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Abstract
Oscillation marks are defects found on the surface of the final product in the steelmaking industry. In this
research, the temperature of a lubricant known as flux that lies inside of the mould is investigated due to its
importance in the formation of the oscillation marks. This temperature that decreases in time is obtained
numerically via the finite-volume method by using the Openfoam software.
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1. Introduction. In steelmaking industry, there are two process usually employed to produce solid
steel: The ingot and the continuous casting. The ingot casting is a traditional technique that comprises the
solidification of the liquid steel confined in a static mould and subsequently is extracted to obtain the final
product as solid steel.

Some decades ago, a new technique called continuous casting has emerged aiming to produce more
amount of solid steel by passing continuously the liquid steel through a mould. In figure 1.1 is shown the
continuous casting process wherein blocks of solid steel are obtained by exiting from the mould.

Solid steel

Solid steel
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Figure 1.1: Steelmaking industry.
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A defect found in the final product in the continuous casting process is given by the existence of small
indentations on the surface of steel [1]; this indentation is commonly referred to as oscillation mark (OM).
In figure 1.2 can be observed the formation of OM’s on the surface of the cast steel.

As pointed out by Vynnycky et al. in [2, 3], the formation of OM’s is a consequence of the oscillation
of the mould whereby the liquid steel passes continuously. This oscillation is mathematically expressed as

vm(t) = v0 cos (ω t), (1.1)

where v0 is the magnitude of the oscillation and ω its frequency.
Likewise, to improve the process of continuous casting a lubricant powder is added at the top of the

mould which becomes liquid inside of the mould and lubricates the mould wall adjacent to the steel. This
lubricant is usually referred to as flux and the formation of an OM is related to the temperature of the flux
during the casting operation.

Figure 1.2: Oscillation marks on the surface of the solid steel.

In figure 1.2 are shown OM’s which are filled up with the flux initially in liquid state and subsequently
by the cooling effect at the mould wall becomes in solid state.

2. Mathematical model. Mathematical modelling of a continuous casting process includes the for-
mulation of the fluid flow and heat transfer equations [4] and hence it is worthwhile to consider them for
the formation of an OM that is formed between the mould wall and the solid steel as depicted in figure 2.1
and its profile is given by

x = h(z, t). (2.1)

Likewise, for the fluid flow of the flux, u, v denote the components of the velocity in the horizontal and
vertical coordinates, x, z, respectively and this fluid flow is ruled by the equations

∂u

∂x
+

∂v

∂z
= 0, (2.2)

0 = −∂p

∂z
+

∂

∂x

(
µ
∂v

∂x

)
+ ρf g, (2.3)

subject to the boundary conditions,

u = 0, v = vm(t), (2.4)

at x = 0 and at x = h(z, t),

u = 0, v = vc, (2.5)
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Figure 2.1: Schematic of the process of formation of an OM, which lies between the mould wall and the
solid steel.

where vc is the velocity at which the solid steel is being extracted from the mould usually known as casting
velocity and µ is the viscosity of the liquid flux.

Also, the heat transfer equation for the liquid flux in the mould is ruled by

ρf cp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂z

)
= k

(
∂2T

∂x2
+

∂2T

∂z2

)
, (2.6)

where ρ, cp and k are the density, heat capacity and thermal conductivity respectively; and the boundary
conditions are given by

k
∂T

∂x
= m (T − Tw), (2.7)

at x = 0, where Tw and m are the water temperature and the convective heat transfer coefficient adyacent
to the mould wall; also, at x = h(z, t),

T = Ts, (2.8)

where Ts is the temperature at which the steel solidifies.

3. Analysis and numerics. Using the nondimensionalization

X =
x

α1/2[t]1/2
, Z =

z

vc [t]
, τ =

t

[t]
, (3.1)

U =
u

α1/2/[t]1/2
, V =

v

vc
, θ =

T − Tw

Ts − Tw
, H =

h

α1/2[t]1/2
, (3.2)

where α = ρ/k cp is the thermal diffusivity and

[t] =
2π

ω
, (3.3)

is a length scale for time. Hence, equation (2.6) becomes

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Z
=

∂2θ

∂X2
+ ε

∂2θ

∂Z2
, (3.4)

where

ε =
α

vc [t]
. (3.5)
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and the boundary conditions for equation (2.6) are given by

∂θ

∂X
= β θ, (3.6)

at X = 0 from (2.7), where β is defined by

β :=
mα1/2[t]1/2

k
, (3.7)

also at X = H(Z, τ)

θ = 1. (3.8)

from (2.8). Likewise, Vynnycky et al. in [3] found that the profile of an OM in nondimensionalized
coordinates is given by

H(Z, τ) =

{
3
V0 cos (τ − Z)− 1

Γ− Λ

}1/2

, (3.9)

where Γ and Λ are defined respectively by

Γ =
ρs g α [t]

vc µ
, Λ =

ρf g α [t]

vc µ
(3.10)

and

V0 =
v0
vc

, (3.11)

is the magnitude of the mould velocity in nondimensionalized coordinates. This mould velocity now is
given by

V = V0 cos (2πτ). (3.12)

Symbol Meaning Value Units

ρf Density of the flux. 2930 kg m−3

ρs Density of the liquid steel. 7800 kg m−3

k Thermal conductivity. 1.5 W m−1k−1

cp Heat capacity. 1260 J kg−1K−1

m Convective heat transfer coefficient. 10000 W m−1k−1

µ Viscosity of the flux. 0.5 Pa s

v0 Amplitude of the mould oscillation. 0.0126 m s−1

vc Casting velocity. 0.0045 m s−1

ω Frequency of the mould oscillation. 4π/3 rad s−1

g Constant due to gravity. 9.8 m s−2

Table 3.1: Numerical values from [2].

Using the values in table 3.1, it can be obtained

[t] = 1.5s (3.13)

and the parameters shown in table 3.2
To solve equation (3.4), an initial condition must be prescribed. In this case, it is suitable to set

θ = 1. (3.14)
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ε 6.0193× 10−5.

V0 2.79

Γ 20.705

Λ 7.778

β 5.2045

Table 3.2: Some nondimensionalized parameters.

at τ = 0 due to a cooling process starting at the mould wall.
Likewise, the region of an OM denoted by R is defined by

R =
{
(X,Z) : − 1

2π
cos−1

(
1

V0

)
≤ Z ≤ 1

2π
cos−1

(
1

V0

)
, 0 ≤ X ≤ H(Z, τ)

}
. (3.15)

and contains initially liquid flux. To solve equation (3.4) the solver Openfoam [5, 6] is employed, which is
distributed with some tools to perform numerical computations using the finite-volume method as explained
in [7]. In order, Openfoam solves the partial differential equations that models existing process in the field
of science and engineering.

Hence, to solve equation (3.4) in the region R, it is necessary to build a mesh of the region R suitable
to employ the finite-volume method; in this sense, an utility called blockMesh included in the Openfoam
software allows to build the mesh acoording to specific commands included in a file called blockMeshDict.

In figure 3.1 is shown the mesh of the region R built by the blockMesh utility and hence it can be
observed that this region is the union of quadrilateral elements what makes suitable to employ the finite-
volume method [7]; Thus the region R is decomposed into N quadrilaterals Ri for i = 1, . . . , N , i.e.

R =

N⋃
i=1

Ri. (3.16)

Figure 3.1: Mesh for the region of an OM built using the blockMesh utility.

Now, for every region Ri, let Ai be the corresponding area, hence the average for the temperature θ in
Ri is defined by

θ̄i =
1

Ai

∫
Ri

θ(X,Z)dR. (3.17)

Also, by integrating equation (3.4) in the region Ri gives

∂

∂τ

∫
Ri

θ dR+

∫
Ri

U
∂θ

∂X
+ V

∂θ

∂Z
dR =

∫
Ri

∂2θ

∂X2
+ ε

∂2θ

∂Z2
dR, (3.18)
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and using (3.17) for the first term in equation (3.18) becomes

Ai
∂θ̄i
∂τ

+

∫
Ri

(
U

∂

∂X
+ V

∂

∂Z

)
θdR =

∫
Ri

∆εθdR, (3.19)

where ∆ε is a diffusion operator defined by

∆ε :=
∂2

∂X2
+ ε

∂2

∂Z2
. (3.20)

In equation (3.20) the second term in left hand side is the convection of the fluid flow and ∆ε the diffusion
for the liquid flux respectively. Hence equation (3.20) includes three terms: time variation of θ, convection
and diffusion.

Openfoam provides a set of solvers [9] to obtain the numerical solution of wide range of partial differ-
ential equations; in this case, to solve equation (3.4), solver scalarTransportFoam is suitable to employ
because it considers the terms previously mentioned. This solver expresses equation (3.4) as

fvm :: ddt(θ) + fvm :: div(ϕ, θ)− fvm :: laplacian(DT, θ), (3.21)

where the first term is the time variation, the second term involves the convection and laplacian term is
related to the diffusion term. Also, DT points out the thermal diffusivity in equation (3.21).

Figure 3.2: Source code for the convection-diffusion equation in Openfoam software.

In figure 3.2 is shown the source code in the software Openfoam and which is written in the program-
ming lenguage C ++ for equation (3.21) and some lines of code indicate the construction of the mesh for
one OM and the command solve allows the execution of the expression (3.21).

4. Results. The solver Openfoam solved equation (3.4) numerically by setting the θ−values in the
whole region R as θ = 1 at τ = 0. Subsequently, the temperature of the flux decreases due to the cooling
effect at the mould wall X = 0 until θ = θf where θf is the numerical value given by

θf =
Tf − Tw

Ts − Tw
= 0.7284, (4.1)

where Tf = 1373K is the temperature of the phase change of the flux.
In the numerical computations the phase-transition of flux was reached at τ = τf = 0.0025 when

θ = θf ; from this, the lowest temperature is found at the mould wall and the highest temperature at the
boundary X = H(Z, τ) where θ = 1. Thus, to perform computations must be carried out up to τf when
the onset of the solidification of the flux emerge and hence the formation of an OM is defined.

In figure 4.1 is shown the θ−values obtained by the Openfoam software in three values of τ : τ =
0.0001 (left), τ = 0.0010 (center) and τ = 0.0025 (right); where it is shown the decreasing of the θ−values.
Thus, at τ = 0.0025 the onset of the solidification of flux emerges, according the θ−values bar shown.
Likewise, the arrows show fluid flow direction of the flux in time in these τ−values.
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Figure 4.1: θ−values in the region of an OM at three different values of τ : τ = 0.0001 (left), τ = 0.0010
(center) and τ = 0.0025 (right).

5. Conclusiones. At the beginning, the liquid flux at T = Ts temperature by the cooling effect at the
mould wall becomes solid flux at T = Tf and this way an OM is defined, this decreasing in the temperature
was formulated in convection-diffusion equation in (2.6) that allowed to determine the temperature of the
flux and hence the phase-transition from liquid to solid.

Using the Openfoam software which is based on the volume-finite method this temperature decreasing
was possible to determine. Likewise, this shows the capability of Openfoam to solve partial differential
equations related to science and engineering via three stages: pre-process where the mesh was built, pro-
cess where the solve command was execute and post-process that allowed the visualization of the results
as shown in figure 4.1.

In this work, the fluid flow for the flux is assumed to be in region R and initially the temperature θ = 1
or T = Ts at the boundary conditions at X = 0 decreases towards a rapid solidification of the flux as shown
in figure 4.1 that points out a constant value for the steel temperature at X = H(Z, τ).

A future investigation can be focused on the solidification of the flux using three layers in the formation
of an OM: solid flux, liquid flux and solid steel; in this case, the theory of the moving boundary problems
must be considered and subsequently the recent results of the Stefan problem [8] can be suitable to employ.
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