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Abstract
The main subject of this text is the study of analytic second order linear partial differential equations.
We aim to solve the classical equations and some more, in the real or complex analytical case. This is
done by introducing methods inspired by the Frobenius method for second order linear ordinary differential
equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an
indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity
and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic,
elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation
of the original condition between the roots of the original Frobenius theorem for second order ODEs. The
interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally,
we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and
Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond
those admitting separable variables. The last part of the text is dedicated to the construction of PDE
models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different
means. One model is based on the requirement that the restriction of the PDE to lines through the origin
must be the classical ODE model. The second is based on the idea of having symmetries on the PDE
model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the
framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite
and Chebyshev polynomials).

Keywords . Frobenius method, regular singularity, analytic solutions, .

1. Introduction. One of the most applicable fields in mathematics is the subject of partial differential
equations (PDEs for short). Indeed, a number of phenomena as heat diffusion, waves propagation and
electromagnetic forces are modeled by these equations (see [1] for the classical theory of PDEs). All these
equations belong to the class of second order linear equations. This class plays a special role in the theory.
Indeed, it includes the above mentioned and several other modern problems as nuclear reactions and atomic
models. Since the work of Euler, Lagrange, Bernoulli and Fourier, among others, the techniques for solving
such equations are based on reducing, at least partially, the original PDE to a system of ordinary differential
equations and trying to solve these ODEs. This is done by the use of special transforms as Fourier or
Laplace transforms. Another possibility is the use of the theory of distributions and operators as the heat
kernel. All this works pretty well, but has some limitations. One of the first to show up is the fact that
the equations must have constant coefficients or, at least, the majority of these. Another restriction of the

∗Instituto Latino-Americano de Ciências da Vida e da Natureza - ILACVN, Universidade Federal da Integração Latino-Americana
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classical methods is the fact that not all PDEs can have separated variables. Indeed, already some simple
perturbations of classical equations fall outside of the class of equations admitting this separation.

The classical Laplace-Fourier method has some limitations. For instance, it works well from the the-
oretical point of view, but very often the computation of the inverse Laplace or Fourier transform is hard
to be carried out. Another delicate point is the class of functions where the method converges, which is
essentially associate to those having subexponential growth. In our point of view, Frobenius method has
already proved its value when compared to the Laplace-Fourier in the classical second order ordinary dif-
ferential equations case. This is one of the reasons why it is an essential subject in any PDE course. The
discover of this method was responsible for some of the first concrete algorithmic computations of solutions
of ordinary differential equations associate to important phenomena in physics. The discovery and study
of Bessel functions, Lagrange, Legendre and Chebyshev polynomials owes a lot to the pioneering work of
Frobenius for second order ordinary differential equations.

Our aim is to bring to the framework of partial differential equations some of the techniques used in
the study of ordinary differential equations. Before going through this, let us recall the ordinary differential
case.

The classical method of Frobenius is a very useful tool in finding solutions of a homogeneous second
order linear ordinary differential equations with analytic coefficients. These are equations that write in the
form a(x)y′′+b(x)y′+c(x)y = 0 for some real analytic functions a(x), b(x), c(x) at some point x0 ∈ R. It
is well known that if x0 is an ordinary point, i.e., a(x0) ̸= 0 then there are two linearly independent solutions
y1(x), y2(x) of the ODE, admitting power series expansions converging in some common neighborhood of
x0. This is a consequence of the classical theory of ODE and also shows that the solution space of this ODE
has dimension two, i.e., any solution is of the form c1y1(x)+c2y2(x) for some constants c1, c2 ∈ R. Second
order linear homogeneous differential equations appear in many concrete problems in natural sciences, as
physics, chemistry, meteorology and even biology. Thus solving such equations is an important task. The
existence of solutions for the case of an ordinary point is not enough for most of the applications. Indeed,
most of the relevant equations are connected to the singular (non-ordinary) case. We can mention Bessel
equation x2y′′+xy′+(x2−ν2)y = 0, whose range of applications goes from heat conduction, to the model
of the hydrogen atom. This equation has the origin x = 0 as a singular point. Another remarkable equation
is the Laguerre equation xy′′ + (ν + 1 − x)y′ + λy = 0 where λ, ν ∈ R are parameters. This equation is
quite relevant in quantum mechanics, since it appears in the modern quantum mechanical description of the
hydrogen atom. All these are examples of equations with a regular singular point. The classical Frobenius
methods for second order ODE is found originally found in [2] and, more recently, in [3, 4] and for higher
order in [5].

The above brief description of the method of Frobenius already suggests that there may exist a version
of this result for partial differential equations.

We shall work with the class of second order analytic linear homogeneous partial differential equations.
Such an PDE is of the form

a(x, y)
∂2z

∂x2
+ b(x, y)

∂2z

∂x∂y
+ c(x, y)

∂2z

∂y2
+ d1(x, y)

∂z

∂x
+ d2(x, y)

∂z

∂y
+ d3(x, y)z = 0,

where the coefficients a(x, y), b(x, y), c(x, y), d1(x, y), d2(x, y) and d3(x, y) are complex analytic func-
tions defined in some open subset U ⊂ K2 where K ∈ {R,C}.

This is a very meaningful class when it comes to classical natural phenomena. We shall first introduce
a simple model for these equations, which is a kind of Euler PDE of second order. This will be a PDE of
the form

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+Dx

∂z

∂x
+ Ey

∂z

∂y
+ Fz = 0,

where A,B,C,D,E, F ∈ K.
To this equation we shall associate an indicial polynomial which defines a conic in the affine place.

This conic C ⊂ C2 is given by

P (r, s) = Ar2 +Brs+ Cs2 + (D −A)r + (E − C)s+ F = 0.

This conic plays the role of the indicial equation for Euler ordinary differential equations of order two.
Then we shall introduce a notion of regular singularity for such equations, which is a natural adaptation
of the notion of regular singularity imported from the theory of second order linear ordinary differential
equations. We are able to prove:

Theorem A. Consider the following Euler type PDE

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+Dx

∂z

∂x
+ Ey

∂z

∂y
+ Fz = 0, (x, y) ∈ K2,
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where A,B,C,D,E, F ∈ K. Given (r, s) ∈ C2 we have the following equivalence:
(i) The point (r, s) belongs to the indicial conic C.

(ii) We have a complex monomial solution of the form xrys.
If K = R the indicial conic is of one of the following types:

(a) Ellipse, if B2 − 4AC < 0.
(b) Parabola, if B2 − 4AC = 0.
(c) Hyperbole, if B2 − 4AC > 0.
This however does not assure the existence of monomial polynomial or monomial rational solutions,

since the points of the indicial conic may be all non-integral. Using some basic Linear Algebra we prove:
Theorem B. Let E be a PDE of Euler type. Then we have the following possibilities:
(i) E is elliptic =⇒ there are two linearly independent degree one polynomial solutions.

(ii) E is hyperbolic =⇒ there is one polynomial solution q(x, y) and one solution of the form
1/q(x, y), where q(x, y) is a degree one polynomial.

(iii) E is parabolic =⇒ there are infinitely many linearly independent degree n + n2 polynomial
solutions of the form p(x, y)nq(x, y)n

2

, n ∈ N where p(x, y), q(x, y) are degree one polynomials.
(iv) E is of degenerate type (i) =⇒ there are infinitely many linearly independent degree n poly-

nomial solutions of the form p(x, y)n and infinitely many solutions of the form q(x, y)m where
p(x, y), q(x, y) are degree one polynomials intersecting transversely.

(v) E is of degenerate type (ii) =⇒ there are infinitely many r +m degree polynomial solutions of
the form p(x, y)rq(x, y)m

Let us consider a second order linear homogeneous PDE of the form

A(x, y)
∂2z

∂x2
+B(x, y)

∂2z

∂x∂y
+ C(x, y)

∂2z

∂y2
+D(x, y)

∂z

∂x
+ E(x, y)

∂z

∂y
+ F (x, y)z = 0,

where the coefficients A,B,C,D and E are analytic functions at some point (x0, y0) ∈ R2. The point
(x0, y0) is called ordinary if some of the coefficients A,B and C does not vanish at (x0, y0). Otherwise, if
A(x0, y0) = B(x0, y0) = C(x0, y0) = 0, it will be called a singular point. A singular point will be called
a regular singularity if the PDE can be put into the form

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

with A,B,C ∈ R constants, a(x, y), b(x, y), c(x, y) analytic functions, after some division by coefficients
and change of coordinates centered at (x0, y0).

The indicial conic of the PDE will be the indicial conic of the corresponding Euler PDE. If the PDE
has real analytic coefficients we shall then say that it is parabolic, elliptic or hyperbolic according to the
indicial conic.

The notion of regular singular point above gives rise to a version for this framework of PDE of the
classical method of Frobenius for finding solutions via power series. The picture is not so straightforward,
since we are dealing with a degree two affine curve instead of a one variable degree polynomial. First we
shall introduce a notion of non-resonance, which extends and gives geometric sense to the main obstruction
regarding the roots of the indicial equation in the classical Frobenius theorem for ordinary differential equa-
tions. A point in the indicial conic (r0, s0) ∈ C is resonant if there is some non-trivial positive translation
of (r0, s0) by integral shift (r0+ q1, s0+ q2), q1, q2 ∈ Z+ which also lies on the indicial conic. This can be
seen as follows: consider the reticulate r0 ∨ s0 ⊂ C2 centered at (r0, q0). This means the set of all points
of the form (r0 + q1, s0 + q2) where q1, q2 ∈ Z. The positive part of the reticulate is the set of points of the
form (r0 + q1, s0 + q2) where q1, q2 ∈ N∪ {0}. Then, a point (r0, s0) ∈ C of the indicial conic is resonant
if there is some vertex of the positive part of the reticulate that lies over the indicial conic.

We then prove the following Frobenius type result the following existence constructive results:
Theorem C (parabolic real analytic). A parabolic real analytic second order linear homogeneous

PDE, with a regular singularity, admits a convergent Frobenius type solution for each pair (r, s) ∈ R2 in
the indicial conic. Indeed, there is a solution of the form xrys

∑
Q∈N2

aqx
q1yq2 where the series converges

in some neighborhood of the origin, the coefficients aQ are real and obtained recursively from the PDE.
Theorem C is a consequence of the more general Theorem 7.1 which holds for complex PDEs. Versions
of Theorem C for the elliptic and hyperbolic case are also proved. The case of elliptic equations is stated
below and follows from the more general statement in Theorem 8.1 for complex PDEs:

Theorem D (elliptic real analytic). An elliptic second order linear homogeneous real analytic PDE
having a regular singular point, admits Frobenius type solutions. More precisely, consider the real analytic
second order linear PDE

L[z] := Ax2
∂2z

∂x2
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,
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where AC > 0, a(x, y), b(x, y) and c(x, y) analytic in the open bidisc ∆
(
(0, 0), (R,R)

)
, R > 0. Let

(r0, s0) ∈ R2 be a non-resonant real point of the indicial conic C ⊂ C2. Then L[z] = 0 admits a
convergent Frobenius type solution with initial monomial xr0ys0 .

Next we address the hyperbolic case and obtain as a result of the complex case stated in Theorem 8.2
we obtain:

Theorem E (hyperbolic real analytic). A hyperbolic real analytic second order linear homogeneous
complex analytic PDE having a regular singular point, admits Frobenius type solutions. More precisely,
consider the second order PDE

L[z] := Ax2
∂2z

∂x2
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

where AC < 0, a(x, y), b(x, y) and c(x, y) real analytic in ∆
(
(0, 0), (R,R)

)
, R > 0. Let (r0, s0) ∈ R2

be a non-resonant real point of the indicial conic. Then L[z] = 0 admits a convergent Frobenius type
solution with initial monomial xr0ys0 .

Our results are a first step in the reintroduction of techniques from ordinary differential equations in
the study of classical problems involving partial differential equations. Our solutions are constructive and
computationally viable. We give a number of examples illustrating the range of these techniques. A further
study of these examples is found in a forthcoming work.

The last part of the text is dedicated to the construction of PDE models for the classical ODEs like
Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the
requirement that the restriction of the PDE to lines through the origin must be the classical ODE model.
The second is based on the idea of having symmetries on the PDE model and imitating the ODE model.
We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical
results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).

This work naturally motivates the study of third order linear partial differential equations with analytical
coefficients in a domain of two variables. Aiming at the existence of solutions by algorithmic means, in the
real or complex analytical case. In [9] we present methods inspired by this work. We introduce a notion
of Euler PDE. To such a PDE we associate an indicial cubic, which is an affine plane curve of degree
three. Points on this curve are associate to solutions of the Euler PDE solutions. Next, we give the concept
of regular singularity for the PDE, followed by a notion of resonance and a partial classification of PDEs
having such regular singularities. Finally, we obtain convergence theorems, which must necessarily take
into account the existence of resonances and the type of PDE (parabolic, elliptical or hyperbolic).

2. Second order linear equations. Throughout this text K will denote the field of complex numbers
C or the field of real numbers R, according to the context. A second order linear PDE in two (real) variables
is an expression of the form

a(x, y)
∂2z

∂x2
+ b(x, y)

∂2z

∂x∂y
+ c(x, y)

∂2z

∂y2
+ d1(x, y)

∂z

∂x
+ d2(x, y)

∂z

∂y
+ d3(x, y)z = f(x, y),

where the coefficients a(x, y), b(x, y), c(x, y), d1(x, y), d2(x, y), d3(x, y) and f(x, y) are functions defined
in some open subset U ⊂ R2.

The class of differentiability of the PDE is the common class of differentiability of its coefficients.
We shall be working with analytic PDEs, i.e., the coefficients will be assumed to be analytic in their

domain of definition. If K = R this means that they are real analytic. If K = C this means that they are
complex analytic (holomorphic). The PDE is homogeneous if f(x, y) = 0. The simplest model for these
PDEs is the one with constant coefficients, given by A ∂2z

∂x2 +B ∂2z
∂x∂y + C ∂2z

∂y2 +D ∂z
∂x + E ∂z

∂y + Fz = 0.

2.1. Classification of real PDEs. Let us assume that K = R. It is well-known that the sign of the
term ac− b2 ∈ R does not depend on the choice of the coordinates (x, y) ∈ U ⊂ R2 above. This allows a
partial classification of such PDEs as follows:

• The equation is elliptic if ac− b2 > 0 everywhere in U .
• The equation is hyperbolic if ac− b2 < 0 everywhere in U .
• The equation is parabolic if ac = b2 everywhere in U .

Notice that a PDE may change its behavior in different regions of the domain U .
An example of a hyperbolic equation is the wave equation zxx = λ2ztt. By its turn the heat diffusion

equation zxx = λ2zt is parabolic. Finally, Laplace’s equation zxx + zyy = 0 is elliptic.

2.2. Complex analytic PDEs. We shall consider PDEs with complex analytic coefficients.
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Definition 2.1. A second order complex analytic linear PDE in two variables is an expression of the
form

a(x, y)
∂2z

∂x2
+ b(x, y)

∂2z

∂x∂y
+ c(x, y)

∂2z

∂y2
+ d1(x, y)

∂z

∂x
+ d2(x, y)

∂z

∂y
+ d3(x, y)z = f(x, y),

where the coefficients a(x, y), b(x, y), c(x, y), d1(x, y), d2(x, y), d3(x, y) and f(x, y) are complex analytic
functions defined in some open subset U ⊂ C2. The PDE is homogeneous if f(x, y) = 0.

3. Euler equation for second order PDEs. In this section we build the basis of the method of Frobe-
nius for PDE. The first step is to introduce the notion of Euler equation in this framework. Let us get
started.

3.1. Euler partial differential equation of second order. We shall consider the PDE of the form

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+Dx

∂z

∂x
+ Ey

∂z

∂y
+ Fz = 0, x > 0, y > 0, (3.1)

where A,B,C,D,E, F ∈ K. This will be called an Euler partial differential equation of second order in
K2. Notice that (Bxy)2− 4(Ax2)(Cy2) = (B2− 4AC)x2y2. Thus we have the following possibilities for
the Euler PDE, according to the classical terminology for linear PDEs: Denote by K∗ = K \ {0}. Assume
that the equation is real, i.e., K = R, it has real coefficients. In this case the Euler equation is classified as:
hyperbolic if B2 − 4AC > 0, parabolic if B2 = 4AC and elliptic if B2 − 4AC < 0.

We point-out that this coincides with the classical notion for PDEs given above if we consider U =
(R∗)2.

Now we turn our attention to the Euler equation above in K2 where K ∈ {R,C}.
Definition 3.1 (indicial conic). The indicial conic associate to the Euler equation above is defined as

the complex affine plane curve C := {(r, s) ∈ C2;P (r, s) = 0} where:

P (r, s) = Ar2 +Brs+ Cs2 + (D −A)r + (E − C)s+ F.

In the case of a real PDE, i.e., when the coefficients of the PDE are real, we define the real trace of the
indicial conic (or the real conic for short) as the intersection C(R) := C ∩ R2. The real conic is the real
affine plane curve {(r, s) ∈ R2, P (r, s) = 0}.

It is clear from the above that, in case K = R, the Euler equation is hyperbolic, parabolic or elliptic
according to the fact that the corresponding real conic C(R) ⊂ R2 is a hyperbole, a parabola or an ellipse.

Definition 3.2 (monomial solutions). A monomial solution of the Euler equation is a solution of the
form φ = xrys where r, s ∈ C. The solution is real if (r, s) ∈ R2.

Proof: [Proof of Theorem A] Let φ = xrys and consider the differential operator L[z] = Ax2 ∂2z
∂x2 +

Bxy ∂2z
∂x∂y+Cy

2 ∂2z
∂y2 +Dx

∂z
∂x+Ey

∂z
∂y+Fz. Then φ is solution of (3.1) if and only if L[φ] = 0. Substituting

we have

L[φ] = xrys
[
Ar(r − 1) +Brs+ Cs(s− 1) + rD + sE + F

]
.

Therefore φ = xrys is a solution of (3.1) if and only ifAr2+Brs+Cs2+(D−A)r+(E−C)s+F = 0.
The last part, regarding the classification of the indicial conic, is well-known from Analytic Geometry

and Linear Algebra in dimension two. □
Since the PDE is linear homogeneous, any linear combination of monomial solutions is also a solution.

Indeed, from the merely formal point of view, not all solutions of the Euler equation above are of the

“monomial form”. Indeed, since the PDE is linear, any linear combination or a series φ =
∞∑

n=0
cnx

rnysn

where cn ∈ K and (rn, sn) ∈ C are points in the indicial conic, is also a solution of the Euler equation.
Later on we shall discuss the restrictions imposed by regularity of the solutions and boundary or initial
conditions.

Let us now assume that we are in the real case (x, y) ∈ R2. Assume that we have a point of the
indicial conic (r, s) ∈ C ⊂ C2 which we write in real and imaginary part r = r1 + ir2, s = s1 + is2 where
i2 = −1. Then given x, y ∈ R+ we have xr = xr1 [cos(r2 lnx)+i sin(r2 lnx)] and ys = ys1 [cos(s2 ln y)+
i sin(s2 ln y)]. Thus we get

xrys = xr1ys1 [cos(r2 lnx) cos(s2 ln y)− sin(r2 lnx) sin(s2 ln y)]

+ixr1ys1 [cos(r2 lnx) sin(r2 ln y) + sin(r2 lnx) cos(s2 ln y)].
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Hence we obtain two linearly independent real solutions

u1(x, y) = xr1ys1 [cos(r2 lnx) cos(s2 ln y)− sin(r2 lnx) sin(s2 ln y)]

and

u2(x, y) = xr1ys1 [cos(r2 lnx) sin(r2 ln y) + sin(r2 lnx) cos(s2 ln y)],

analytic defined for x > 0, y > 0.
Remark 3.1 (Euler type PDE ̸= (ODE)2 of Euler type). Consider the PDE (3.1) with real coeffi-

cients. The method of separation of variables can be used to obtain the solution of equation (3.1). Assuming
that z(x, y) = X(x)Y (y) and substituting for z in equation (3.1), we obtain

Ax2X ′′(x)Y (y) +BxyX ′(x)Y ′(y) + Cy2X(x)Y ′′(y)

+DxX ′(x)Y (y) + EyX(x)Y ′(y) + FX(x)Y (y) = 0.

If B = 0 we obtain

Ax2X ′′(x) +DxX ′(x) + FX(x)

X(x)
= −Cy

2Y ′′(y) + EyY ′(y)

Y (y)
(3.2)

in which the variables are separated; that is, the left side depends only on x and the right side only on y. If
we call this separation constant λ, then equation (3.2) becomes

Ax2X ′′(x) +DxX ′(x) + FX(x)

X(x)
= −Cy

2Y ′′(y) + EyY ′(y)

Y (y)
= λ,

Hence we obtain the following two ordinary differential equations for X(x) and Y (y):

Ax2X ′′(x) +DxX ′(x) + (F − λ)X(x) = 0, (3.3)

Cy2Y ′′(y) + EyY ′(y) + λY (y) = 0. (3.4)

Note that (3.3) and (3.4) are Euler equations. Therefore the solutions of (3.3) and (3.4) are of the form xr(λ)

and ys(λ), where the indexes r(λ), s(λ) depend on the separation constant λ. If we consider the two indicial
equations they are given by Ar(r − 1) +Dr + F − λ = 0 and Cs(s− 1) + Es+ λ = 0.

Eliminating λ in the system above we obtain the indicial equation of the Euler PDE. The dependence
on the parameter λ makes inviable the obtaining of solutions for the PDE separately via classical Euler
ordinary differential equations. It also suggests that more complicate situations, like PDEs which are of the
form Ax2 ∂2z

∂x2 +Bxy ∂2z
∂x∂y +Cy2 ∂2z

∂y2 +Dx ∂z
∂x +Ey ∂z

∂y + Fz + h.o.t. = 0 (where h.o.t. stands for higher
order terms), are not always treatable via the classical ordinary differential equations Frobenius methods.

Definition 3.3 (analytic, meromorphic and real monomial solution). A monomial solution z =
xrys of an Euler equation will be called analytic (no matter the PDE is real or complex) (respectively,
meromorphic) if (r, s) ∈ N2 (respectively, (r, s) ∈ Z2). The solution is real if (r, s) ∈ R2.

Let us consider the complex analytic case for the PDE. According to Theorem A an analytic (respec-
tively, meromorphic) monomial solution z = xrys corresponds to a natural (respectively, integral) point
(r, s) ∈ N2 (respectively, (r, s) ∈ Z2) in the indicial conic C of the Euler equation. A real solution corre-
sponds to a real point of the conic.

An affine change of coordinates T (x, y) = (u, v), u = ax + by + e, v = cx + dy + g in R2, takes
an Euler equation E into an Euler equation T∗(E). It is also clear that the indicial conics C(E) of C(T∗E)
are related by C(T∗E) = T (C(E)). In particular, these conics are of a same type (hyperbole, parabola or
ellipse). Another easy to see fact, partially consequence of the above, is that given any conic C ⊂ R2 there
is an Euler equation E which has this conic as indicial conic.

Let us now consider a real Euler PDE. The indicial conic is given by a real equation and after a real
affine change of coordinates in R2 we have the following possible normal forms for the real trace of C:

(i) C : r2 + s2 = 1 (elliptic type)
(ii) C : r2 − s2 = 1 (hyperbolic type)

(iii) C : s = r2 (parabolic type)
(iv) C : rs = 0 (degenerate type 1)
(v) C : r(r − 1) = 0 (degenerate type 2)
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Based on this we shall call a PDE of Euler type, complex or real, with coefficients in the field K, as
parabolic, elliptic, hyperbolic, degenerate type 1, degenerate type 2, according to the normal form above of
its indicial conic after some affine change of coordinates with coefficients in the field K.

Proof: [Proof of Theorem B] The proof is based on two steps. First, by hypothesis, the original
Euler PDE E has its indicial conic C(E) taken into this normal form T (C(E)) by some affine change of
coordinates say (ξ, η) = T (x, y) = (a + bx + cy, ã + b̃x + c̃y) = (p(x, y), q(x, y)) with coefficients
a, b, c, ã, b̃, c̃ ∈ K. This same transformation T takes the original PDE E into a PDE T (E) with indicial
conic C(T (E)) = T (C(E)) in the normal form. Given then a monomial solution φ = xrys of T (E) the
composition φ ◦ T = (p(x, y))r(q(x, y))s is a first integral for the original PDE E . Second, now we just
need to consider the normal form and obtain a monomial solution xrys with suitable exponents (r, s) ∈ Z2,
according to the model. For instance, the elliptic model admits two point (r, s) ∈ {(0, 1), (1, 0)} and
therefore monomial solutions of the form x and y.

□

3.2. Examples of Euler equations. Next we shall give a list of Euler equations and their correspond-
ing indicial conics. This list contains examples of all the possible cases for the indicial conic.
1- Elliptic case:

4x2
∂2z

∂x2
+ 9y2

∂2z

∂y2
− 36x

∂z

∂x
+ 45y

∂z

∂y
+ 100z = 0 → (r − 5)2

9
+

(s+ 2)2

4
= 1.

2- Degenerate type 1:

36x2
∂2z

∂x2
+ 9y2

∂2z

∂y2
− 72x

∂z

∂x
+ 15y

∂z

∂y
+ 82z = 0 → s+

1

3
= ±2i

(
r − 3

2

)
.

3- Elliptic case:

9x2
∂2z

∂x2
+ 4y2

∂2z

∂y2
+ 27x

∂z

∂x
− 5y

∂z

∂y
+ 25z = 0 → 9

(
r + 1

)2
+ 4

(
s− 9

8

)2
= −175

16
< 0.

The solutions are then of the form r = −1± i 5
√
7

12 cosα and s = 9
8 ± i 5

√
7

8 sinα, α ∈ R.
4- Elliptic case:

x2
∂2z

∂x2
+ y2

∂2z

∂y2
− x

∂z

∂x
− y

∂z

∂y
− z = 0 → (r − 1)2 + (s− 1)2 = 1.

5- Hyperbolic case:

x2
∂2z

∂x2
− 2y2

∂2z

∂y2
+ 7x

∂z

∂x
+ 2y

∂z

∂y
+ 9z = 0 → (s− 1)2 − (r + 3)2

2
= 1.

6- Hyperbolic case:

9x2
∂2z

∂x2
− 16y2

∂2z

∂y2
+ 99x

∂z

∂x
− 144y

∂z

∂y
− 31z = 0

has indicial conic given by 9r2 − 16s2 + 90r − 128s− 31 = 0 and therefore by 3(r + 5) = ∓4(s+ 4).
7- Parabolic case:

2y2
∂2z

∂y2
+ 5x

∂z

∂x
+ 10y

∂z

∂y
− 7z = 0 → (s+ 2)2 = −5(r − 3)

2
.

8- Parabolic case:

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
+ x

∂z

∂x
+ y

∂z

∂y
− z = 0

has indicial conic given by r2 + 2rs+ s2 − 1 = 0 and therefore by r + s = ±1.
9- Parabolic case:

3y2
∂2z

∂y2
+ 10y

∂z

∂y
− 6z = 0

has indicial conic given by 3s2 + 7s− 6 = (3s− 2)(s+ 3) = 0.
10- Parabolic case:

3y2
∂2z

∂y2
+ y

∂z

∂y
+ z = 0

has indicial conic given by 3s2 − 2s+ 1 = 0 and therefore by s = 1
3 ± i

√
2
3 .
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3.3. Euler coordinates. We shall introduce for our framework of PDEs, a change of variables, in-
spired in Euler’s trick for ordinary differential equations. Start with an Euler equation (3.1) with real coef-
ficients. We consider the Euler coordinates (u, v) ∈ R2 which are given by x = eu and y = ev . Suppose
that φ is solution of (3.1) and we define φ̃(u, v) = φ(eu, ev). Hence φ̃ satisfies the equation:

A
∂2z̃

∂u2
+B

∂2z̃

∂u∂v
+ C

∂2z̃

∂v2
+ (D −A)

∂z̃

∂u
+ (E − C)

∂z̃

∂v
+ F z̃ = 0. (3.5)

Summarizing and extending the formal procedure also to the complex case we have:
Proposition 3.1. The introduction of Euler coordinates x = eu, y = ev transforms the Euler equation

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+Dx

∂z

∂x
+ Ey

∂z

∂y
+ Fz = 0,

where A,B,C,D,E, F ∈ K into the following PDE with constant coefficients

A
∂2z̃

∂u2
+B

∂2z̃

∂u∂v
+ C

∂2z̃

∂v2
+ (D −A)

∂z̃

∂u
+ (E − C)

∂z̃

∂v
+ F z̃ = 0.

4. Classical equations: heat diffusion, wave propagation and Laplace equation. As mentioned in
the Introduction, the classical PDE equations which are classically solved by separation of variables, can
also be solved by our methods. Let us study the classical heat, wave and Laplace equations.

4.1. Heat diffusion equation. Consider

a2
∂2z

∂x2
=
∂z

∂y
, x > 0, y > 0, (4.1)

where a is a positive constant. Equation (4.1) is of the form (3.5) with A = a2, E = −1 and B = C =
D = F = 0. According to Proposition 3.1, equation (4.1) is transformed, by putting x = lnu, y = ln v, in

a2u2
∂2z̃

∂u2
+ a2u

∂z̃

∂u
− v

∂z̃

∂v
= 0. (4.2)

This equation has parabolic indicial conic of the form a2r2 − s = 0, hence the solutions of (4.2) are of the
form urva

2r2 for any r. Back to the original variables the solution of (4.1) are of the form erxea
2r2y for

any r.

4.1.1. Boundary conditions. In equation (4.1) we consider boundary conditions of type z(0, y) = 0,
z(L, y) = 0 for every y > 0. In order to have z(x, y) = erxea

2r2y as solutions, verifying these boundary
conditions, we must have the following. Write r = α+ iβ and then

z(x, y) = eαx+a2(α2−β2)y cos(βx+ 2αβa2y) + ieαx+a2(α2−β2)y sin(βx+ 2αβa2y).

It is enough to consider the imaginary part of this solution

w(x, y) = Im(z(x, y)) = eαx+a2(α2−β2)y sin(βx+ 2αβa2y).

The boundary condition then implies 0 = w(0, y) = ea
2(α2−β2)y sin(βx + 2αβa2y) for every y > 0. We

can choose α = 0. Thence 0 = w(L, y) = e−a2β2y sin(βL) for every y > 0. This implies sin(βL) = 0
and then βL = nπ, n = 1, 2, 3, . . . therefore the solutions are of the form

wn(x, y) = e−
a2n2π2

L2 y sin
(nπx
L

)
.

This is what we obtain by the classical methods of separation of variables.

4.2. Wave propagation equation. Consider

a2
∂2z

∂x2
=
∂2z

∂y2
, x > 0, y > 0, (4.3)

where a is a positive constant. Equation (4.3) is of the form (3.5) with A = a2, C = −1 and B = D =
E = F = 0. Equation (4.3) is transformed, by putting x = lnu, y = ln v, into

a2u2
∂2z̃

∂u2
− v2

∂2z̃

∂v2
+ a2u

∂z̃

∂u
− v

∂z̃

∂v
= 0. (4.4)

This equation has indicial conic of the form a2r2 − s2 = 0 hence the solutions of (4.4) are of the form
urv±ar for any r. Back to the original variables a solution of (4.3) are of the form erxe±ary for any r.
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4.2.1. Boundary conditions. If in equation (4.3) we consider boundary conditions of type z(0, y) =
0, z(L, y) = 0 for every y > 0. In order to have z(x, y) = erxe±ary as solution verifying these boundary
conditions we must have the following: r = α+ iβ and then

z(x, y) = eαx±aαy
[
cos(βx± βay) + i sin(βx± βay)

]
.

Choosing α = 0 we obtain:

z(x, y) = cos(βx) cos(βay)∓ sin(βx) sin(βay) + i[sin(βx) cos(βay)± cos(βx) sin(βay)].

In this case we may consider the two parcels:
The first u(x, y) = sin(βx) sin(βay) observe that this parcel verifies as boundary conditions if 0 =

u(L, y) = sin(βL) sin(βay) for every y > 0. This implies sin(βL) = 0 and then βL = nπ, n = 1, 2, 3, . . .
therefore the solutions are of the form

un(x, y) = sin
(nπx
L

)
sin

(nπay
L

)
.

The second v(x, y) = sin(βx) cos(βay) observe that this parcel verifies as boundary conditions if 0 =
v(L, y) = sin(βL) cos(βay) for every y > 0. This implies sin(βL) = 0 and then βL = nπ, n = 1, 2, 3, . . .
therefore the solutions are of the form

vn(x, y) = sin
(nπx
L

)
cos

(nπay
L

)
.

Once again, these are the solutions obtained by the separation of variables method.

4.3. Laplace equation. Consider

∂2z

∂x2
+
∂2z

∂y2
= 0, x > 0, y > 0. (4.5)

Equation (4.5) is of the form (3.5) with A = 1, C = 1 and B = D = E = F = 0. According to
Proposition 3.1, equation (4.5) is transformed, by putting x = lnu, y = ln v, in

u2
∂2z̃

∂u2
+ v2

∂2z̃

∂v2
+ u

∂z̃

∂u
+ v

∂z̃

∂v
= 0. (4.6)

This equation has indicial conic of the form r2+ s2 = 0 hence the solutions of (4.6) are of the form urv±ir

for any r. Back to the original variables, the solutions of (4.5) are of the form erxe±iry for any r.

4.3.1. Boundary conditions:. If in equation (4.5) we consider boundary conditions of type z(0, y) =
0, z(L, y) = 0 for every y > 0 and z(x, 0) = 0 for every x > 0. For z(x, y) = erxe±iry to be a solution
verifying these boundary conditions we must have the following: r = α+ iβ and then

z(x, y) = eαx∓βy
[
cos(βx± αy) + i sin(βx± αy)

]
.

Choosing α = 0 we obtain:

z(x, y) = e∓βy cos(βx) + ie∓βy sin(βx).

In this case we can consider two parcels:
• The first u(x, y) = eβy sin(βx) observe that this parcel verifies as boundary conditions if 0 =
u(L, y) = eβy sin(βL) for every y > 0. This implies sin(βL) = 0 and then βL = nπ, n =
1, 2, 3, . . . therefore the solutions are of the form

un(x, y) = e
nπy
L sin

(nπx
L

)
.

• The second v(x, y) = e−βy sin(βx) observe that this parcel verifies as boundary conditions if
0 = u(L, y) = e−βy sin(βL) for every y > 0. This implies sin(βL) = 0 and then βL =
nπ, n = 1, 2, 3, . . . therefore the solutions are of the form

vn(x, y) = e−
nπy
L sin

(nπx
L

)
.

Notice that, putting

wn(x, y) =
un(x, y)− vn(x, y)

2
= sinh

(nπy
L

)
sin

(nπx
L

)
.
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5. Rational Euler equations: existence of monomial meromorphic solutions. Let us now investi-
gate the existence of meromorphic or rational solutions for a given Euler equation with rational numbers
are coefficients. This may be useful if we want to obtain monomial solutions which have analytic behavior,
possibly admitting poles. As we have already observe, the problem of finding monomial holomorphic or
meromorphic solutions of a given Euler equation is related to the existence of integral or rational points of
the indicial conic. This last is related to the existence of solutions of Diophantine equations. Let us present
families of examples, of each type for the indicial conic type above, exhibiting rational solutions. Such
families are constructed based on the existence results from [8] and [10].

Theorem 5.1 (existence of meromorphic monomial solutions). The following families of Euler PDEs
with integer coefficients admit meromorphic monomial solutions:

(elliptic)

Ell : A2x2
∂2z

∂x2
+ C2y2

∂2z

∂y2
+ 3A2x

∂z

∂x
+ 3C2y

∂z

∂y
+ (C2 +A2 −A2C2)z = 0, x > 0, y > 0,

where A,C ∈ Z such that AC > 0.
(parabolic)

Par : Ax2 ∂
2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ 3Ax

∂z

∂x
+ (C +B)y

∂z

∂y
+Az = 0, x > 0, y > 0,

where A,B,C ∈ Z such that B2 − 4AC = 0.
(hyperbolic)

Hyp : Ax2 ∂
2z

∂x2
+Bxy

∂2z

∂x∂y
+Ax

∂z

∂x
+By

∂z

∂y
−Az = 0, x > 0, y > 0,

where A,B ∈ Z such that B ̸= 0.
Indeed, on each case, there are integral points of the corresponding indicial conic.
Proof: Let us start with the first elliptic case. The corresponding indicial conic is

A2r2 + C2s2 + 2A2r + 2C2s+ C2 +A2 −A2C2 = 0. (5.1)

Completing the square in equation (5.1) we have

(Ar +A)2 + (Cs+ C)2 = (AC)2. (5.2)

Equation (5.2) admits entire solutions in the following cases: Ar + A = ±AC and Cs + C = 0 or
Ar+A = 0 and Cs+C = ±AC. In these cases r and s have integral values: r = −1±C and s = −1 or
r = −1 and s = −1±A.

Now, for the second (parabolic) case the indicial conic is given by

Ar2 +Brs+ Cs2 + 2Ar +Bs+A = 0. (5.3)

Multiplying equation (5.3) by 4A and using that B2 = 4AC we have (2Ar +Bs+ 2A)2 = 0 hence

2Ar +Bs = −2A. (5.4)

Let h = gcd{2A,B}, since h divides −2A we have that equation (5.4) admits entire solutions.
Finally we consider the hyperbolic case. In this case we have the indicial conic given by

Ar2 +Brs+Bs−A = 0. (5.5)

Multiplying equation (5.5) by B4 we have A(B2r)2 + B(B2r)(B2s) + B3(B2s) − B4A = 0 by
putting B2r = R−B2 and B2s = S + 2AB we have

R(AR+BS) = 0. (5.6)

Equation (5.6) admits entire solutions in the following cases: R = 0 or AR+BS = 0 back to the original
variables B2r +B2 = 0 or A(B2r +B2) +B(B2s− 2AB) = 0 then r = −1, s any integer or

Ar +Bs = A, (5.7)

be a h = gcd{A,B}, since h divides A we have that equation (5.7) admits entire solutions. □
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6. Frobenius method for second order linear PDEs. In this section we pave the way to our main
results Theorems 7.1, 8.1 and 8.2, as well as their real counterparts Theorems C, D and E. Let us consider
a second order linear homogeneous PDE of the form

A(x, y)
∂2z

∂x2
+B(x, y)

∂2z

∂x∂y
+ C(x, y)

∂2z

∂y2
+D(x, y)

∂z

∂x
+ E(x, y)

∂z

∂y
+ F (x, y)z = 0,

where the coefficients A,B,C,D and E are analytic functions at some point (x0, y0) ∈ K2.

6.1. Regular singularities. We recall the following definition from the Introduction:
Definition 6.1 (regular singularity). The point (x0, y0) is called ordinary if some of the coefficients

A,B and C does not vanish at (x0, y0). Otherwise, if A(x0, y0) = B(x0, y0) = C(x0, y0) = 0, it will be
called a singular point. A singular point will be called a regular singularity if the PDE can be put into the
form

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

with A,B,C ∈ R constants, a(x, y), b(x, y), c(x, y) analytic functions, after some division by coefficients
and change of coordinates centered at (x0, y0).

We look initially for solutions of the form ψ = xrys + h.o.t.. We write a(x, y) = a(0, 0) +
xnyma1(x, y) where a1(x, y) is analytic and n + m ≥ 1. Similarly we write b(x, y) = b(0, 0) +
xℓykb1(x, y) and c(x, y) = c(0, 0) + xtysc1(x, y).

Then we can rewrite the PDE as

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(0, 0)

∂z

∂x
+ yb(0, 0)

∂z

∂y
+ c(0, 0)z

+xn+1yma1(x, y)
∂z

∂x
+ xℓyk+1b1(x, y)

∂z

∂y
+ xtysc1(x, y)z = 0.

Thus the PDE has a first jet which is a PDE of Euler type given by

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(0, 0)

∂z

∂x
+ yb(0, 0)

∂z

∂y
+ c(0, 0)z = 0.

The higher order part is seen as an increment and the original PDE as a deformation of the Euler PDE
above.

Based on this we define:
Definition 6.2. The indicial conic is the complex affine curve C ⊂ C2 given by the zeros of the

polynomial

P (r, s) = Ar2 +Brs+ Cs2 + r(a(0, 0)−A) + s(b(0, 0)− C) + c(0, 0).

In case the PDE has real coefficients we can define the real trace of the indicial conic (or real indicial conic
for short) as C(R) := C ∩ R2.

The above definition of regular singularity is motivated by the following
Lemma 6.1. Let

A(x, y)x2
∂2z

∂x2
+ 2B(x, y)xy

∂2z

∂x∂y
+ C(x, y)y2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

be given withA(x, y), B(x, y), C(x, y), a(x, y), b(x, y), c(x, y) of classCr in a neighborhood of the origin.
For any change of coordinates (x, y) 7→ (x̃, ỹ), of class Cr, that preserves the coordinate axes, the new
PDE is still of the above form. More precisely, if we put (x̃, ỹ) = (x · ξ1(x, y), y · η1(x, y)), then in the new
coordinates we have

Ã(x̃, ỹ)x̃2
∂2z

∂x̃2
+ 2B̃(x̃, ỹ)x̃ỹ

∂2z

∂x̃∂ỹ
+ C̃(x̃, ỹ)ỹ2

∂2z

∂ỹ2
+ x̃ã(x̃, ỹ)

∂z

∂x̃
+ ỹb̃(x̃, ỹ)

∂z

∂ỹ
+ c̃(x̃, ỹ)z = 0,

for some Ã(x̃, ỹ), B̃(x̃, ỹ), C̃(x̃, ỹ), ã(x̃, ỹ), b̃(x̃, ỹ), c̃(x̃, ỹ) of class Cr at the origin.
Moreover, we have Ãx̃2 B̃x̃ỹ

B̃x̃ỹ C̃ỹ2

 = J t

Ax2 Bxy

Bxy Cy2

 J,



León V, Scárdua B.- Selecciones Matemáticas. 2023; Vol. 10(2): 210-248 221

where J is the Jacobian matrix of the change of coordinates. In particular, (B̃2−ÃC̃)(x̃ỹ)2 = |det J |2(B2−
AC)(xy)2.

Proof: We start with a PDE of the form

a(x, y)
∂2z

∂x2
+ 2b(x, y)

∂2z

∂x∂y
+ c(x, y)

∂2z

∂y2
+ d1(x, y)

∂z

∂x
+ d2(x, y)

∂z

∂y
+ d3(x, y)z = f(x, y),

and perform a change of coordinates (x, y) 7→ (ξ(x, y), η(x, y)). Then we obtain a PDE of the form

A(ξ, η)
∂2z

∂ξ2
+ 2B(ξ, η)

∂2z

∂ξ∂η
+ C(ξ, η)

∂2z

∂η2
+ e1(ξ, η)

∂z

∂ξ
+ e2(ξ, η)

∂z

∂η
+ e3(ξ, η)z = g(ξ, η),

where we have A = aξ2x+2bξxξy + cξ
2
y , B = aξxηx+ b(ηxξy +ηyξx)+ cξyηy, C = aη2x+2bηxηy + cη

2
y .

In terms of matrices we have A B

B C

 = J t

a b

b c

 J,

where J =

ξx ξy

ηx ηy

 is the Jacobian matrix of the change of coordinates. □

Remark 6.1 (Behavior of solutions in straight lines). Consider the following PDE

Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+Dx

∂z

∂x
+ Ey

∂z

∂y
+ Fz = 0, (6.1)

where A,B,C ∈ C∗, D,E, F ∈ C. Let φ be a solution of (6.1). Hence we have

Ax2
∂2φ

∂x2
+Bxy

∂2φ

∂x∂y
+ Cy2

∂2φ

∂y2
+Dx

∂φ

∂x
+ Ey

∂φ

∂y
+ Fφ = 0. (6.2)

Consider the line y = tx. We want to understand the behavior of the solutions restricted to this line. For
this sake we evaluate (x, tx) in equation (6.2)

Ax2 ∂2φ
∂x2 (x, tx) +Btx2 ∂2φ

∂x∂y (x, tx) + Ct2x2 ∂2φ
∂y2 (x, tx)Dx

∂φ
∂x (x, tx) + Etx∂φ

∂y (x, tx) + Fφ(x, tx) = 0.

We define φ̃(x) = φ(x, tx), taking derivatives we have

φ̃′(x) =
∂φ

∂x
(x, tx) + t

∂φ

∂y
(x, tx) and φ̃′′(x) =

∂2φ

∂x2
(x, tx) + 2t

∂2φ

∂x∂y
(x, tx) + t2

∂2φ

∂y2
(x, tx).

Thus observe that φ̃ is solution of the second order Euler equation x2w′′ + x
(

D
A

)
w′ +

(
F
A

)
w = 0 if

A = C = B
2 and D = E. Observe that in this case equation (6.1) would be of parabolic type.

6.2. Resonances. We shall now introduce the notion of resonance for a second order linear PDE with
a regular singular point. For this sake, we shall consider the second order PDE

(E) L[z] := Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

whereA,B,C ∈ R, C, a(x, y), b(x, y) and c(x, y) real analytic or holomorphic in the open bidisc ∆
(
(0, 0),

(R,R)
)
⊂ R2, C2, R > 0.

The indicial conic C ⊂ C2 is then given by the zeros of the polynomial

P (r, s) = Ar2 +Brs+ Cs2 + r(a(0, 0)−A) + s(b(0, 0)− C) + c(0, 0).

Definition 6.3. A pair (r, s) ∈ C is called resonant (with respect to the PDE E) if there is Q =
(q1, q2) ∈ Z2

+ \ {(0, 0)} such that P (q1 + r, q2 + s) = 0. Since P (r, s) = 0 this is equivalent to

Aq1(2r + q1 − 1) +B(q1s+ rq2 + q1q2) + Cq2(2s+ q2 − 1) + q1a(0, 0) + q2b(0, 0) = 0.
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This last is a degree one equation in r and s. Let us introduce the set of resonant points of E as R(E) :=
R∩ C where R =

∞⋃
|Q|=1

RQ and RQ := {(r, s) ∈ C; P (q1 + r, q2 + s) = 0}.

A point (r0, s0) ∈ C is non-resonant if (r0, s0) ̸∈ R ∩ C.
Lemma 6.2. R(E) is nowhere dense in C and in R2,C2. In particular, the set of non-resonant points

is dense in C.
Proof: The set of resonant points of E is the intersection of the indicial conic with a countable number

of straight lines in R2,C2. By Baire’s category theorem this set has empty interior. It also has zero Lebesgue
measure and contains no interior points even when looked inside C. □

Remark 6.2. Let us point-out a few facts about the notion of resonance we have introduced above:
(i) Geometrically, a point (r0, s0) ∈ C is resonant if there is some non-trivial translation of (r0, s0)

by integral shift (r0 + q1, s0 + q2), q1, q2 ∈ N which also lies on the indicial conic. This can be
seen as follows: consider the reticulate r0 ∨ s0 ⊂ C2 centered at (r0, q0). This means the set of all
points of the form (r0 + q1, s0 + q2) where q1, q2 ∈ Z. The positive part of the reticulate is the set
of points of the form (r0 + q1, s0 + q2) where q1, q2 ∈ N ∪ {0}. Then, a point (r0, s0) ∈ C of the
indicial conic is resonant if there is some vertex of the positive part of the reticulate that lies over
the indicial conic.

(ii) Consider a second order linear analytic ODE of the form ax2u′′ + xb(x)u′ + c(x)u = 0, with a
regular singularity. From the classical method of Frobenius, we know that the indicial equation is
of the form P (r) = ar(r − 1) + b(0)r + c(0) = 0. If we choose the root r0 with greater real

part then there is a solution of the form u(x) = xr0
∞∑
q=0

aqx
q . We looking for other solutions, the

exceptional case occurs when there is another root r1 of the indicial equation which is of the form
r1 = r0 − q0 for some q0 ∈ N. This means that the indicial polynomial P (r) has a root r1 and
another root of the form r1 + q. This is exactly the notion of resonance we have just introduced
above for the case of PDEs.

6.3. Frobenius type solutions. We consider a second order linear homogeneous PDE of the form

A(x, y)
∂2z

∂x2
+B(x, y)

∂2z

∂x∂y
+ C(x, y)

∂2z

∂y2
+D(x, y)

∂z

∂x
+ E(x, y)

∂z

∂y
+ F (x, y)z = 0,

where the coefficients A,B,C,D and E are analytic functions at some point (x0, y0) ∈ R2. Assume that
(x0, y0) is a non-singular point or a regular singularity of the PDE. Let be given (r0, s0) ∈ R2 a point of
the indicial conic.

Definition 6.4. A Frobenius type solution of the PDE above is an expression

ψ(x, y) = xr0ys0
∞∑

|Q|=0

dQx
q1yq2 , d0,0 = 1,

which satisfies the PDE from the formal point of view, i.e., L[ψ](x, y) = 0 where L[z] = A(x, y) ∂
2z

∂x2 +

B(x, y) ∂2z
∂x∂y+C(x, y)

∂2z
∂y2 +D(x, y) ∂z∂x+E(x, y) ∂z∂y+F (x, y)z. Moreover, the coefficients dQ are obtained

by means of recurrences associate to the equation. The solution is called of convergent type if the series∑∞
|Q|=0 dQx

q1yq2 , d0,0 = 1 is convergent in ∆
(
(0, 0), (R,R)

)
. We shall say that the solution is real if

the exponent (r, s) ∈ R2 and coefficients dQ of the power series are all real.
Example 6.1. Consider the second order PDE given by

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
− ∂z

∂x
− ∂z

∂y
− 1

2
z = 0. (6.3)

The origin is not a regular singularity for (6.3). Let us check for the existence of formal solutions. This
equation admits as solution a formal power series φ =

∑∞
|Q|=0 aQX

Q, where the coefficients aQ satisfy
the following recurrence formula

CQ =
[
|Q|2 − |Q| − 1

2

]
aQ, for every |Q| = 0, 1, 2, . . . , (6.4)

where Cq1,q2 = (1 + q1)a1+q1,q2 + (1 + q2)aq1,1+q2 . But is not convergent, since if we consider γn =∑∞
n=0 anx

n where an =
∑

|Q|=n aQ. We see that by (6.4) the coefficients an satisfy the recursion formula(
n2 − n− 1

2

)
an = (n+ 1)an+1, for every n = 0, 1, 2, . . . . (6.5)
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If a00 ̸= 0 then a0 ̸= 0 and then by the quotient test to (6.5) and γn, we have that∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = ∣∣∣∣n2 − n− 1
2

n+ 1

∣∣∣∣ · |x| → ∞,

as k → ∞, if |x| ̸= 0. Thus, the series converges only for x = 0, and therefore φ does not define a
convergent solution of (6.3).

6.4. Pre-canonical forms. We start with a PDE of the form

a(x, y)
∂2z

∂x2
+ 2b(x, y)

∂2z

∂x∂y
+ c(x, y)

∂2z

∂y2
+ d1(x, y)

∂z

∂x
+ d2(x, y)

∂z

∂y
+ d3(x, y)z = f(x, y),

and perform a change of coordinates (x, y) 7→ (ξ(x, y), η(x, y)). Then we obtain a PDE of the form

A(ξ, η)
∂2z

∂ξ2
+ 2B(ξ, η)

∂2z

∂ξ∂η
+ C(ξ, η)

∂2z

∂η2
+ e1(ξ, η)

∂z

∂ξ
+ e2(ξ, η)

∂z

∂η
+ e3(ξ, η)z = g(ξ, η),

where we have A = aξ2x+2bξxξy + cξ
2
y , B = aξxηx+ b(ηxξy +ηyξx)+ cξyηy, C = aη2x+2bηxηy + cη

2
y .

In terms of matrices we have A B

B C

 = J t

a b

b c

 J,

where J =

ξx ξy

ηx ηy

 is the Jacobian matrix of the change of coordinates.

Parabolic case. In this case we have ac = b2 and therefore we can write A = (pξx + qξy)
2 and C =

(pηx + qηy)
2 for some functions p(x, y), q(x, y). Let now ξ be a solution of the equation pξx + qξy = 0.

Then we have A = 0 and, since AC = B2 we obtain B = 0. This gives the following parabolic canonical
form, after re-renaming the variables (ξ, η) as (x, y):

C(x, y)
∂2z

∂y2
+ e1(x, y)

∂z

∂x
+ e2(x, y)

∂z

∂y
+ e3(x, y)z = g(x, y).

Hyperbolic case. In this case ac < b2. We can split in factors A = (p1ξx + q1ξy)(p2ξx + q2ξy) and
C = (p1ηx + q1ηy)(p2ηx + q2ηy). Then we choose ξ and η satisfying p1ξx + q1ξy = p2ηx + q2ηy = 0.
Then we obtain A = C = 0. In this case, after re-renaming the coordinates back to (x, y) we obtain the
following hyperbolic canonical form:

2B(x, y)
∂2z

∂x∂y
+ e1(x, y)

∂z

∂x
+ e2(x, y)

∂z

∂y
+ e3(x, y)z = g(x, y).

Elliptic case. In this case ac > b2. We cannot not make A or C equal to zero, but we can obtain A = C
and B = 0 so that the elliptic canonical form is:

A(x, y)
∂2z

∂x2
+A(x, y)

∂2z

∂y2
+ e1(x, y)

∂z

∂x
+ e2(x, y)

∂z

∂y
+ e3(x, y)z = g(x, y).

We point-out that, usually the canonical forms are a bit simpler. Indeed, in the parabolic case it is observed
that C does not vanish and therefore the equation may be divided by C and we ay assume that C = 1.
Similarly, in hyperbolic case it is assumed that B = 1 and in the elliptic case that we have A = C = 1.
Nevertheless, we shall not work with these simpler canonical forms. Indeed, we will not be considering
exactly the same situation. We shall use the above “pre-canonical forms” adapted to our framework.

6.4.1. Preparation lemma. In the next lemma we show how to reduce some cases of PDEs to the one
we deal with directly.

Lemma 6.3. Consider the following PDE

A(x)x2
∂2z

∂x2
+B(x, y)xy

∂2z

∂x∂y
+ C(y)y2

∂2z

∂y2
+D(x, y)x

∂z

∂x
+ E(x, y)y

∂z

∂y
+ F (x, y)z = 0, (6.6)

where A,C holomorphic in the open disc DR(0) and B,D,E, F holomorphic in ∆
(
(0, 0), (R,R)

)
, R >

0. Assume that B(x, y) = 2
√
A(x)

√
C(y) then there suitable change of coordinates so that the equation

(6.6) has the form

A(0)ξ2
∂2z̃

∂ξ2
+B(0, 0)ξη

∂2z̃

∂ξ∂η
+ C(0)η2

∂2z̃

∂η2
+ D̃(ξ, η)ξ

∂z̃

∂ξ
+ Ẽ(ξ, η)η

∂z̃

∂η
+ F̃ (ξ, η)z̃ = 0, (6.7)
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where D̃, Ẽ, F̃ holomorphic in ∆
(
(0, 0), (R̃, R̃)

)
, R̃ > 0.

Proof: Let us consider a change of coordinates of the form ξ = xf(x) and η = yg(y). Let φ̃(ξ, η) =
φ(x, y), where φ is solution of (6.6) thus we have

A(x)x2(f(x) + xf ′(x))2 ∂2φ̃
∂ξ2 +B(x, y)xy(f(x) + xf ′(x))(g(y) + yg′(y)) ∂φ̃

∂ξ∂η

+C(y)y2(g(y) + yg′(y))2 ∂2φ̃
∂η2 +

(
A(x)x2(2f ′(x) + xf ′′(x)) +D(x, y)x(f(x) + xf ′(x))

)
∂φ̃
∂ξ

+
(
C(y)y2(2g′(y) + yg′′(y)) + E(x, y)y(g(y) + yg′(y))

)
∂φ̃
∂η + F (x, y)φ̃ = 0.

We want to find holomorphic functions f and g in a neighborhood of he origin, so that

A(x)x2(f(x) + xf ′(x))2 = A(0)ξ2 = A(0)(xf(x))2

and C(y)y2(g(y) + yg′(y))2 = C(0)η2 = C(0)(yg(y))2.

Hence f(x)+xf ′(x)
f(x) = ±

√
A(0)√
A(x)

and g(y)+yg′(y)
g(y) = ±

√
C(0)√
C(y)

. Therefore f(x) = k1

x exp
(
±

∫ x
√

A(0)√
A(s)

ds
)

and g(y) = k2

y exp
(
±

∫ y
√

C(0)√
C(s)

ds
)

where k1, k2 are constant. Now observe that B(x, y)xy(f(x) +

xf ′(x))(g(y) + yg′(y)) = ±B(x, y)ξη

√
A(0)√
A(x)

√
C(0)√
C(y)

= ±B(0, 0)ξη. Thus, it is enough to choose f(x) =

1
x exp

( ∫ x
√

A(0)√
A(s)

ds
)

and g(y) = 1
y exp

( ∫ y
√

C(0)√
C(s)

ds
)

obtaining the desired change. Under these con-

ditions we have that ũ is solution of equation (6.7).
□

7. Parabolic equations. Now we shall prove the existence and study the convergence of “formal”
solutions. More precisely, we shall state and prove the effectiveness of a method of Frobenius for such
PDEs. The first idea would be to put the PDE into a simpler form. Nevertheless, this method requires
the use of affine transformations in the changes of coordinates. This procedure has two main cons: One
is the difficulty in order to find the affine transformations on each case. The second is the fact that affine
transformations very much change the expression of the solution. This would therefore make the procedure
less effective in computational terms, since this would be more on the theoretical point of view. Somehow
this would slide a bit from our original purpose. Let us therefore analyze case by case, without performing
any change of coordinates on the given PDE.

We shall now deal with the parabolic case. For this sake, we shall consider the second order PDE

L[z] := Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

where A,B,C ∈ R∗, C∗, a(x, y), b(x, y) and c(x, y) real analytic or holomorphic in ∆
(
(0, 0), (R,R)

)
⊂ R2, C2, R > 0. The parabolic type is given by the condition B2 = 4AC.

Definition 7.1. We must say that the PDE is parabolic of real type ifB = 2
√
A
√
C and Re(

√
A
√
C) >

0.
We observe that, though there is an ambiguity in the choices of

√
A and

√
C, this does not affect the

condition Re(
√
A
√
C) > 0. Indeed, the fact that B = 2

√
A
√
C shows that the condition Re(

√
A
√
C) > 0

does not depend on the choices of
√
A and

√
C.

In the real analytic case this condition is automatically fulfilled.
We state the full complex and real analytic case:
Theorem 7.1 (parabolic complex). A parabolic of real type complex analytic PDE, with a regular

singularity, admits a convergent Frobenius type solution. Indeed, consider the complex analytic second
order PDE

L[z] := Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0, (7.1)

withA,B,C ∈ C∗ such thatB = 2
√
A
√
C and Re(

√
A
√
C) > 0, a(x, y), b(x, y) and c(x, y) holomorphic

in ∆
(
(0, 0), (R,R)

)
, R > 0. Let (r0, s0) ∈ C2 be a non-resonant point of the indicial conic. Then
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there exists a Frobenius type convergent solution of (7.1) with initial monomial xr0ys0 and converging in
∆
(
(0, 0), (R,R)

)
. Moreover, the solution is real provided that the point (r0, s0) and the coefficients of the

PDE are real.
Proof: Let φ be a solution of (7.1) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q, (7.2)

where d0,0 ̸= 0. Given that a(x, y), b(x, y) and c(x, y) are holomorphic in ∆
(
(0, 0), (R,R)

)
we have that

a(x, y) =

∞∑
|Q|=0

aQX
Q, b(x, y) =

∞∑
|Q|=0

bQX
Q and c(x, y) =

∞∑
|Q|=0

cQX
Q, (7.3)

for every (x, y) ∈ ∆
(
(0, 0), (R,R)

)
. Then

∂φ

∂x
=

∞∑
|Q|=0

(q1 + r)dQx
q1+r−1yq2+s,

∂φ

∂y
=

∞∑
|Q|=0

(q2 + s)dQx
q1+ryq2+s−1,

∂2φ

∂x2
=

∞∑
|Q|=0

(q1 + r)(q1 + r − 1)dQx
q1+r−2yq2+s,

∂2φ

∂x∂y
=

∞∑
|Q|=0

(q1 + r)(q2 + s)dQx
q1+r−1yq2+s−1,

∂2φ

∂y2
=

∞∑
|Q|=0

(q2 + s)(q2 + s− 1)dQx
q1+ryq2+s−2,

and from this we have

Ax2
∂2φ

∂x2
= xrys

∞∑
|Q|=0

A(q1 + r)(q1 + r− 1)dQX
Q, Bxy

∂2φ

∂x∂y
= xrys

∞∑
|Q|=0

B(q1 + r)(q2 + s)dQX
Q,

Cy2
∂2φ

∂y2
= xrys

∞∑
|Q|=0

C(q2 + s)(q2 + s− 1)dQX
Q,

xa(x, y)
∂φ

∂x
= xrys

 ∞∑
|Q|=0

aQX
Q

 ∞∑
|Q|=0

(q1 + r)dQX
Q

 = xrys

 ∞∑
|Q|=0

ãQX
Q

 ,

yb(x, y)
∂φ

∂y
= xrys

 ∞∑
|Q|=0

bQX
Q

 ∞∑
|Q|=0

(q2 + s)dQX
Q

 = xrys

 ∞∑
|Q|=0

b̃QX
Q

 ,

c(x, y)φ = xrys

 ∞∑
|Q|=0

cQX
Q

 ∞∑
|Q|=0

dQX
Q

 = xrys

 ∞∑
|Q|=0

c̃QX
Q

 ,

where

ãQ =

q1∑
i=0

q2∑
j=0

(i+ r)aq1−i,q2−jdij , b̃Q =

q1∑
i=0

q2∑
j=0

(j + s)bq1−i,q2−jdij and c̃Q =

q1∑
i=0

q2∑
j=0

cq1−i,q2−jdij .

Given that φ is solution of (7.1) we have

xrys
∞∑

|Q|=0

([
A(q1+r)(q1+r−1)+B(q1+r)(q2+s)+C(q2+s)(q2+s−1)

]
dQ+ ãQ+ b̃Q+ c̃Q

)
XQ = 0
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hence[
A(q1+r)(q1+r−1)+B(q1+r)(q2+s)+C(q2+s)(q2+s−1)

]
dQ+ãQ+b̃Q+c̃Q = 0, |Q| = 0, 1, 2, . . . .

Using the definitions of ãQ, b̃Q and c̃Q we write the previous equations[
A(q1 + r)(q1 + r − 1) +B(q1 + r)(q2 + s) + C(q2 + s)(q2 + s− 1)

]
dQ+

∑q1
i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j = 0

equivalently [
A(q1 + r)(q1 + r − 1) +B(q1 + r)(q2 + s) + C(q2 + s)(q2 + s− 1)

+(q1 + r)a0,0 + (q2 + s)b0,0 + c0,0
]
dQ

+
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j = 0.

For |Q| = 0 we have

Ar(r − 1) +Brs+ Cs(s− 1) + ra0,0 + sb0,0 + c0,0 = 0

provided that d0,0 ̸= 0. The second degree two variables polynomial P given by

P (r, s) = Ar2 +Brs+ Cs2 + r(a0,0 −A) + s(b0,0 − C) + c0,0

is called indicial conic associate to equation (7.1). We see that

P (q1 + r, q2 + s)dQ + eQ = 0, |Q| = 1, 2, . . . , (7.4)

where

eQ =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j , |Q| = 1, 2, . . . .

(7.5)

Observe that eQ is a linear combination of d0,0, d1,0, d0,1, . . . , dn−1,0, d0,n−1, whose coefficients are given
only in terms of the already known functions a, b, c, r and s. Letting r, s and d0,0 undetermined , as of now
we solve equations (7.4) and (7.5) in terms of d0,0, r and s. These solutions are defined by DQ(r, s), and a
eQ corresponding to EQ(r, s). Thus

E1,0(r, s) = (ra1,0 + sb1,0 + c1,0)d0,0, D1,0(r, s) = −E1,0(r,s)
P (1+r,s) ,

E0,1(r, s) = (ra0,1 + sb0,1 + c0,1)d0,0, D0,1(r, s) = −E0,1(r,s)
P (r,1+s) ,

and in general:

EQ(r, s) =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r, s)

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
Dq1,j(r, s), |Q| = 1, 2, . . . ,

DQ(r, s) = − EQ(r,s)
P (q1+r,q2+s) , |Q| = 1, 2, . . . . (7.6)
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The coefficients DQ obtained in this way, are rational functions of r and s, and the only points where they
are not defined, are those points r and s for which P (q1 + r, q2 + s) = 0 for some |Q| = 1, 2, . . .. Let us
define φ by:

φ((x, y), (r, s)) = d0,0x
rys + xrys

∞∑
|Q|=1

DQ(r, s)x
q1yq2 . (7.7)

If the series (7.7) converges in ∆
(
(0, 0), (R,R)

)
, then we have

L(φ)((x, y), (r, s)) = d0,0P (r, s)x
rys.

We have the following situation: If a φ given by (7.2) is solution of (7.1), then (r, s) must be a point of the
indicial conic P , and the dQ (|Q| = 1, 2, . . .) are uniquely determined in terms of d0,0, r and s to be the
DQ(r, s) from (7.6), provided that P (q1 + r, q2 + s) ̸= 0, |Q| = 1, 2, . . ..

Conversely, if (r, s) is a root of P and if the DQ(r, s) can be determined (i.e., P (q1 + r, q2 + s) ̸= 0
for |Q| = 1, 2, . . .) then the function φ given by φ(x, y) = φ((x, y), (r, s)) is solution of (7.1) for every
choice of d0,0, provided that the series (7.7) is convergent.

By hypothesis (r0, s0) is a point of the indicial conic P such that (r0, s0) /∈ R, then P (q1 + r0, q2 +
s0) ̸= 0 for every |Q| = 1, 2, . . .. Thus, DQ(r0, s0) there exists for every |Q| = 1, 2, . . ., and putting
d0,0 = D0,0(r0, s0) = 1 we have that the function ψ given by

ψ(x, y) = xr0ys0
∞∑

|Q|=0

DQ(r0, s0)x
q1yq2 , D0,0(r0, s0) = 1, (7.8)

is a solution of (7.1), provided that the series is convergent.
We need to show that the series (7.8) converges in ∆

(
(0, 0), (R,R)

)
where the coefficientsDQ(r0, s0)

are given recursively by

D0,0(r0, s0) = 1,

P (q1 + r0, q2 + s0)DQ(r0, s0) =

−
∑q1−1

i=0

∑q2
j=0

[
(i+ r0)aq1−i,q2−j + (j + s0)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r0, s0)

−
∑q2−1

j=0

[
(q1 + r0)a0,q2−j + (j + s0)b0,q2−j + c0,q2−j

]
Dq1,j(r0, s0), |Q| = 1, 2, . . . .

(7.9)

Observe that

P (q1 + r0, q2 + s0) = (
√
Aq1 +

√
Cq2)

2 +2q1A
[
r0 +

B
2As0 +

a(0,0)−A
2A

]
+2q2C

[
s0 +

B
2C r0 +

b(0,0)−C
2C

]
therefore

∥P (q1 + r0, q2 + s0)∥ ≥ ∥
√
Aq1 +

√
Cq2∥2 − 2q1∥A∥

∥∥∥r0 + B
2As0 +

a(0,0)−A
2A

∥∥∥
−2q2∥C∥

∥∥∥s0 + B
2C r0 +

b(0,0)−C
2C

∥∥∥ .
Given that

∥
√
Aq1 +

√
Cq2∥2 = ∥A∥q21 + ∥C∥q22 + 2q1q2Re(

√
A
√
C)

be a α = min{∥A∥, ∥C∥,Re(
√
A
√
C)} > 0 we have

∥
√
Aq1 +

√
Cq2∥2 ≥ α(q1 + q2)

2.

Let θ = max
{∥∥∥r0 + B

2As0 +
a(0,0)−A

2A

∥∥∥ ,∥∥∥s0 + B
2C r0 +

b(0,0)−C
2C

∥∥∥} and β = max{∥A∥, ∥C∥} hence we
have

∥P (q1 + r0, q2 + s0)∥ ≥ α(q1 + q2)
2 − 2θβ(q1 + q2).
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Consequently,

∥P (q1 + r0, q2 + s0)∥ ≥ α(q1 + q2)
[
(q1 + q2)− 2θβ

α

]
. (7.10)

Let ρ be any number that satisfies the inequality 0 < ρ < R. Given that the series defined in (7.3) are
convergent for (x, y) = (ρ, ρ) there exists a constant M > 0 such that

∥aQ∥ρ|Q| ≤M, ∥bQ∥ρ|Q| ≤M and ∥cQ∥ρ|Q| ≤M |Q| = 0, 1, 2, . . . . (7.11)

Using (7.10) and (7.11) in (7.9) we obtain

α|Q|
[
|Q| − 2θβ

α

]
∥DQ(r0, s0)∥

≤M
∑q1−1

j=0

∑q2
j=0[i+ j + ∥r0∥+ ∥s0∥+ 1]ρi+j−|Q|∥Di,j(r0, s0)∥

+M
∑q2−1

j=0 [q1 + ∥r0∥+ ∥s0∥+ 1]ρj−q2∥Dq1,j(r0, s0)∥.

(7.12)

Summing up all terms of norm |Q| = n in (7.12) we have

αn
[
n− 2θβ

α

]∑
|Q|=n ∥DQ(r0, s0)∥ ≤

2M
∑n−1

k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−n

(∑
|Q|=k ∥DQ(r0, s0)∥

)
.

(7.13)

Consider ψ̃(x) =
∑∞

|Q|=0 ∥DQ(r0, s0)∥x|Q| the formal power series of nonnegative power in the

variable x. We will show that ψ̃ converges inDR(0), this will imply that ψ converges in ∆
(
(0, 0), (R,R)

)
.

Let dn =
∑

|Q|=n ∥DQ(r0, s0)∥ and then

ψ̃(x) =

∞∑
n=0

 ∑
|Q|=n

∥DQ(r0, s0)∥

xn =

∞∑
n=0

dnx
n.

Let n0 be a natural number such that n0 > 2θβ
α and let us define g0, g1, . . . of the following way:

g0 = ∥D0,0(r0, s0)∥ = 1, gn =
∑

|Q|=n

∥DQ(r0, s0)∥, (n = 1, 2, . . . , n0 − 1)

and

αn
[
n− 2θβ

α

]
gn = 2M

∑n−1
k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−ngk, (7.14)

for n = n0, n0 + 1, . . .. Then, comparing the definition of gn with (7.13), we conclude that

dn ≤ gn, n = 0, 1, 2, . . . . (7.15)

Thus we will show that the series
∞∑

n=0

gnx
n (7.16)

converges for |x| < ρ.
Replacing n by n+ 1 in (7.14) we have

ρα(n+ 1)
[
n+ 1− 2θβ

α

]
gn+1 =

(
αn

[
n− 2θβ

α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

)
gn,

for n = n0, n0 + 1, . . .. Thus∣∣∣∣gn+1x
n+1

gnxn

∣∣∣∣ = αn
[
n− 2θβ

α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

ρα(n+ 1)
[
n+ 1− 2θβ

α

] |x|

converges to |x|/ρ as n → ∞. Thus according to the quotient test, the series (7.16) converges in |x| < ρ.
Using (7.15) and by the comparison criteria, we conclude that the series

∑∞
n=0 dnx

n, d0 = 1, converges
in |x| < ρ. But given that ρ is any number that satisfies the inequality 0 < ρ < R, we have already proved
that this series converges for |x| < R. □
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8. Non-parabolic equations. We shall now deal with the non-parabolic cases, in particular the elliptic
and hyperbolic cases. For this sake, we shall consider the second order PDE

(E) Ax2 ∂
2z

∂x2
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0,

where A,C ∈ K∗, a(x, y), b(x, y) and c(x, y) analytic in ∆
(
(0, 0), (R,R)

)
⊂ K2, R > 0.

Definition 8.1. The above PDE will be classified as elliptic or hyperbolic according to Re(AC̄) > 0 or
Re(AC̄) < 0.

The definition above extends the definition in the case of real PDEs.

8.1. Non-parabolic: elliptic case. We shall now state what we understand as the version of Frobenius
method for elliptic complex PDEs:

Theorem 8.1 (elliptic complex). An elliptic second order linear homogeneous real analytic PDE
having a regular singular point, admits Frobenius type solutions. More precisely, consider the second
order linear PDE

L[z] := Ax2
∂2z

∂x2
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0, (8.1)

where A,C ∈ C∗ with Re(AC) > 0, a(x, y), b(x, y) and c(x, y) analytic in ∆
(
(0, 0), (R,R)

)
, R > 0.

Let (r0, s0) be a non-resonant point of the indicial conic C ⊂ C2. Then (E) admits a convergent Frobenius
type solution with initial monomial xr0ys0 . Moreover, the solution is real provided that the point (r0, s0)
and the coefficients of the PDE are real.

Proof: Let φ be a solution of (8.1) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q, (8.2)

where d0,0 ̸= 0. Given that a(x, y), b(x, y) and c(x, y) are holomorphic in ∆
(
(0, 0), (R,R)

)
we have that

a(x, y) =

∞∑
|Q|=0

aQX
Q, b(x, y) =

∞∑
|Q|=0

bQX
Q and c(x, y) =

∞∑
|Q|=0

cQX
Q, (8.3)

for every (x, y) ∈ ∆
(
(0, 0), (R,R)

)
.

Given that φ is solution of (8.1), proceeding as in the proof of Theorem 7.1, we have[
A(q1 + r)(q1 + r − 1) + C(q2 + s)(q2 + s− 1) + (q1 + r)a0,0 + (q2 + s)b0,0 + c0,0

]
dQ

+
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j = 0, |Q| = 0, 1, 2, . . . .

For |Q| = 0 we have

Ar(r − 1) + Cs(s− 1) + ra0,0 + sb0,0 + c0,0 = 0

provided that d0,0 ̸= 0. The second degree two variables polynomial P given by

P (r, s) = Ar2 + Cs2 + r(a0,0 −A) + s(b0,0 − C) + c0,0

is the indicial conic associate to equation (8.1). We see that

P (q1 + r, q2 + s)dQ + eQ = 0, |Q| = 1, 2, . . . , (8.4)

where

eQ =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j , |Q| = 1, 2, . . . .

(8.5)
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Observe that eQ is a linear combination of d0,0, d1,0, d0,1, . . . , dn−1,0, d0,n−1, whose coefficients are given
only in terms of the already known functions a, b, c, r and s. Letting r, s and d0,0 undetermined , as of now
we solve equations (8.4) and (8.5) in terms of d0,0, r and s. These solutions are defined by DQ(r, s), and a
eQ corresponding to EQ(r, s). Thus

E1,0(r, s) = (ra1,0 + sb1,0 + c1,0)d0,0, D1,0(r, s) = −E1,0(r,s)
P (1+r,s) ,

E0,1(r, s) = (ra0,1 + sb0,1 + c0,1)d0,0, D0,1(r, s) = −E0,1(r,s)
P (r,1+s) ,

and in general:

EQ(r, s) =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r, s)

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
Dq1,j(r, s), |Q| = 1, 2, . . . ,

DQ(r, s) = − EQ(r, s)

P (q1 + r, q2 + s)
, |Q| = 1, 2, . . . . (8.6)

The coefficients DQ obtained in this way, are rational functions of r and s, and the only points where they
are not defined, are those points r and s for which P (q1 + r, q2 + s) = 0 for some |Q| = 1, 2, . . .. Let us
define φ by:

φ((x, y), (r, s)) = d0,0x
rys + xrys

∞∑
|Q|=1

DQ(r, s)x
q1yq2 . (8.7)

If the series (8.7) converges in ∆
(
(0, 0), (R,R)

)
, then we have:

L(φ)((x, y), (r, s)) = d0,0P (r, s)x
rys. (8.8)

We have the following situation: If a φ given by (8.2) is solution of (8.1), then (r, s) must be a point of the
indicial conic P , and the dQ (|Q| = 1, 2, . . .) are uniquely determined in terms of d0,0, r and s to be the
DQ(r, s) from (8.6), provided that P (q1 + r, q2 + s) ̸= 0, |Q| = 1, 2, . . ..

Conversely, if (r, s) is a root of P and if theDQ(r, s) can be determined (i.e., P (q1+r, q2+s) ̸= 0 for
|Q| = 1, 2, . . .) then the function φ given by φ(x, y) = φ((x, y), (r, s)) is solution of (8.8) for every choice
of d0,0, provided that the series (8.7) is convergent. By hypothesis (r0, s0) is a point of the indicial conic
P such that (r0, s0) /∈ R, then P (q1 + r0, q2 + s0) ̸= 0 for every |Q| = 1, 2, . . .. Thus, DQ(r0, s0) there
exists for every |Q| = 1, 2, . . ., and putting d0,0 = D0,0(r0, s0) = 1 we have that the function ψ given by

ψ(x, y) = xr0ys0
∞∑

|Q|=0

DQ(r0, s0)x
q1yq2 , D0,0(r0, s0) = 1, (8.9)

is a solution of (8.1), provided that the series is convergent.
We need to show that the series (8.9) converges in ∆

(
(0, 0), (R,R)

)
, where the DQ(r0, s0) are given

recursively by

D0,0(r0, s0) = 1,

P (q1 + r0, q2 + s0)DQ(r0, s0) =

−
∑q1−1

i=0

∑q2
j=0

[
(i+ r0)aq1−i,q2−j + (j + s0)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r0, s0)

−
∑q2−1

j=0

[
(q1 + r0)a0,q2−j + (j + s0)b0,q2−j + c0,q2−j

]
Dq1,j(r0, s0), |Q| = 1, 2, . . . .

(8.10)

Observe that

P (q1 + r0, q2 + s0) = Aq21 + Cq22 + 2q1A
[
r0 +

a(0,0)−A
2A

]
+ 2q2C

[
s0 +

b(0,0)−C
2C

]
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therefore

∥P (q1 + r0, q2 + s0)∥ ≥ ∥Aq21 + Cq22∥ − 2q1∥A∥
∥∥∥r0 + a(0,0)−A

2A

∥∥∥− 2q2∥C∥
∥∥∥s0 + b(0,0)−C

2C

∥∥∥ .
Given that

∥Aq21 + Cq22∥2 = ∥A∥2q41 + ∥C∥2q42 + 2q21q
2
2Re(AC)

be a α = min{∥A∥2, ∥C∥2,Re(AC)} > 0 we have

∥Aq21 + Cq22∥ ≥
√
α (q1+q2)

2

2 .

Let θ = max
{∥∥∥r0 + a(0,0)−A

2A

∥∥∥ ,∥∥∥s0 + b(0,0)−C
2C

∥∥∥} and β = max{∥A∥, ∥C∥} hence we have

∥P (q1 + r0, q2 + s0)∥ ≥
√
α (q1+q2)

2

2 − 2θβ(q1 + q2).

Consequently,

∥P (q1 + r0, q2 + s0)∥ ≥
√
α
2 (q1 + q2)

[
(q1 + q2)− 4θβ√

α

]
. (8.11)

Let ρ be any number that satisfies the inequality 0 < ρ < R. Given that the series defined in (8.3) are
convergent for (x, y) = (ρ, ρ) there exists a constant M > 0 such that

∥aQ∥ρ|Q| ≤M, ∥bQ∥ρ|Q| ≤M and ∥cQ∥ρ|Q| ≤M |Q| = 0, 1, 2, . . . . (8.12)

Using (8.11) and (8.12) in (8.10) we obtain
√
α
2 |Q|

[
|Q| − 4θβ√

α

]
∥DQ(r0, s0)∥ ≤

M
ρ|Q|

∑q1−1
j=0

∑q2
j=0[i+ j + ∥r0∥+ ∥s0∥+ 1]ρi+j∥Di,j(r0, s0)∥

+M
∑q2−1

j=0 [q1 + ∥r0∥+ ∥s0∥+ 1]ρj−q2∥Dq1,j(r0, s0)∥.

(8.13)

Summing up all terms of norm |Q| = n in (8.13) we have

√
α
2 n

[
n− 4θβ√

α

]∑
|Q|=n ∥DQ(r0, s0)∥ ≤

2M
∑n−1

k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−n

(∑
|Q|=k ∥DQ(r0, s0)∥

)
.

(8.14)

Consider ψ̃(x) =
∑∞

|Q|=0 ∥DQ(r0, s0)∥x|Q| the formal power series of nonnegative power in the variable

x. We will show that ψ̃ converges in DR(0), this will imply that ψ converges in ∆
(
(0, 0), (R,R)

)
. Let

dn =
∑

|Q|=n ∥DQ(r0, s0)∥ and then

ψ̃(x) =

∞∑
n=0

( ∑
|Q|=n

∥DQ(r0, s0)∥
)
xn =

∞∑
n=0

dnx
n.

Let n0 be a natural number such that n0 > 4θβ√
α

and let us define g0, g1, . . . of the following way:

g0 = ∥D0,0(r0, s0)∥ = 1, gn =
∑

|Q|=n

∥DQ(r0, s0)∥, (n = 1, 2, . . . , n0 − 1)

and
√
α
2 n

[
n− 4θβ√

α

]
gn = 2M

∑n−1
k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−ngk, (8.15)

for n = n0, n0 + 1, . . .. Then, comparing the definition of gn with (8.14), we conclude that

dn ≤ gn, n = 0, 1, 2, . . . . (8.16)
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Thus we will show that the series
∞∑

n=0

gnx
n (8.17)

converges for |x| < ρ. Replacing n by n+ 1 in (8.15) we have:

ρ
√
α
2 (n+ 1)

[
n+ 1− 4θβ√

α

]
gn+1 =

(√
α
2 n

[
n− 4θβ√

α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

)
gn,

for n = n0, n0 + 1, . . .. Thus∣∣∣∣gn+1x
n+1

gnxn

∣∣∣∣ =
√
α
2 n

[
n− 4θβ√

α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

ρ
√
α
2 (n+ 1)

[
n+ 1− 4θβ√

α

] |x|

converges to |x|/ρ as n → ∞. Thus according to the quotient test, the series (8.17) converges in |x| < ρ.
Using (8.16) and by the comparison criteria, we conclude that the series

∑∞
n=0 dnx

n, d0 = 1, converges
in |x| < ρ. But given that ρ is any number that satisfies the inequality 0 < ρ < R, we have already proved
that this series converges for |x| < R. □

8.2. Non-parabolic: hyperbolic case. We present now our version of Frobenius method for second
order linear complex PDEs of hyperbolic type:

Theorem 8.2 (non parabolic convergent II). A hyperbolic second order linear homogeneous complex
analytic PDE having a regular singular point, admits Frobenius type solutions. More precisely, consider
the second order PDE

L[z] := Ax2
∂2z

∂x2
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0, (8.18)

whereA,C ∈ C∗ with Re(AC) < 0, a(x, y), b(x, y) and c(x, y) holomorphic in ∆
(
(0, 0), (R,R)

)
,R > 0.

Let (r0, s0) be a non-resonant point of the indicial conic. Then (E) admits a convergent Frobenius type
solution with initial monomial xr0ys0 . Moreover, the solution is real provided that the point (r0, s0) and
the coefficients of the PDE are real.

Proof: Let φ be a solution of (8.18) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q, (8.19)

where d0,0 ̸= 0. Given that a(x, y), b(x, y) and c(x, y) are holomorphic in ∆
(
(0, 0), (R,R)

)
we have that

a(x, y) =

∞∑
|Q|=0

aQX
Q, b(x, y) =

∞∑
|Q|=0

bQX
Q and c(x, y) =

∞∑
|Q|=0

cQX
Q, (8.20)

for every (x, y) ∈ ∆
(
(0, 0), (R,R)

)
.

Given that φ is solution of (8.18) we have[
A(q1 + r)(q1 + r − 1) + C(q2 + s)(q2 + s− 1) + (q1 + r)a0,0 + (q2 + s)b0,0 + c0,0

]
dQ

+
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j = 0, |Q| = 0, 1, 2, . . . .

For |Q| = 0 we have

Ar(r − 1) + Cs(s− 1) + ra0,0 + sb0,0 + c0,0 = 0

provided that d0,0 ̸= 0. The second degree two variables polynomial P given by

P (r, s) = Ar2 + Cs2 + r(a0,0 −A) + s(b0,0 − C) + c0,0
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is called indicial conic associate to equation (8.18). We see that

P (q1 + r, q2 + s)dQ + eQ = 0, |Q| = 1, 2, . . . , (8.21)

where

eQ =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j , |Q| = 1, 2, . . . .

(8.22)

Observe that eQ is a linear combination of d0,0, d1,0, d0,1, . . . , dn−1,0, d0,n−1, whose coefficients are given
only in terms of the already known functions a, b, c, r and s. Letting r, s and d0,0 undetermined , as of now
we solve equations (8.21) and (8.22) in terms of d0,0, r and s. These solutions are defined by DQ(r, s), and
a eQ corresponding to EQ(r, s). Thus

E1,0(r, s) = (ra1,0 + sb1,0 + c1,0)d0,0, D1,0(r, s) = −E1,0(r,s)
P (1+r,s) ,

E0,1(r, s) = (ra0,1 + sb0,1 + c0,1)d0,0 D0,1(r, s) = −E0,1(r,s)
P (r,1+s) ,

and in general:

EQ(r, s) =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r, s)

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
Dq1,j(r, s), |Q| = 1, 2, . . . ,

DQ(r, s) = − EQ(r, s)

P (q1 + r, q2 + s)
, |Q| = 1, 2, . . . . (8.23)

The coefficients DQ obtained in this way, are rational functions of r and s, and the only points where they
are not defined, are those points r and s for which P (q1 + r, q2 + s) = 0 for some |Q| = 1, 2, . . .. Let us
define φ by:

φ((x, y), (r, s)) = d0,0x
rys + xrys

∞∑
|Q|=1

DQ(r, s)x
q1yq2 . (8.24)

If the series (8.24) converges in ∆
(
(0, 0), (R,R)

)
, then we have:

L(φ)((x, y), (r, s)) = d0,0P (r, s)x
rys. (8.25)

We have the following situation: If a φ given by (8.19) is solution of (8.18), then (r, s) must be a point of
the indicial conic P , and the dQ (|Q| = 1, 2, . . .) are uniquely determined in terms of d0,0, r and s to be the
DQ(r, s) from (8.23), provided that P (q1 + r, q2 + s) ̸= 0, |Q| = 1, 2, . . ..

Conversely, if (r, s) is a root of P and if the DQ(r, s) can be determined (i.e., P (q1 + r, q2 + s) ̸= 0
for |Q| = 1, 2, . . .) then the function φ given by φ(x, y) = φ((x, y), (r, s)) is solution of (8.25) for every
choice of d0,0, provided that the series (8.19) is convergent.

By hypothesis (r0, s0) is a point of the indicial conic P such that (r0, s0) /∈ R, then P (q1 + r0, q2 +
s0) ̸= 0 for every |Q| = 1, 2, . . .. Thus, DQ(r0, s0) there exists for every |Q| = 1, 2, . . ., and putting
d0,0 = D0,0(r0, s0) = 1 we have that the function ψ given by

ψ(x, y) = xr0ys0
∞∑

|Q|=0

DQ(r0, s0)x
q1yq2 , D0,0(r0, s0) = 1,

is a solution of (8.18), if series converges.
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We need to show that the series (8.24) converges in ∆
(
(0, 0), (R,R)

)
, where theDQ(r0, s0) are given

recursively by

D0,0(r0, s0) = 1,

P (q1 + r0, q2 + s0)DQ(r0, s0) =

−
∑q1−1

i=0

∑q2
j=0

[
(i+ r0)aq1−i,q2−j + (j + s0)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r0, s0)

−
∑q2−1

j=0

[
(q1 + r0)a0,q2−j + (j + s0)b0,q2−j + c0,q2−j

]
Dq1,j(r0, s0), |Q| = 1, 2, . . . .

(8.26)

Observe that

P (q1 + r0, q2 + s0) = Aq21 + Cq22 + 2q1A
[
r0 +

a(0,0)−A
2A

]
+ 2q2C

[
s0 +

b(0,0)−C
2C

]
therefore

∥P (q1 + r0, q2 + s0)∥ ≥ ∥Aq21 + Cq22∥ − 2q1∥A∥
∥∥∥r0 + a(0,0)−A

2A

∥∥∥− 2q2∥C∥
∥∥∥s0 + b(0,0)−C

2C

∥∥∥ .
Given that

∥Aq21 + Cq22∥2 = ∥A∥2q41 + ∥C∥2q42 + 2q21q
2
2Re(AC)

let α = min{∥A∥2, ∥C∥2} > 0 and since Re(AC) < 0 we have

∥Aq21 + Cq22∥2 ≥ α(q1+q2)
2

8

(
(q1 + q2)

2 + 8
αRe(AC)

)
.

Let θ = max
{∥∥∥r0 + a(0,0)−A

2A

∥∥∥ ,∥∥∥s0 + b(0,0)−C
2C

∥∥∥} and β = max{∥A∥, ∥C∥}. Let n0 be a natural number

such that n20 >
32θ2β2

α − 8
αRe(AC) > 0. Thus for |Q| = q1 + q2 ≥ n0 we have that

∥P (q1 + r0, q2 + s0)∥ ≥
√
α

2
√
2
(q1 + q2)

√
(q1 + q2)2 +

8
αRe(AC)− 2θβ(q1 + q2).

Consequently, for |Q| ≥ n0 we have

∥P (q1 + r0, q2 + s0)∥ ≥
√
α

2
√
2
|Q|

(√
|Q|2 + 8

αRe(AC)− 4
√
2θβ√
α

)
. (8.27)

Let ρ be any number that satisfies the inequality 0 < ρ < R. Given that the series defined in (8.20) are
convergent for (x, y) = (ρ, ρ) there exists a constant M > 0 such that

∥aQ∥ρ|Q| ≤M, ∥bQ∥ρ|Q| ≤M and ∥cQ∥ρ|Q| ≤M |Q| = 0, 1, 2, . . . . (8.28)

Using (8.27) and (8.28) in (8.26) for |Q| ≥ n0 we obtain

√
α

2
√
2
|Q|

(√
|Q|2 + 8

αRe(AC)− 4
√
2θβ√
α

)
∥DQ(r0, s0)∥ ≤

M
∑q1−1

j=0

∑q2
j=0[i+ j + ∥r0∥+ ∥s0∥+ 1]ρi+j−|Q|∥Di,j(r0, s0)∥

+M
∑q2−1

j=0 [q1 + ∥r0∥+ ∥s0∥+ 1]ρj−q2∥Dq1,j(r0, s0)∥.

(8.29)

Summing up all terms of norm |Q| = n (n ≥ n0) in (8.29) we have

√
α

2
√
2
n
(√

n2 + 8
αRe(AC)− 4

√
2θβ√
α

)∑
|Q|=n ∥DQ(r0, s0)∥ ≤

2M
∑n−1

k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−n

(∑
|Q|=k ∥DQ(r0, s0)∥

)
.

(8.30)
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Consider ψ̃(x) =
∑∞

|Q|=0 ∥DQ(r0, s0)∥x|Q| the formal power series of nonnegative power in the

variable x. We will show that ψ̃ converges inDR(0), this will imply that ψ converges in ∆
(
(0, 0), (R,R)

)
.

Let dn =
∑

|Q|=n ∥DQ(r0, s0)∥ and then

ψ̃(x) =

∞∑
n=0

( ∑
|Q|=n

∥DQ(r0, s0)∥
)
xn =

∞∑
n=0

dnx
n.

Let us define g0, g1, . . . of the following way:

g0 = ∥D0,0(r0, s0)∥ = 1, gn =
∑

|Q|=n

∥DQ(r0, s0)∥, (n = 1, 2, . . . , n0 − 1)

and
√
α

2
√
2
n
(√

n2 + 8
αRe(AC)− 4

√
2θβ√
α

)
gn = 2M

∑n−1
k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−ngk, (8.31)

for n = n0, n0 + 1, . . .. Then, comparing the definition of gn with (8.30), we conclude that

dn ≤ gn, n = 0, 1, 2, . . . . (8.32)

Thus we will show that the series

∞∑
n=0

gnx
n (8.33)

converges for |x| < ρ. Replacing n by n+ 1 in (8.31) we have:

ρ
√
α

2
√
2
(n+ 1)

(√
(n+ 1)2 + 8

αRe(AC)− 4
√
2θβ√
α

)
gn+1 =

[ √
α

2
√
2
n
(√

n2 + 8
αRe(AC)− 4

√
2θβ√
α

)
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

]
gn,

for n = n0, n0 + 1, . . .. Thus

∣∣∣∣gn+1x
n+1

gnxn

∣∣∣∣ =
[ √

α

2
√
2
n
(√

n2 + 8
αRe(AC)− 4

√
2θβ√
α

)
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

]
ρ

√
α

2
√
2
(n+ 1)

(√
(n+ 1)2 + 8

αRe(AC)− 4
√
2θβ√
α

) |x|

converges to |x|/ρ as n→ ∞. Thus by the quotient test, the series (8.33) converges in |x| < ρ. Using (8.32)
and by the comparison criteria, we conclude that the series

∑∞
n=0 dnx

n, d0 = 1, converges in |x| < ρ. But
given that ρ is any number that satisfies the inequality 0 < ρ < R, we have already proved that this series
converges for |x| < R. □

8.3. Non parabolic case: a sufficient convergence condition. A general statement for a wide class
of complex PDEs that includes all the real analytic cases is given below:

Theorem 8.3 (Non parabolic convergent). Consider the complex analytic second order PDE

L[z] := Ax2
∂2z

∂x2
+Bxy

∂2z

∂x∂y
+ Cy2

∂2z

∂y2
+ xa(x, y)

∂z

∂x
+ yb(x, y)

∂z

∂y
+ c(x, y)z = 0, (8.34)

withA,B,C ∈ K∗ such that ∥B∥2

2 +Re(AC) > 0, Re(AB) > 0, Re(BC) > 0, a(x, y), b(x, y) and c(x, y)

analytic in ∆
(
(0, 0), (R,R)

)
, R > 0. Let (r0, s0) ∈ C2 be a non-resonant point of the indicial conic.

Then there exists a convergent Frobenius type solution of (8.34) with initial monomial xr0ys0 . If (r0, s0)
and the coefficients of the PDE are real, the solution is also real.

Proof: Let φ be a solution of (8.34) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q, (8.35)
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where d0,0 ̸= 0. Given that a(x, y), b(x, y) and c(x, y) are holomorphic in ∆
(
(0, 0), (R,R)

)
we have that

a(x, y) =

∞∑
|Q|=0

aQX
Q, b(x, y) =

∞∑
|Q|=0

bQX
Q and c(x, y) =

∞∑
|Q|=0

cQX
Q, (8.36)

for every (x, y) ∈ ∆
(
(0, 0), (R,R)

)
.

Given that φ is solution of (8.34) we have[
A(q1 + r)(q1 + r − 1) +B(q1 + r)(q2 + s) + C(q2 + s)(q2 + s− 1)

+(q1 + r)a0,0 + (q2 + s)b0,0 + c0,0
]
dQ

+
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j = 0, |Q| = 0, 1, 2, . . . .

For |Q| = 0 we have

Ar(r − 1) +Brs+ Cs(s− 1) + ra0,0 + sb0,0 + c0,0 = 0

provided that d0,0 ̸= 0. The second degree two variables polynomial P given by

P (r, s) = Ar2 +Brs+ Cs2 + r(a0,0 −A) + s(b0,0 − C) + c0,0

is called indicial conic associate to equation (8.34). We see that

P (q1 + r, q2 + s)dQ + eQ = 0, |Q| = 1, 2, . . . , (8.37)

where

eQ =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
di,j

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
dq1,j , |Q| = 1, 2, . . . .

(8.38)

Observe that eQ is a linear combination of d0,0, d1,0, d0,1, . . . , dn−1,0, d0,n−1, whose coefficients are given
only in terms of the already known functions a, b, c, r and s. Letting r, s and d0,0 undetermined, as of now
we solve equations (8.37) and (8.38) in terms of d0,0, r and s. These solutions are defined by DQ(r, s), and
a eQ corresponding to EQ(r, s). Thus

E1,0(r, s) = (ra1,0 + sb1,0 + c1,0)d0,0, D1,0(r, s) = −E1,0(r,s)
P (1+r,s) ,

E0,1(r, s) = (ra0,1 + sb0,1 + c0,1)d0,0, D0,1(r, s) = −E0,1(r,s)
P (r,1+s) ,

and in general:

EQ(r, s) =
∑q1−1

i=0

∑q2
j=0

[
(i+ r)aq1−i,q2−j + (j + s)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r, s)

+
∑q2−1

j=0

[
(q1 + r)a0,q2−j + (j + s)b0,q2−j + c0,q2−j

]
Dq1,j(r, s), |Q| = 1, 2, . . . ,

DQ(r, s) = − EQ(r, s)

P (q1 + r, q2 + s)
, |Q| = 1, 2, . . . . (8.39)

The coefficients DQ obtained in this way, are rational functions of r and s, and the only points where they
are not defined, are those points r and s for which P (q1 + r, q2 + s) = 0 for some |Q| = 1, 2, . . .. Let us
define φ by:

φ((x, y), (r, s)) = d0,0x
rys + xrys

∞∑
|Q|=1

DQ(r, s)x
q1yq2 . (8.40)
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If the series (8.40) converges in ∆
(
(0, 0), (R,R)

)
, then we have:

L(φ)((x, y), (r, s)) = d0,0P (r, s)x
rys.

We have the following situation: If a φ given by (8.35) is solution of (8.34), then (r, s) must be a point of
the indicial conic P , and the dQ (|Q| = 1, 2, . . .) are uniquely determined in terms of d0,0, r and s to be the
DQ(r, s) from (8.39), provided that P (q1 + r, q2 + s) ̸= 0, |Q| = 1, 2, . . ..

Conversely, if (r, s) is a root of P and if the DQ(r, s) can be determined (i.e., P (q1 + r, q2 + s) ̸= 0
for |Q| = 1, 2, . . .) then the function φ given by φ(x, y) = φ((x, y), (r, s)) is solution of (8.34) for every
choice of d0,0, provided that the series (8.40) is convergent.

By hypothesis (r0, s0) is a point of the indicial conic P such that (r0, s0) /∈ R, then P (q1 + r0, q2 +
s0) ̸= 0 for every |Q| = 1, 2, . . .. Thus, DQ(r0, s0) there exists for every |Q| = 1, 2, . . ., and putting
d0,0 = D0,0(r0, s0) = 1 we have that the function ψ given by

ψ(x, y) = xr0ys0
∞∑

|Q|=0

DQ(r0, s0)x
q1yq2 , D0,0(r0, s0) = 1, (8.41)

is a solution of (8.34), when the series is convergent.
We need to show that the series (8.41) converges in ∆

(
(0, 0), (R,R)

)
where the DQ(r0, s0) are given

recursively by

D0,0(r0, s0) = 1,

P (q1 + r0, q2 + s0)DQ(r0, s0) =

−
∑q1−1

i=0

∑q2
j=0

[
(i+ r0)aq1−i,q2−j + (j + s0)bq1−i,q2−j + cq1−i,q2−j

]
Di,j(r0, s0)

−
∑q2−1

j=0

[
(q1 + r0)a0,q2−j + (j + s0)b0,q2−j + c0,q2−j

]
Dq1,j(r0, s0), |Q| = 1, 2, . . . .

(8.42)

Observe that

P (q1+r0, q2+s0) = Aq21 +Bq1q2+Cq
2
2 +2q1A

[
r0+

B
2As0+

a(0,0)−A
2A

]
+2q2C

[
s0+

B
2C r0+

b(0,0)−C
2C

]
therefore

∥P (q1 + r0, q2 + s0)∥ ≥ ∥Aq21 +Bq1q2 + Cq22∥ − 2q1∥A∥
∥∥∥r0 + B

2As0 +
a(0,0)−A

2A

∥∥∥
−2q2∥C∥

∥∥∥s0 + B
2C r0 +

b(0,0)−C
2C

∥∥∥ .
Given that

∥Aq21+Bq1q2+Cq22∥2 = q41∥A∥2+2q21q
2
2

[
∥B∥2

2 +Re(AC)
]
+q42∥C∥2+2q1q2

[
q21Re(AB)+q22Re(BC)

]
be a α = min{∥A∥2, ∥B∥2

2 + Re(AC), ∥C∥2,Re(AB),Re(BC)} > 0 we have

∥Aq21 +Bq1q2 + Cq22∥ ≥
√
α√
2
(q1 + q2)

2.

Let θ = max
{∥∥∥r0 + B

2As0 +
a(0,0)−A

2A

∥∥∥ ,∥∥∥s0 + B
2C r0 +

b(0,0)−C
2C

∥∥∥} and β = max{∥A∥, ∥C∥} hence we
have

∥P (q1 + r0, q2 + s0)∥ ≥
√
α√
2
(q1 + q2)

2 − 2θβ(q1 + q2).

Consequently:

∥P (q1 + r0, q2 + s0)∥ ≥
√
α√
2
(q1 + q2)

[
(q1 + q2)− 2

√
2θβ√
α

]
. (8.43)
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Let ρ be any number that satisfies the inequality 0 < ρ < R. Given that the series defined in (8.36) are
convergent for (x, y) = (ρ, ρ) there exists a constant M > 0 such that

∥aQ∥ρ|Q| ≤M, ∥bQ∥ρ|Q| ≤M and ∥cQ∥ρ|Q| ≤M |Q| = 0, 1, 2, . . . . (8.44)

Using (8.43) and (8.44) in (8.42) we obtain
√
α√
2
|Q|

[
|Q| − 2

√
2θβ√
α

]
∥DQ(r0, s0)∥ ≤

M
∑q1−1

j=0

∑q2
j=0[i+ j + ∥r0∥+ ∥s0∥+ 1]ρi+j−|Q|∥Di,j(r0, s0)∥

+M
∑q2−1

j=0 [q1 + ∥r0∥+ ∥s0∥+ 1]ρj−q2∥Dq1,j(r0, s0)∥.

(8.45)

Summing up all terms of norm |Q| = n in (8.45) we have
√
α√
2
n
[
n− 2

√
2θβ√
α

]∑
|Q|=n ∥DQ(r0, s0)∥ ≤

2M
∑n−1

k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−n

(∑
|Q|=k ∥DQ(r0, s0)∥

)
.

(8.46)

Consider ψ̃(x) =
∑∞

|Q|=0 ∥DQ(r0, s0)∥x|Q| the formal power series of nonnegative power in the

variable x. We will show that ψ̃ converges inDR(0), this will imply that ψ converges in ∆
(
(0, 0), (R,R)

)
.

Let dn =
∑

|Q|=n ∥DQ(r0, s0)∥ and then

ψ̃(x) =

∞∑
n=0

( ∑
|Q|=n

∥DQ(r0, s0)∥
)
xn =

∞∑
n=0

dnx
n.

Let n0 be a natural number such that n0 > 2
√
2θβ√
α

and let us define g0, g1, . . . of the following way:

g0 = ∥D0,0(r0, s0)∥ = 1, gn =
∑

|Q|=n

∥DQ(r0, s0)∥, (n = 1, 2, . . . , n0 − 1)

and
√
α√
2
n
[
n− 2

√
2θβ√
α

]
gn = 2M

∑n−1
k=0

(
k + ∥r0∥+ ∥s0∥+ 1

)
ρk−ngk, (8.47)

for n = n0, n0 + 1, . . .. Then, comparing the definition of gn with (8.46), we conclude that

dn ≤ gn, n = 0, 1, 2, . . . . (8.48)

Thus we will show that the series
∞∑

n=0

gnx
n (8.49)

converges for |x| < ρ.
Replacing n by n+ 1 in (8.47) we have:

ρ
√
α√
2
(n+ 1)

[
n+ 1− 2

√
2θβ√
α

]
gn+1 =

(√
α√
2
n
[
n− 2

√
2θβ√
α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

)
gn,

for n = n0, n0 + 1, . . .. Thus

∣∣∣∣gn+1x
n+1

gnxn

∣∣∣∣ =
√
α√
2
n
[
n− 2

√
2θβ√
α

]
+ 2M(n+ ∥r0∥+ ∥s0∥+ 1)

ρ
√
α√
2
(n+ 1)

[
n+ 1− 2

√
2θβ√
α

] |x|,

converges to |x|/ρ as n → ∞. Thus according to the quotient test, the series (8.49) converges in |x| < ρ.
Using (8.48) and by the comparison criteria, we conclude that the series

∑∞
n=0 dnx

n, d0 = 1, converges
in |x| < ρ. But given that ρ is any number that satisfies the inequality 0 < ρ < R, we have already proved
that this series converges for |x| < R. □



León V, Scárdua B.- Selecciones Matemáticas. 2023; Vol. 10(2): 210-248 239

9. Examples: Bessel, Airy, Hermite partial differential equations and others. In this section we
introduce some classes of examples bringing to our framework classical examples from the theory of ordi-
nary differential equations. The strategy is based on Remark 6.1. Indeed, we look for models which once
restricted to straight lines y = tx, t ∈ R, are of the original classical model. For instance, the candidate
for being the Hermite partial equation must be such that once restricted to lines y = tx becomes a Hermite
ordinary differential equation. The only exception is for the Bessel equation. We shall start with:

9.1. Bessel partial differential equations. We have mentioned in the Introduction that one of the
motivations of this work is to introduce in the partial differential equations framework some classical models
and therefore to obtain some of their possible applications. This is the case of the Bessel equation x2y′′ +
xy′+(x2−ν2)y = 0, whose range of applications goes from heat conduction, to the model of the hydrogen
atom ([7, 6]). This equation has the origin x = 0 as a singular point. Its solutions are called Bessel functions
and the most important cases are when ν is an integer or half-integer. Bessel functions for integer ν are
also known as cylinder functions because they appear in the solution to Laplace’s equation in cylindrical
coordinates. Let us now introduce what we shall understand as the equivalent of the Bessel equation for the
case of PDEs.

9.1.1. Bessel PDE type I. Consider the equation Bessel PDE of type I given by

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
+ x

∂z

∂x
+ y

∂z

∂y
+ (x2 − ν2)z = 0, (9.1)

where ν ∈ R. This model is obtained by imposing that the restrictions to lines y = tx are Bessel ordinary
differential equations.

9.1.2. Solution of Bessel type I. Let us first consider the case ν = 0. Let φ be a solution of (9.1) of
the form φ(x, y) = xrys

∑∞
|Q|=0 dQX

Q, where d0,0 ̸= 0. Then (r + s)2d0,0 = 0, (1 + r + s)2d1,0 =

0, (1 + r + s)2d0,1 = 0 and (|Q|+ r + s)2dQ + dq1−2,q2 = 0, for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0
we have that

r + s = 0. (9.2)

Let (r, s) point of (9.2). Note that |Q| + r0 + s0 ̸= 0, for all |Q| = 1, 2, . . .. Thus we have d1,0 =

d0,1 = 0 and dQ = −dq1−2,q2

|Q|2 , for all |Q| = 2, 3 . . .. Therefore dq1,q2 = 0, (q1, q2) ̸= (2n, 0) and

d2n,0 =
(−1)nd0,0

22n(n!)2 , n = 1, 2, . . .. Choosing d0,0 = 1 we have that

φ(x, y) = xr0ys0

[
1 +

∞∑
n=1

(−1)nx2n

22n(n!)2

]
,

is solution of (9.1), where (r0, s0) verifies (9.2). We observe that y(x) = 1+
∑∞

n=1
(−1)nx2n

22n(n!)2 is exactly one
of the solutions of the Bessel ordinary differential equation x2y′′ +xy′ +(x2 − ν2) = 0 for ν = 0. Indeed,
this is well-known as a first type Bessel function of order zero and denoted by J0. Thus our solution is of
the form φ(x, y) = xr0ys0J0(x), which show that nothing striking comes from this first model, though it
may be useful in applications.

9.1.3. Bessel PDE type II. Now we consider a more symmetric model for the Bessel PDE. Consider
the Bessel PDE of type II given by the equation

x2
∂2z

∂x2
+ y2

∂2z

∂y2
+ x

∂z

∂x
+ y

∂z

∂y
+ (xy − ν2)z = 0. (9.3)

9.1.4. Solution of Bessel type II. Let us first consider the case ν = 0. Let φ be a solution of (9.3) of
the form φ(x, y) = xrys

∑∞
|Q|=0 dQX

Q, where d0,0 ̸= 0. Then (r2 + s2)d0,0 = 0, ((r + 1)2 + s2)d1,0 =

0, (r2 + (s+1)2)d0,1 = 0 and
[
(q1 + r)2 + (q2 + s)2

]
dQ + dq1−1,q2−1 = 0, for all |Q| = 2, 3, . . .. Given

that d0,0 ̸= 0 we have that

r2 + s2 = 0. (9.4)

Let (r, s) point of (9.4) such that

(r, s) /∈ {(r1, s1) ∈ C2; 2q1r1 + 2q2s1 + q21 + q22 = 0, for some |Q| = 1, 2, . . .}. (9.5)
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Thus we have d1,0 = d0,1 = 0 and dQ = − dq1−1,q2−1

2q1r0+2q2s0+q21+q22
, for all |Q| = 2, 3, . . .. Therefore dq1,q2 =

0, q1 ̸= q2 and dn,n =
(−1)nd0,0

2n(n!)(r0+s0+1)(r0+s0+2)...(r0+s0+n) , n = 0, 1, 2, . . .. Choosing d0,0 = 1 we have
that

φ(x, y) = xr0ys0

[
1 +

∞∑
n=1

(−1)n(xy)n

2n(n!)(r0 + s0 + 1)(r0 + s0 + 2) . . . (r0 + s0 + n)

]
, (9.6)

is solution of (9.3), where (r0, s0) verifies (9.4) and (9.5). Equation (9.3) will be called Second order
Bessel PDE, due to the similarity of the solution (9.6) with the order zero Bessel functions for second order
ordinary differential equations.

9.1.5. Bessel functions. Let us study more the solutions of the Bessel PDE of type II. Recall that the
ordinary Bessel equation x2y′′ + xy′ + (x2 − ν2)y = 0 has two important cases: ν = 0 and ν = 1/2. The

case ν = 0 has one solution of the form y1(x) = a0

[
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

]
defined for x > 0.

Let us take a sample of our solutions. For r = s = 0 there is no resonance in the Bessel type II and we
have a convergent solution of the form

φ(x, y) = 1 +

∞∑
n=1

(−1)n(xy)n

2n(n!)(1)(2) . . . (n)
= 1 +

∞∑
n=1

(−1)n(xy)n

2n(n!)2
.

Unlike in the case of type I, the solution of Bessel type II is not straight connected to the Bessel function
J0, providing a different type of object for study.

9.2. Airy partial differential equations. In ordinary differential equations we have the Airy equation
y′′ − xy = 0. This equation named after George Biddell Airy British astronomer, appears quite frequently
in problems connected with optics. The Airy equation describes some very interesting phenomena. It is
well-known as the simplest second-order linear differential equation with a turning point (a point where
the character of the solutions changes from oscillatory to exponential). There are two linearly independent
solutions of the Airy equation and they are called Airy functions. The Airy functions are solutions to
Schrödinger’s equation for a particle confined within a triangular potential well and for a particle in a
one-dimensional constant force field. They are also used in the approximation near a turning point in
mathematical physics. Next we introduce an equivalent to Airy equation for partial differential equations
and calculate its solutions.

9.2.1. Type I Airy PDE. Consider the Airy partial differential equation of type I as given by

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
− x3z = 0. (9.7)

This is a parabolic PDE with a regular singularity at the origin. Notice that for each line y = λx we
have a copy of the Airy equation. This seems quite surprising since the original Airy ordinary differential
equation is not singular at the origin.

9.2.2. Solution of Airy type I. Let us now calculate the solutions of this equation. Let φ be a solution
of (9.7) of the form φ(x, y) = xrys

∑∞
|Q|=0 dQX

Q, where d0,0 ̸= 0. Then (r + s)(r + s − 1)d0,0 =

0, (1+ r+ s)(r+ s)d1,0 = 0, (1+ r+ s)(r+ s)d0,1 = 0, (2+ r+ s)(1+ r+ s)d2,0 = 0, (2+ r+ s)(1+
r+ s)d1,1 = 0, (2 + r+ s)(1 + r+ s)d0,2 = 0 and (|Q|+ r+ s)(|Q|+ r+ s− 1)dQ + dq1−3,q2 = 0, for
all |Q| = 3, 4, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.8)

Let (r, s) point of (9.8) such that

(r, s) /∈ C = {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.9)

Thus we have d1,0 = d0,1 = 0, d2,0 = d1,1 = d0,2 = 0 and dQ =
dq1−3,q2

(|Q|+r+s)(|Q|+r+s−1) , for all |Q| =
3, 4, . . .. Therefore dq1,q2 = 0, (q1, q2) ̸= (3n, 0) and d3n,0 =

d0,0

(2+r+s)(3+r+s)···(3n−1+r+s)(3n+r+s) ,

n = 1, 2, . . .. Choosing d0,0 = 1 we have that

φ(x, y) = xrys

[
1 +

∞∑
n=1

x3n

(2 + r + s)(3 + r + s) · · · (3n− 1 + r + s)(3n+ r + s)

]
is solution of (9.7), where (r, s) verifies (9.8) and (9.9).
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9.2.3. Type II Airy PDE. Consider the Airy partial differential equation of type II as given by

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
− x2yz = 0. (9.10)

This is the second possible type (up to interchanging x and y) for the Airy PDE in order to have the
restrictions to lines y = tx also given by Airy equations.

9.2.4. Solution of Airy type II. Let φ be a solution of (9.10) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q,

where d0,0 ̸= 0. Then (r+ s)(r+ s− 1)d0,0 = 0, (1+ r+ s)(r+ s)d1,0 = 0, (1+ r+ s)(r+ s)d0,1 = 0,
(2 + r + s)(1 + r + s)d2,0 = 0, (2 + r + s)(1 + r + s)d1,1 = 0, (2 + r + s)(1 + r + s)d0,2 = 0, and
(|Q|+ r + s)(|Q|+ r + s− 1)dQ − dq1−2,q2−1 = 0, for all |Q| = 3, 4, . . .. Given that d0,0 ̸= 0 we have
that

(r + s)(r + s− 1) = 0. (9.11)

Let (r, s) point of (9.11) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.12)

Thus we have d1,0 = d0,1 = 0, d2,0 = d1,1 = d0,2 = 0 and dQ =
dq1−2,q2−1

(|Q|+r+s)(|Q|+r+s−1) , for all |Q| =
3, 4, . . .. Therefore dq1,q2 = 0, (q1, q2) ̸= (2n, n) and d2n,n =

d0,0

(2+r+s)(3+r+s)···(3n−1+r+s)(3n+r+s) ,

n = 1, 2, . . .. Choosing d0,0 = 1 we have that

φ(x, y) = xrys

[
1 +

∞∑
n=1

x2nyn

(2 + r + s)(3 + r + s) · · · (3n− 1 + r + s)(3n+ r + s)

]
is solution of (9.10), where (r0, s0) verifies (9.11) and (9.12).

9.2.5. Airy functions. Let us first investigate the non-resonance conditions (9.11) and (9.12) above.
If (r, s) ∈ C then r + s = 1 or r + s = 0. Assume that r + s = 0. In this case the resonance condition
becomes |Q|(|Q| − 1) = 0 for some multi-index Q = (q1, q2) with q1 + q2 ≥ 1. Therefore it becomes
|Q| = 1. Thus we may have resonance in this case. On the other hand if r + s = 1 then the resonance
condition becomes (|Q|+ 1)|Q| = 0 and therefore it becomes |Q|+ 1 = 0. This does not occur and we do
not have resonance in this case. For instance we can take r = s = 1/2 and have no resonance. In this case
r + s = 1 and we have a solution of the form

φ2(x, y) = (xy)
1
2

[
1 +

∞∑
n=1

x2nyn

(3)(4) · · · (3n)(3n+ 1)

]
.

This will called Airy function of type II in two variables.
Similarly we have the Airy function of type I in two variables given

φ1(x, y) = (xy)
1
2

[
1 +

∞∑
n=1

x3n

(3)(4) · · · (3n)(3n+ 1)

]
which is a solution of (9.7).

Recall that the ordinary Airy equation is y′′ − xy = 0 which has general solution of the form y =
a0y1(x) + a1y2(x) for

y1(x) = 1 +

∞∑
n=1

x3n

2.3...(3n− 1)(3n)

and

y2(x) = x+

∞∑
n=1

x3n+1

3.4...(3n)(3n+ 1)
= x

[
1 +

∞∑
n=1

x3n

3.4...(3n)(3n+ 1)

]
.

The functions y1(x), y2(x) are called first and second Airy functions.

Let us write ξ(t) := 1 +
∑∞

n=1
tn

3.4...(3n)(3n+1) . Then y2(x) = x · ξ(x3) and ξ(t) = y2(t
1
3 )

t
1
3

. Then

we can write φ1(x, y) = (xy)
1
2 ξ(x3) = (xy)

1
2
y2(x)

x =
√

y
xy2(x). As for φ2(x, y) we observe that

φ2(x, y) =
√
xyξ(x2y) and therefore φ2(x, y) =

√
xy y2((x

2y)
1
3 )

(x2y)
1
3

=
(

y
x

) 1
6

y2((x
2y)

1
3 ).
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9.3. Hermite equation. In ordinary differential equations the Hermite equation is the second-order
ordinary differential equation y′′ − 2xy′ + λy = 0. The constant λ is complex or real. This equation
has an irregular singularity at x = ∞. The solutions by series are defined for |x| < ∞. If λ = 2n
for some natural number n ∈ N the Hermite equation has among its solutions the Hermite polynomial
of degree n given by Hn(x) = (−1)nex

2 dn

dzn (e
−x2

). Hermite’s differential equation appears during the
solution of the Schrödinger equation for the harmonic oscillator. The Hermite polynomials are mutually
orthogonal with respect to the density or weight function e−x2

. This allows the use of Hermite polynomials
as generating functions in several problems in mathematical-physics. Also in probability theory the use of
Hermite functions is quite important.

9.3.1. Hermite PDE type I. Let us now proceed to introduce what we shall understand as a first model
for the Hermite partial differential equation. Consider the equation

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
− 2x3

∂z

∂x
− 2x2y

∂z

∂y
+ λx2z = 0, (9.13)

where λ ∈ R.
The restriction of this equation to lines y = tx is a Hermite ordinary differential equation. Again, this

is somehow unexpected, since the PDE has a singularity at the origin and the Hermite ODE is non-singular
at the origin.

9.3.2. Solution of Hermite type I. Let φ be a solution of (9.13) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q,

where d0,0 ̸= 0. Then (r+ s)(r+ s− 1)d0,0 = 0, (1+ r+ s)(r+ s)d1,0 = 0, (1+ r+ s)(r+ s)d0,1 = 0
and (|Q| + r + s)(|Q| + r + s − 1)dQ + [−2(|Q| + r + s) + 4 + λ]dq1−2,q2 = 0, for all |Q| = 2, 3, . . ..
Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.14)

Let (r, s) point of (9.14) such that

(r, s) /∈ C = {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.15)

Thus we have d1,0 = d0,1 = 0 and dQ = − [−2(|Q|+r+s)+4+λ]dq1−2,q2

(|Q|+r+s)(|Q|+r+s−1) , for all |Q| = 2, 3, . . .. Therefore

dq1,q2 = 0, (q1, q2) ̸= (2n, 0) and d2n,0 =
(−1)n[−2(r+s)+λ−4(n−1)]···[−2(r+s)+λ]d0,0

(2n+r+s)···(1+r+s) , n = 1, 2, . . ..
Choosing d0,0 = 1 we have that

φ(r,s),λ(x, y) = xrys

[
1 +

∞∑
n=1

(−1)n[−2(r + s) + λ− 4(n− 1)] · · · [−2(r + s) + λ]x2n

(2n+ r + s) · · · (1 + r + s)

]

is solution of (9.13), where (r, s) verifies (9.14) and (9.15).

9.3.3. Hermite polynomials. Let us first investigate the non-resonance conditions (9.14) and (9.15)
above. If (r, s) ∈ C then r + s = 1 or r + s = 0. Assume that r + s = 0. In this case the resonance
condition becomes |Q|(|Q| − 1) = 0 for some multi-index Q = (q1, q2) with q1 + q2 ≥ 1. Therefore it
becomes |Q| = 1. Thus we may have resonance in this case. On the other hand if r + s = 1 then the
resonance condition becomes (|Q|+ 1)|Q| = 0 and therefore it becomes |Q|+ 1 = 0. This does not occur
and we do not have resonance in this case. For instance we can take r = s = 1/2 and have no resonance.
In this case r + s = 1 and we have a solution of the form

φ( 1
2 ,

1
2 ),λ

(x, y) = x1/2y1/2

[
1 +

∞∑
n=1

(−1)n[−2 + λ− 4(n− 1)] · · · [−2 + λ]x2n

(2n+ 2) · · · (2)

]
.

Thus, for λ = 2(2m + 1) we have a solution Hm(x, y) = (xy)
1
2Pm(x, y) where Pm(x, y) is a

polynomial of degree m, satisfying Pm(0, 0) = 1. Given any r, s with r + s = 1 and λ = 2(2m + 1) as
above, we have a solution of the form φ(x, y) = xrysPm(x, y). We shall call Pm(x, y) Hermite polynomial
of degree m.
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9.3.4. Hermite equation II. A second possible model for the Hermite equation in the PDE framework
would be as follows: Consider the equation

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
− 2x3

∂z

∂x
− 2y3

∂z

∂y
+ λxyz = 0, (9.16)

where λ ∈ R. This second model though symmetric with respect to x and y and though it is parabolic, it
does restrict to lines y = tx as a Hermite ordinary differential equation.

9.3.5. Solution of Hermite type II. Let φ be a solution of (9.16) of the form

φ(x, y) = xrys
∞∑

|Q|=0

dQX
Q,

where d0,0 ̸= 0. Then (r+ s)(r+ s− 1)d0,0 = 0, (1+ r+ s)(r+ s)d1,0 = 0, (1+ r+ s)(r+ s)d0,1 = 0
and (|Q|+ r+ s)(|Q|+ r+ s− 1)dQ− 2(q1+ r− 2)dq1−2,q2 − 2(q2+ s− 2)dq1,q2−2+λdq1−1,q2−1 = 0,
for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.17)

Let (r, s) point of (9.17) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r + s)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.18)

Thus we have d1,0 = d0,1 = 0 and

dQ =
2(q1 + r − 2)dq1−2,q2 + 2(q2 + s− 2)dq1,q2−2 − λdq1−1,q2−1

(|Q|+ r + s)(|Q|+ r + s− 1)
, for all |Q| = 2, 3, . . . . (9.19)

Therefore dq1,q2 = 0, |Q| = 2n− 1 and dq1,q2 ̸= 0, |Q| = 2n. Choosing d0,0 = 1 we have that

φ(x, y) = xrys

1 + ∞∑
|Q| even

dQX
Q

 ,
where dQ given by the recurrence (9.19), is solution of (9.16), where (r0, s0) verifies (9.17) and (9.18).

It is visible that the recurrence in this Hermite PDE model II is much more complicate than the one for
the first model.

9.4. Legendre equation. The Legendre ordinary differential equation writes

(1− x2)y′′ − 2xy′ + λ(λ+ 1)y = 0,

where λ is a constant.
The Legendre differential equation shows up when applying the separation of variables solution of

second order linear elliptic, hyperbolic and parabolic partial differential equations in spherical coordinates,
especially the Helmholtz equation, Laplace’s equation, and the Schrödinger equation. These equations are
important in electrostatics, electromagnetic wave propagation (e.g. antenna theory), and the solution of the
Hydrogen atom wave functions in single-particle quantum mechanics. Their solutions form the polar angle
part of the spherical harmonics basis for the multi pole expansion, which is used in both electromagnetic
and gravitational statics.

9.4.1. Legendre PDE I. Consider the equation

(1− x2)x2
∂2z

∂x2
+ (1− x2)2xy

∂2z

∂x∂y
+ (1− x2)y2

∂2z

∂y2
− 2x3

∂z

∂x
− 2x2y

∂z

∂y
+ λ(λ+1)x2z = 0, (9.20)

where λ ∈ R. Let φ be a solution of (9.20) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q, where d0,0 ̸= 0.

Then (r + s)(r + s − 1)d0,0 = 0, (1 + r + s)(r + s)d1,0 = 0, (1 + r + s)(r + s)d0,1 = 0 and
(|Q|+ r+ s)(|Q|+ r+ s− 1)dQ − [(|Q|+ r+ s− 2)(|Q|+ r+ s− 3)− λ(λ+ 1)]dq1−2,q2 = 0, for all
|Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.21)
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Let (r, s) point of (9.21) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r + s)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.22)

Thus we have d1,0 = d0,1 = 0 and dQ =
[(|Q|+r+s−2)(|Q|+r+s−3)−λ(λ+1)]dq1−2,q2

(|Q|+r+s)(|Q|+r+s−1) , for all |Q| = 2, 3, . . . .

Therefore dq1,q2 = 0 (q1, q2) ̸= (2n, 0) and

d2n,0 =
[(r+s+2(n−1))(r+s+2(n−1)−1)−λ(λ+1)]···[(r+s)(r+s−1)−λ(λ+1)]d0,0

(2n+r+s)···(1+r+s)

for every n = 1, 2, . . .. Choosing d0,0 = 1 we have that

φ(x, y) = xrys + xrys
∞∑

n=1

[(r+s+2(n−1))(r+s+2(n−1)−1)−λ(λ+1)]···[(r+s)(r+s−1)−λ(λ+1)]x2n

(2n+r+s)···(1+r+s)

is solution of (9.20) where (r, s) verifies (9.21) and (9.22).

9.4.2. Legendre PDE II. Consider the equation

(1− xy)x2
∂2z

∂x2
+ (1− xy)2xy

∂2z

∂x∂y
+ (1− xy)y2

∂2z

∂y2
− 2x3

∂z

∂x
− 2y3

∂z

∂y
+ λ(λ+ 1)xyz = 0, (9.23)

where λ ∈ R. Let φ be a solution of (9.23) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q where d0,0 ̸= 0.

Then (r + s)(r + s − 1)d0,0 = 0, (1 + r + s)(r + s)d1,0 = 0, (1 + r + s)(r + s)d0,1 = 0 and
(|Q|+ r+ s)(|Q|+ r+ s− 1)dQ − [(|Q|+ r+ s− 2)(|Q|+ r+ s− 3)− λ(λ+ 1)]dq1−1,q2−1 − 2(q1 +
r − 2)dq1−2,q2 − 2(q2 + s− 2)dq1,q2−2 = 0 for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.24)

Let (r, s) point of (9.24) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.25)

Thus we have d1,0 = d0,1 = 0 and

dQ =
[(|Q|+r+s−2)(|Q|+r+s−3)−λ(λ+1)]dq1−1,q2−1+2(q1+r−2)dq1−2,q2

+2(q2+s−2)dq1,q2−2

(|Q|+r+s)(|Q|+r+s−1) , (9.26)

for all |Q| = 2, 3, . . .. Therefore dq1,q2 = 0, |Q| = 2n− 1 and dq1,q2 ̸= 0, |Q| = 2n. Choosing d0,0 = 1
we have that

φ(x, y) = xrys

1 + ∞∑
|Q| even

dQX
Q

 ,
where dQ given by the recurrence (9.26), is solution of (9.23), where (r, s) verifies (9.24) and (9.25).

9.5. Chebyshev equation. Chebyshev’s equation is the second order equation

(1− x2)y′′ − xy′ + p2y = 0,

where p ∈ K. Solutions of Chebyshev’s equation are of importance in numerical analysis such as solution
to partial differential equations, smoothing of data etc. Chebyshev’s equation can be used to generate
polynomials that could serve as mathematical model to approximate some observed physical phenomena.
Let us give a word about it.

The solutions of the Chebyshev equation are of the form y =
∑∞

n=0 anx
n where the coefficients an are

given by an+2 = (n−p)(n+p)
(n+1)(n+2)an. These solutions are convergent for |x| < 1. By choosing a0 = 1, a1 = 0

we obtain a solution T1(x) and by choosing a0 = 0, a1 = 1 we obtain a solution T2(x). The remarkable
fact is: if p is even then T1(x) is polynomial of degree p. If p is odd then T2(x) is polynomial of degree p.
These give rise to the so called Chebyshev polynomials.
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9.5.1. Chebyshev PDE of type I. We present now a PDE model for Chebyshev equation, with the
property that its restriction to straight lines is a Chebyshev ODE. Consider the equation

(1− x2)x2
∂2z

∂x2
+ (1− x2)2xy

∂2z

∂x∂y
+ (1− x2)y2

∂2z

∂y2
− x3

∂z

∂x
− x2y

∂z

∂y
+ p2x2z = 0, (9.27)

where p ∈ K. Let φ be a solution of (9.27) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q, where d0,0 ̸= 0.

Then (r + s)(r + s − 1)d0,0 = 0, (1 + r + s)(r + s)d1,0 = 0, (1 + r + s)(r + s)d0,1 = 0 and
(|Q| + r + s)(|Q| + r + s − 1)dQ − (|Q| + r + s − 2 − p)(|Q| + r + s − 2 + p)dq1−2,q2 = 0, for all
|Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.28)

Let (r, s) point of (9.28) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.29)

Thus we have d1,0 = d0,1 = 0 and dQ =
(|Q|+r+s−2−p)(|Q|+r+s−2+p)dq1−2,q2

(|Q|+r+s)(|Q|+r+s−1) , for all |Q| = 2, 3, . . . .

Therefore dq1,q2 = 0, (q1, q2) ̸= (2n, 0) and

d2n,0 =
(r+s+2(n−1)−p)(r+s+2(n−1)+p)···(r+s−p)(r+s+p)d0,0

(2n+r+s)···(1+r+s) ,

for all n = 1, 2, . . .. Choosing d0,0 = 1 we have that

φ(x, y) = xrys + xrys
∞∑

n=1

(r+s+2(n−1)−p)(r+s+2(n−1)+p)···(r+s−p)(r+s+p)x2n

(2n+r+s)···(1+r+s) (9.30)

is solution of (9.27), where (r, s) verifies (9.28) and (9.29).

9.5.2. Chebyshev polynomials in two variables. By choosing in (9.30) r = s = 1/2 we obtain a
solution

φ(x, y) = (xy)
1
2

[
1 +

∞∑
n=1

(1+2(n−1)−p)(1+2(n−1)+p)···(1−p)(1+p)x2n

(2n+1)···(2)

]
.

Thus for odd natural values of the parameter p = 2n − 1 ∈ N we have solutions of the form φ(x, y) =

(xy)
1
2 Tp(x, y), where Tp(x, y) are degree 2n = p + 1 playing the role of Chebyshev polynomials in the

case of ODE. Similarly, and surprisingly, when −p = 2n − 1 ∈ N is odd also have a solution of the form
φ(x, y) = (xy)

1
2 T̃p(x, y) for some polynomial T̃p(x, y) of degree 2n = −p+ 1.

9.5.3. Chebyshev equation II. Now we introduce the model for Chebyshev PDE based on symme-
tries. Consider the equation

(1− xy)x2
∂2z

∂x2
+ (1− xy)2xy

∂2z

∂x∂y
+ (1− xy)y2

∂2z

∂y2
− x3

∂z

∂x
− y3

∂z

∂y
+ p2xyz = 0, (9.31)

where p ∈ K. Let φ be a solution of (9.31) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q, where d0,0 ̸= 0.

Then (r + s)(r + s − 1)d0,0 = 0, (1 + r + s)(r + s)d1,0 = 0, (1 + r + s)(r + s)d0,1 = 0 and
(|Q| + r + s)(|Q| + r + s − 1)dQ − [(|Q| + r + s − 2)(|Q| + r + s − 3) − p2]dq1−1,q2−1 − (q1 + r −
2)dq1−2,q2 − (q2 + s− 2)dq1,q2−2 = 0, for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

(r + s)(r + s− 1) = 0. (9.32)

Let (r, s) point of (9.32) such that

(r, s) /∈ {(r1, s1) ∈ C2; (|Q|+ r1 + s1)(|Q|+ r1 + s1 − 1) = 0, for some |Q| = 1, 2, . . .}. (9.33)

Thus we have d1,0 = d0,1 = 0 and

dQ =
[(|Q|+r+s−2)(|Q|+r+s−3)−p2]dq1−1,q2−1+(q1+r−2)dq1−2,q2+(q2+s−2)dq1,q2−2

(|Q|+r+s)(|Q|+r+s−1) , (9.34)

for all |Q| = 2, 3, . . .. Therefore dq1,q2 = 0, |Q| = 2n− 1 and dq1,q2 ̸= 0, |Q| = 2n. Choosing d0,0 = 1
we have that

φ(x, y) = xrys

1 + ∞∑
|Q| even

dQX
Q

 ,
where dQ given by the recurrence (9.34), is solution of (9.31), where (r, s) verifies (9.32) and (9.33).
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9.6. Laguerre equation. As already mentioned in the Introduction the Laguerre equation is given by
xy′′ + (ν + 1− x)y′ + λy = 0, where λ, ν ∈ R are parameters. This equation is quite relevant in quantum
mechanics, since it appears in the modern quantum mechanical description of the hydrogen atom. Let us
consider the case ν = 0 i.e., the simplified Laguerre equation given by xy′′ + (1 − x)y′ + λy = 0, for
λ ∈ K. It is well-known that the solutions by series are polynomial when λ is a nonnegative integer. This
is the so called Laguerre polynomial.

9.6.1. Laguerre PDE of type I. As before, based on the condition that the PDE must have its restric-
tions to lines y = tx as given by Laguerre EDOs we obtain the following model. Consider the equation

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
+ (1− x)x

∂z

∂x
+ (1− x)y

∂z

∂y
+ λxz = 0, (9.35)

where λ ∈ R. Let φ be a solution of (9.35) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q, where d0,0 ̸= 0.

Then (r+s)2d0,0 = 0 and (|Q|+r+s)2dQ− [|Q|+r+s− (1+λ)]dq1−1,q2 = 0, for all |Q| = 1, 2, 3, . . ..
Given that d0,0 ̸= 0 we have that

r + s = 0. (9.36)

Let (r, s) point of (9.36). Note that |Q| + r + s ̸= 0, for all |Q| = 1, 2, . . .. Thus we have dQ =
[|Q|−(1+λ)]dq1−1,q2

|Q|2 , for all |Q| = 1, 2, . . ..

Therefore dq1,q2 = 0, (q1, q2) ̸= (n, 0) and dn,0 =
[n−1−λ]···[−λ]d0,0

(n!)2 , n = 1, 2, . . .. Choosing
d0,0 = 1 we have that

φ(x, y) = xrys

[
1 +

∞∑
n=1

[n− 1− λ] · · · [−λ]xn

(n!)2

]

is solution of (9.35), where (r, s) verifies (9.36).

9.6.2. Laguerre equation II. As for the symmetric model of Laguerre PDE we consider the equation

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
+ (1− xy)x

∂z

∂x
+ (1− xy)y

∂z

∂y
+ λxyz = 0, (9.37)

where λ ∈ R. Let φ be a solution of (9.37) of the form φ(x, y) = xrys
∑∞

|Q|=0 dQX
Q, where d0,0 ̸= 0.

Then (r + s)2d0,0 = 0, (1 + r + s)2d1,0 = 0, (1 + r + s)2d0,1 = 0 and (|Q|+ r + s)2dQ − [|Q|+ r +
s− (2 + λ)]dq1−1,q2−1 = 0, for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

r + s = 0. (9.38)

Let (r, s) point of (9.38). Note that |Q|+ r0 + s0 ̸= 0, for all |Q| = 1, 2, . . ..
Thus we have d1,0 = d0,1 = 0 and dQ =

[|Q|−(2+λ)]dq1−1,q2−1

|Q|2 , for all |Q| = 2, 3, . . .. Therefore

dq1,q2 = 0, (q1, q2) ̸= (n, n) and dn,n =
[2(n−1)−λ]···[−λ]d0,0

22n(n!)2 , n = 1, 2, . . .. Choosing d0,0 = 1 we have
that

φ(x, y) = xrys

[
1 +

∞∑
n=1

[2(n− 1)− λ] · · · [−λ](xy)n

22n(n!)2

]

is solution of (9.37), where (r, s) verifies (9.38).

9.6.3. Laguerre polynomials in two variables. Both models Laguerre type I and II above exhibit
solutions giving rise to polynomials for suitable values of the parameter λ. Indeed, for instance for r0 =
s0 = 1/2 and λ = n we have the first model giving rise to solutions of the form φ(x, y) = (xy)

1
2Ln(x)

for some polynomial Ln(x) of degree n. This is however a one-variable polynomial. On the other hand,
the second model Laguerre type II gives, for r0 = s0 = 1/2 and even λ = 2n − 2 a solution of the form
φ(x, y) = (xy)

1
2 L̃n(xy) for some polynomial L(t) of degree n.

9.7. Disturbed heat equation. The next example shows the efficacy or our methods when compared
to the classical separation of variables methods. It is an example that cannot have separated variables, but
fits into our approach. It is based on the heat diffusion equation in a two dimension plaque. A perturbation
is included in the equation as result of some external influence as a source of heat for instance:
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Example 9.1 (Disturbed heat equation). We shall now apply our techniques in a PDE that cannot
be solved by the usual method of separation of variables. Let us consider the following perturbed heat
diffusion equation

a2
∂2z

∂x2
=
∂z

∂y
+ α(x, y)

∂z

∂x
, x > 0, y > 0, (9.39)

where a is a positive constant and α is analytic. Notice that putting Z(x, y) = X(x)Y (y) and substituting
in the PDE we obtain

a2
X ′′(x)

X(x)
=
Y ′(y)

Y (y)
+
α(x, y)

Y (y)

and therefore the PDE is not always separable variables equation. Let us now solve this equation by our
methods in some concrete examples.

Making the change x = lnu, y = ln v we transform the equation (9.39) in

a2u2
∂2z̃

∂u2
+ u(a2 − α(lnu, ln v))

∂z̃

∂u
− v

∂z̃

∂v
= 0. (9.40)

For example, if we consider α(x, y) = ex+y in (9.40) we obtain

a2u2
∂2z̃

∂u2
+ u(a2 − uv)

∂z̃

∂u
− v

∂z̃

∂v
= 0. (9.41)

Note that equation (9.41) is a parabolic equation with regular singularity.
Let φ̃ be a solution of (9.41) of the form φ̃(u, v) = urvs

∑∞
|Q|=0 dQu

q1vq2 where d0,0 ̸= 0. Then
(a2r2−s)d0,0 = 0, (a2(r+1)2−s)d1,0 = 0, (a2r2− (s+1))d0,1 = 0 and

[
a2(q1+r)

2− (q2+s)
]
dQ+

dq1−1,q2−1 = 0, for all |Q| = 2, 3, . . .. Given that d0,0 ̸= 0 we have that

a2r2 − s = 0. (9.42)

Let (r, s) root of (9.42) such that

(r, s) /∈ {(r1, s1) ∈ C2; a2(q1 + r1)
2 − (q2 + s1) = 0, for some |Q| = 1, 2, . . .}. (9.43)

Thus we have d1,0 = d0,1 = 0 and dQ = − dq1−1,q2−1

a2(q1+r)2−(q2+s) , for all |Q| = 2, 3, . . . . Therefore dq1,q2 =

0, q1 ̸= q2 and

dn,n =
(−1)nd0,0

(a2(1+r)2−(1+s))(a2(2+r)2−(2+s))···(a2(n+r)2−(n+s)) , n = 1, 2, . . . .

Choosing d0,0 = 1 we have that

φ̃(u, v) = urvs + urvs
∞∑

n=1

(−1)n(uv)n

(a2(1+r)2−(1+s))(a2(2+r)2−(2+s))···(a2(n+r)2−(n+s))

is solution of (9.41), where (r0, s0) verifies (9.42) and (9.43). Therefore

φ(x, y) = exr+ys

[
1 +

∞∑
n=1

(−1)nen(x+y)

(a2(1+r)2−(1+s))(a2(2+r)2−(2+s))···(a2(n+r)2−(n+s))

]
is solution of

a2
∂2z

∂x2
=
∂z

∂y
+ ex+y ∂z

∂x
, (9.44)

where (r, s) verifies (9.42) and (9.43).
Example 9.2 (Frobenius method vs Laplace-Fourier method). Consider the disturbed heat diffusion

equation (9.44) of Example 9.1 with the following initial conditions

z(x, 0) = f(x), x ∈ R (9.45)

where f is analytic function. Denoted

Z(x, s) = L[z(x, y)](s) =
∫ +∞

0

e−syz(x, y)dy.
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Now applying Laplace transform to both sides of the equation (9.44)

a2
∂2Z

∂x2
(x, s) = sZ(x, s)− z(x, 0) + ex

∂Z

∂x
(x, s− 1)

and using (9.45) we get

a2
∂2Z

∂x2
(x, s) = sZ(x, s)− f(x) + ex

∂Z

∂x
(x, s− 1). (9.46)

On the other hand, denoted

F (x, ω) = F [z(x, y)](ω) =
1√
2π

∫ +∞

−∞
e−iωyz(x, y)dy.

Applying Fourier transform to the equation (9.44) a

∂2F

∂x2
(x, ω) = (iω)F (x, s) + ex

∂F

∂x
(x, ω + i). (9.47)

Note that ODEs (9.46) and (9.47) cannot be resolved by any known method. Although, in the Example 9.1
we saw that using the Frobenius method we can solve.

10. Conclusion. This article aims to study second-order analytic linear partial differential equations in
the real or complex case. For this, introducing methods inspired by the Frobenius method for second-order
linear ordinary differential equations. We introduce an Euler-type notion of PDE in which we associate an
indicial conic, then we give the concept of regular singularity and finally we show convergence theorems,
which must necessarily take into account the type of PDE (parabolic, elliptic or hyperbolic) and a non-
resonant condition. This condition gives a new geometric interpretation of the original condition between
the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like,
a certain reticulate has or not vertices on the indexical conic. We recovered the solution of all classical
PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class
of those that have explicit algorithmic solution far beyond those admitting separable variables. Finally, we
build PDE models for classic ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different
means. These models are given by restriction of the PDE to lines through the origin must be the classic
ODE model and given by symmetries on the PDE model and imitating the ODE model.
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