we study positivity and existence of equilibria in the
general model 2.1, but then we analyze the local stability of such equilibrium points for the system without
delay.

3.1.1. Positivity. In this section, we shall demonstrate the positivity of solutions to the system 2.1 by
using a theorem which guarantees the system is positive on the interval [0,+∞[.

Lemma 3.1. Let us consider the general delayed system

dM

dt
(t) = rM(t)

(
1− M(t)

k1

)
− f(M(t))N(t− τ),

dN

dt
(t) = β1N(t− τ)g(Z(t))− dN(t),

dZ

dt
(t) = sZ(t)

(
1− Z(t)

k2

)
− β2N(t− τ)g(Z(t)),

(3.1)

with M(0) > 0, N(0) > 0, Z(0) > 0, f ∈ C(R,R), g ∈ C(R,R+,0) and f(0) ≤ g(0) = 0.
Then, any solution to the system (3.1) with respect to the same above initial conditions exists in the

interval [0,+∞), and remains nonnegative for all finite time t > 0.

Proof: Let us consider the system (3.1) as X = (M,N,Z) ∈ R3 and F = (F1,F2,F3) : C → R3,
where

F1(X(t)) = rM(t)
(
1− M(t)

k1

)
− f(M(t))N(t− τ),

F2(X(t)) = β1N(t− τ)g(Z(t))− dN(t),

F3(X(t)) = sZ(t)
(
1− Z(t)

k2

)
− β2N(t− τ)g(Z(t)).

We note that Fi ∈ C(C,R) for i = 1, 2, 3. Let us fix t > 0 such that Xi(t) = 0 with Xt ∈ C, then we
easily observe that

Fi |Xi(t)=0,Xt∈C≥ 0 for i = 1, 2, 3.

So, by the result Lemma 2 in [28], we obtain that any solution of Ẋ = F(Xt) withX(t) = X(t,X(0))
is such that X(t) ∈ R3

+,0,∀t > 0.

Theorem 3.1. Any solution to (2.1), with respect to the same above initial conditions, exists in the
interval [0,+∞), and remains nonnegative for all finite time t > 0.

Proof: This follows directly from Lemma 3.1.

3.1.2. Existence of equilibria. In this subsection, we will investigate the biologically feasible non-
interior equilibrium points admitted by the model system (2.1). Also, we will explore the interior equilib-
rium point(s) for (2.1). The following equilibrium points for the problem (2.1) are:

i) trivial equilibrium point (0, 0, 0).

ii) axial equilibrium points (k1, 0, 0) and (0, 0, k2).

iii) The M − Z planner equilibrium point (k1, 0, k2).

iv) ‘Tumor free’ equilibrium points

(0,
s

β2
(1− d

β1k2
),
d

β1
).

Now, let us display the interior equilibrium points for (2.1). Thus, its interior equilibrium is (M∗, sβ2
(1−

d
β1k2

), dβ1
), where M∗ is any value satisfying

M∗2 + (α2 − k1)M
∗ + (

α1s

rβ2
(1− d

β1k2
)− α2)k1 = 0,

which implies that (2.1): has exactly one interior equilibrium point if

α1s(β1k2−d) < α2rβ1β2k2, or α2 = k1−2

√
(
α1s

rβ2
(1− d

β1k2
)− α2)k1,where in the latterα1s(β1k2−

d) > α2rβ1β2k2,
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3.1.3. Local stability analysis. This subsection is done for the local stability analysis of the biologi-
cally feasible equilibrium points of the model system (2.1). Since the time delay never changes the number
of equilibrium points, so at first, we shall investigate the local stability analysis of the non-delayed system,
that is, τ = 0. For the purpose of this, we compute the variational matrix at any arbitrary point (M,N,Z)
for the system:

J =


r − 2

rM

k1
− f ′(M)N −f(M) 0

0 β1Z − d β1N

0 −β2Z s− 2
sZ

k2
− β2N

 ,

where

f(M) =
α1M

α2 +M
.

For Eq.(2.1), the equilibrium point (0, 0, 0) is always unstable, since the eigenvalues of Ji at (0, 0, 0)
are r > 0,−d, s. Thus, the equilibrium point (0, 0, 0) is saddle in nature.
At (k1, 0, 0), the eigenvalues of J are given by −r,−d and s. Thus, the equilibrium point (k1, 0, 0) is
saddle type.
At (0, 0, k2), the eigenvalues of J are given by r, β1k2−d and −s. Thus, if k2 ̸= d

β1
, the equilibrium point

(0, 0, k2) is saddle in nature.
At (k1, 0, k2), the eigenvalues of J are given by −r, β1k2−d and −s. Thus, the equilibrium point (k1, 0, k2)
is stable whenever k2 < d

β1
.

At the tumor-free equilibrium point (0, sβ2
(1 − d

β1k2
), dβ1

), the eigenvalues of J are r − f ′(0)N∗, and the
other two eigenvalues are the roots of the quadratic equation λ2 + p1λ+ p2 = 0, where p1 = −s+ 2sd

β1k2
+

β2N
∗ and p2 = β2N

∗d. Thus, the equilibrium point (0, sβ2
(1 − d

β1k2
), dβ1

) will be locally asymptotically
stable for the problem iff

α2r

α1
< N∗.

For Eq.(2.1) and at an interior equilibrium point (M∗, sβ2
(1 − d

β1k2
), dβ1

), the eigenvalues of J are
r − 2 r

k1
M∗ − α1α2

(α2+M∗)2N
∗, and the roots of the quadratic equation λ2 + p1λ + p2 = 0, where p1 =

−s+ 2sd
β1k2

+ β2N
∗ and p2 = β2N

∗d. By classical Routh–Hurwitz criteria, we have the next result for the
model 2.1.

Theorem 3.2. The necessary and sufficient condition for the model system (2.1) to be locally asymp-
totically stable (in absence of delay, that is, τ = 0) around one of its interior steady states (M∗, N∗, Z∗) =
(M∗, sβ2

(1− d
β1k2

), dβ1
), is

E :
α1(α2 + 2M∗)

(α2 +M∗)2
<

r

N∗ ,

M∗ =
k1−d2+

√
(k1−d2)2−4c

2 (if the first condition given in 3.1.2 is satisfied), or M∗ =
√
c (if the second

condition given in 3.1.2 is satisfied), where c = (
α1s

rβ2
(1− d

β1k2
)− α2)k1.

3.2. Analysis of the model with delay. The equilibria of the model 2.1 with delay are the same as
those without delay. Moreover, the equilibria (0, 0, 0), (k1, 0, 0), (0, 0, k2) are always unstable. Thus, we
will focus only on the stability of an interior equilibrium point (M∗, sβ2

(1− d
β1k2

), dβ1
) in presence of delay.

In order to see this, we linearize the system (2.1), about the interior steady state (M∗, sβ2
(1 − d

β1k2
), dβ1

);
we get

dX

dt
= AX(t) +BX(t− τ), (3.2)

where
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A =


r − 2

rM∗

k1
− α1α2

(α2 +M∗)2
N∗ 0 0

0 −d β1N
∗

0 0 s− 2
sd

β1k2
− β2N

∗

 ,

B =


0 − α1M

∗

α2 +M∗ 0

0 d 0

0 −dβ2
β1

0

 ,

The characteristic equation corresponding to linearized system (3.2) and is

det(A+Be−λτ − λI) = 0, (3.3)

respectively.
The stability of equilibrium points is defined by computing the roots of (3.3). For system (2.1) with delay,
we can write that the characteristic polynomial evaluated at one of its interior equilibria (M∗, N∗, Z∗) is
given by

(
r − 2r

M∗

k1
− α1α2

(α2 +M∗)2
N∗ − λ

)
[{λ2 + λP1 + P2}+ e−λτ{λR1 +R2}] = 0, (3.4)

where

P1 = d− s+ 2
sd

β1k2
+ β2N

∗,

P2 = d(P1 − d)

R1 = −d

R2 = −d(−s+ 2
sd

β1k2
)

One root of the aforementioned characteristic polynomial is

r − 2r
M∗

k1
− α1α2

(α2 +M∗)2
N∗,

which is negative if E holds, and the remaining are the roots of the following transcendental equation:

L(λ, τ) ≡ P (λ) + e−λτQ(λ) = 0, (3.5)

where P (λ) = λ2 + λP1 + P2 and Q(λ) = λR1 + R2. It is the sign of the real parts of the solutions
λ of (3.3) which determines the stability of (M∗, N∗, Z∗). So, we proceed to study how the system (2.1)
is influenced by the discrete time delay τ , by considering τ as the bifurcation parameter. In order to
observe the delay-induced instability, we assume λ = iψ (ψ > 0) is the purely imaginary root of (3.5).
Also, the characteristic equation (3.3) of our model system (2.1) has infinitely many solutions, because of
its transcendental nature. However, our aim is to find the periodic oscillations of the system (3.5) as the
existence of periodic oscillations has an impact on cancer dynamics. So, after substituting λ = iψ in (3.5)
and equating the real and imaginary parts, we obtain:

−ψ2 + P2 = −R2cos(ψτ)− ψR1sin(ψτ), (3.6)

ψP1 = −ψR1cos(ψτ) +R2sin(ψτ). (3.7)

Squaring and adding of (3.6) and (3.7), we get

(−ψ2 + P2)
2 + ψ2(P1)

2 = (R2cos(ψτ) + ψR1sin(ψτ))
2 + (ψR1cos(ψτ)−R2sin(ψτ))

2
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which leads to

ψ4 +D1ψ
2 +D2 = 0, (3.8)

where

D1 = (P1)
2 − 2P2 − (R1)

2 = (P1 − d)2

D2 = (P2)
2 − (R2)

2

Assuming ψ2 = u we have

F (u) = u2 + uD1 +D2 = 0.

Thus, by the criterion description from 4.20 in [7], we obtain the following result: If the coefficients
D1, D2 in F (u) are positive, then the interior equilibrium point (M∗, N∗, Z∗), if it exists, is asymptotically
stable for all delay τ > 0 provided it is stable in absence of delay. In other terms, we have the next
proposition.

Theorem 3.3. If

G : max

((
1− d

k2β1 − d

)
, 0

)
<

1

2

holds, then the interior equilibrium point (M∗, N∗, Z∗) is asymptotically stable for all delay τ > 0 pro-
vided its existence and stability in absence of delay.

A simple assumption such that the polynomial Eq. (3.8) will have a nonnegative root is when

H : 3d < k2β1.

Hence, under the above conditions we imply that there is a unique nonnegative root ψ0, satisfying the
polynomial Eq. (3.8), that is, Eq. (3.5) has a pair of complex roots of the form iψ0. Solving upon (3.6) and
(3.7) and eliminating sin(ψτ), we have

cos(ψτ) =
(R2 − P1R1)ψ

2 − P2R2

(R2)2 + (R1)2ψ2
.

Then, τs corresponding to ψ0 is

τs =
1

ψ0
arcos

(
(R2 − P1R1)ψ

2
0 − P2R2

(R2)2 + (R1)2ψ2
0

)
+

2sπ

ψ0
, s = 0, 1, 2, ... (3.9)

Without delay, the interior equilibrium point (M∗, N∗, Z∗) is asymptotically stable whenever the con-
dition E1 holds. Now, based on Butler’s Lemma [7], the interior equilibrium point (M∗, N∗, Z∗) remains
stable for τ < τs with s = 0.

3.3. Analysis of Hopf Bifurcation. Now, we shall investigate the Hopf bifurcation of the model sys-
tem (2.1), for which we need to verify the transversality condition

d(ξ)

dτ
|τ=τs> 0, i.e,

d(Reλ)
dτ |τ=τs> 0, for λ(τ) = ξ(τ)+ iψ(τ). This will designate that there exists at least one eigenvalue with

a nonnegative real part for τ > τs. First, we are interested in purely complex roots λ = iψ0 of (3.4). From
Equation (3.4) we infer that | P (iψ0) |=| Q(iψ0) |, and this defines the possible set of values of ψ0. Now,
we aim to observe the direction of motion of λ as τ is varied. On differentiating (3.5) with respect to τ , we
obtain

2λ
dλ

dτ
+ P1

dλ

dτ
+ e−λτR1

dλ

dτ
− τe−λτ (λR1 +R2)− λe−λτ (λR1 +R2) = 0

Thus,
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(dλ
dτ

)−1

=
eλτ (2λ+ P1)

λ(R1λ+R2)
+

R1

λ(R1λ+R2)
− τ

λ
.

Since iψ0 is a simple root of the characteristic equation (3.4), using (3.5) and (3.6) we get at λ = iψ0, τ = τs

(dλ
dτ

)−1

|λ=iψ0,τ=τs=
dξ

dτ
(iψ0, τ = τs) =

ψ2
0

R2
1ψ

4
0 +R2

2ψ
2
0

F ′(u) |u=ψ2
0
.

Therefore, sign( dξdτ (iψ0, τ = τs)) is determined by sign(F ′(u) |u=ψ2
0
). So, the transversality condi-

tion holds successfully and the system undergoes Hopf bifurcation at λ = iψ0, τ = τs by virtue of D1 > 0,
i.e., 2d < k2β1.

4. Numerical Simulations. In order to fully develop the model, it is crucial to estimate the correct
parameter values and initial conditions as they significantly impact the model behavior. We observed that
the parameter choices varied significantly among studies, so it was selected values that best suited our
deterministic model (2.1), i.e., there were fixed by the author.

α1 = 4, α2 = 700, r = 1.5, k1 = 1100, β1 = 0.1, d = 0.35, s = 1, k2 = 100,

β2 = 0.05

To explore the stability and bifurcation properties of the model system, we conducted a comprehensive
set of numerical simulations using the MATLAB function dde23. Specifically, we utilized the parameter
values outlined above, along with initial conditions of M(0) = 4 × 102, N(0) = 5.0, Z(0) = 5. Through
our investigation, we provide a detailed analysis of the local stability properties and Hopf bifurcation char-
acteristics of the system (2.1). Furthermore, our results demonstrate the viability of a range of complex
dynamics, e.g., limit cycles, for varying values of the discrete time delay τ regardless of the Holling’s type
functional response.

Figure 4.1: 3D phase portrait for our model around the equilibrium point E∗(1067.98, 19.3, 3.5) when τ = 0 alongside
the parameter values showed above, for five different initial values.
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Figure 4.2: The simulation depicts local stability around the unique positive interior equilibrium point
E∗(1067.98, 19.3, 3.5) for the delayed system (2.1), with discrete time lag τ = 0.09 < τH for the initial values
[M(0), N(0), Z(0)] = [400, 5, 5], where the other parameter values are same as in Fig. 4.1. In the first row left figure
is the time evolution of tumor cells; the first row right figure is the time evolution of CD8+T cells; the second row left
figure is the time evolution of T-helper cells; and the second row right figure is the three dimensional phase portrait
diagram of the stable interior equilibrium point of 2.1.

For the given parameter values, the system (2.1) has a unique positive interior equilibrium point
E∗(1067.98, 19.3, 3.5), respectively, which are stable foci. As observed in Fig. 4.1, plausibly all tra-
jectories that originate within the region of attraction converge towards the interior equilibrium points.

To analyze the impact of different initial densities of tumor cells, activated CD8+T cells, and T-helper
cells, we plot the three-dimensional phase portrait diagram of the system described by Eq. (2.1) for various
initial conditions [400,5,5]; [405, 10, 10]; [410, 15, 15]; [415, 20, 20]; [420, 25, 25].

In order to confirm our analytical results, we observe that the interior equilibrium point E∗ are locally
asymptotically stable when τ < τH ≈ 0.1087, as shown in Fig. 4.2 for τ = 0.09. The aforementioned fig-
ures indicate that when the value of τ is below the critical threshold τH , the model system (2.1) approaches
the equilibrium state E∗. Specifically, this means that for a delay value of τ = 0.09 < τH , the tumor pop-
ulations remain under control and may attain a tumor dormant or equilibrium state. However, as the time
delay τ surpasses the threshold value τH , the interior steady state E∗, undergo a Hopf bifurcation and loses
its stability. The transversality condition for Hopf bifurcation is confirmed as d(ξ)

dτ |τ=τH≈ 4.644 > 0. This
implies that a stable limit cycle is created around the positive interior equilibrium pointE∗ at the bifurcation
point, resulting in periodic solutions.

The emergence of periodic solutions is of significance in tumor dynamics, since it suggests that tumor
levels may oscillate near an equilibrium point in the absence of any treatment. Such behavior has been
observed clinically and is commonly referred to as Jeff’s Phenomenon [21].

In this study, we conducted numerical simulations to investigate the stability of the delayed model
system (2.1) with a given set of parameters. Our results reveal that the stability of the equilibrium points
depends on the magnitude of τ . The results depicted in Fig. 4.3 show a Hopf-bifurcating periodic solution
around the unique positive equilibrium E∗ at τH ≈ 0.1087.
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Figure 4.3: Simulation depicts the existence of periodic solution around the unique positive interior equilibrium
point E∗(1067.98, 19.3, 3.5) for the delayed system (2.1), when time lag τ = 0.1087 ≈ τH with initial values
[M(0), N(0), Z(0)] = [400, 5, 5] where the other parameter values are specified in the Fig. 4.1.

Figures 4.4-4.6 provide insightful two-dimensional phase portrait diagrams showcasing the intricate
dynamical behavior of pairwise interactions between tumor cells, CD8+T cells, and T-helper cells, across
a range of discrete time delays τ . The first panel of Fig. 4.4 depicts the phase diagrams for τ = 0.01
revealing the stable oscillations of the respective cell populations. Moving on to the second sub-figure of
Fig. 4.5, with τ = 0.09, indicates periodic oscillations of the respective cell populations. Finally, Fig. 4.6
showcases the phase diagrams for τ = 0.1087.

In order to gain deeper insights into the significance of the parameter α1, we analyze the time series
solution of model 2.1 (refer to Fig. 4.7, 4.8). Our analysis reveals that an increase in the value of α1 results
not only in an amplification of the magnitude of oscillations exhibited by the tumor cells but also leads to
their demise, while the two immune cell populations persist at any value of α1 > 56, irrespective of the
delay value.
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Figure 4.4: Pairwise-interactions between tumor cells, CD8+T cells and T-helper cells at τ = 0.01
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Figure 4.5: Pairwise-interactions between tumor cells, CD8+T cells and T-helper cells at τ = 0.09
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Figure 4.6: Pairwise-interactions between tumor cells, CD8+T cells and T-helper cells at τ = 0.1087
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(a) Tumor Population time plot with τ = 0.09, α1 = 4.

(b) Tumor Population time plot with τ = 0.09, α1 = 30

(c) Tumor Population time plot for with τ = 0.09, α1 = 57

Figure 4.7: Simulation that depicts the oscillating behavior for the delayed system (2.1) emphasizing the tumor dynam-
ics with different α1 values alongside τ = 0.09, where the other parameter values are the same as in Fig 4.1.
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(a) Tumor Population time plot with τ = 0.1087, α1 = 4.

(b) Tumor Population time plot with τ = 0.1087, α1 = 30

(c) Tumor Population time plot with τ = 0.1087, α1 = 57

Figure 4.8: Simulation that depicts the oscillating behavior for the delayed system (2.1) emphasizing the tumor dynam-
ics with different α1 values alongside τ ≈ τH , where the other parameter values are the same as in Fig 4.1
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5. Discussion. To explore the complex interaction between stimulatory and inhibitory effects on tu-
mor cell growth, we utilize a simple yet effective mathematical model of the immune response. This model
comprises a system of three differential equations, incorporating a single time delay for interaction. Indeed,
it’s important to consider that a highly intricate mathematical model might only result in increased com-
plexity without necessarily offering additional insights into the overall dynamics. Exploring the impact of
discrete time delay is not just an intriguing and current area of research; it also contributes significantly
to enhancing our comprehension of intricate real-world biological phenomena. We analyse the positive
equilibrium point, E∗(1067.98, 19.3, 3.5) of the system (2.1), and examine the nature of the roots of the
respective characteristic equation to determine the local asymptotic stability and instability of the steady-
state using linear stability analysis. Additionally, we investigate the dynamics of the associated non-delayed
system.

In this study, we emphasize the critical role of time delay on the stability of the model system under
consideration. Specifically, we show that the stability of the non-negative equilibrium point in the model
system (2.1) is determined by the magnitude of the discrete-time lag τ . When the time delay parameter τ
is less than a threshold value τH ≈ 0.1087, the non-negative interior equilibrium E∗ is stable. However,
the equilibrium point becomes unstable when the time delay τ surpasses its critical magnitude. We observe
that a small-scale, periodic solution emerges from the internal equilibrium point E∗ as a result of the Hopf
bifurcation. We have confirmed that when the time delay parameter τ surpasses the critical value τH , the
model system (2.1) experiences Hopf bifurcation. Additionally, our calculations determine the magnitud
of the discrete time delay parameter τ , providing an indication of the maximum allowable delay length
(τ ≈ 0.1087) to maintain the stability of the period limit cycle resulting from the Hopf bifurcation.

Through numerical simulations, we demonstrate that the model system (2.1) experiences Hopf bifurca-
tion when the time delay parameter τ exceeds the threshold value τH . Moreover, our numerical simulations
indicate that the limit cycle produced through Hopf bifurcation is stable since it attracts the adjacent tra-
jectories and serves as a stable limit set, which can be observed in figure 4.3. Our analytical findings and
numerical simulations provide valuable insights into the impact of time delay on the stability of the model
system and contribute to a deeper understanding of the tumor-immune interactive dynamics.

6. Conclusions. In the context of tumor-immune interactions, the presence of periodic oscillations
holds significant implications for tumor persistence over time and has been observed in other cancer-
immune systems. Our mathematical model simulations demonstrate that the oscillatory behavior of the
system is highly sensitive to the rate of tumor cell growth, represented by α1, and the time delay parameter
τ . Specifically, when holding other parameters constant and increasing α1, the magnitude of tumor and
Hunting cell oscillations decreases, as shown in Figures 4.7 and 4.8. Moreover, an increase in the value of
α1 to 57 leads to the death of tumor cell populations in system (2.1).

To facilitate the identification of effective treatment strategies for individual patients, it is imperative
to investigate the optimal conditions for parameter estimation. Our research endeavors have the potential
to offer valuable insights into this area of inquiry. The mathematical model we have employed is general
in nature and does not account for the biological intricacies of tumors, including heterogeneity, e.g., al-
tered stroma, stromal interactions; genomic instability, e,g, DNA damage rate of tumor suppressor genes;
and tumor growth activation, e.g., stem-like tumor cell dynamics, tumor growth-promoting properties of
macrophage migration inhibitory factor. Rather, it is designed to elucidate the nonspecific interactions
among different cell populations. Nonetheless, it allows us to reproduce the clinical experiments, such as
prolonged latency phases without metastasis, as well as highly invasive tumors that cause rapid metastasis.
We trust that the analytical findings and numerical illustrations presented in this study will aid oncologists
in their efforts and contribute to the advancement of the tumor immune interactive dynamics field.
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