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Abstract
In this paper, we provide a class of surfaces called ϵ-isothermic surface in the pseudo-Euclidean 3-space
and we introduce the pseudo-Calapso equation. We prove that for each ϵ-isothermic surface, we can asso-
ciate two solutions to the pseudo-Calapso equation. In particular, we associate solutions to the Calapso,
Zoomeron and Davey-Stewartson III equations. In sequence, we classify the Dupin surfaces in pseudo-
Euclidean 3-space having distinct principal curvatures and provide explicit coordinates for such surfaces.
As application of the theory, we obtain explicit solutions to the pseudo-Calapso equation and from these so-
lutions, we provide new explicit solutions of the Zoomeron and Davey-Stewartson III equations. Moreover,
we also provide explicit solutions to these equations that depend on ϵ2−holomorphic functions.

Keywords . Dupin surfaces, Isothermic surfaces, lines of curvature.

1. Introduction. The research of isothermic surfaces is one of the most common more difficult prob-
lems of differential geometry and depends on the integration of an equation with fourth-order partial deriva-
tives (see [40]). Particular classes of these surfaces are known and some transformations by means of which
it is possible to deduce from isothermic surfaces other isothermic surfaces. All this is known indirectly and
independently of the fourth-order differential equation, because it is difficult to integrate.

The theory of isothermic surfaces has a great development for eminent geometers as Christoffel [20],
Darboux [21, 22] and Bianchi [1] among others. In the last decades, the theory woke up interest by his
connection with the modern theory of integrated systems, see [14, 15], [35], [36] and [38]. Particular
classes of isothermic surfaces are the constant mean curvature surfaces, quadrics, surfaces whose lines of
curvature has constant geodesic curvature, in particular, the cyclides of Dupin. Trasformations of R3 that
preserve isothermic surfaces are isometries, dilations and inversions.

In [4], the authors study surfaces with harmonic inverse mean curvature (HIMC surfaces), they distin-
guish a subclass of θ-isothermic surfaces, which is a generalization of the isothermic HIMC surfaces, and
classify all the θ-isothermic HIMC surfaces, note that when θ = 0, the surfaces are isothermic.

In [15], the author show that theory of soliton surfaces, modified in an appropriate way, can be applied
also to isothermic immersions in R3. In this case the so called Sym’s formula gives an explicit expression for
the isothermic immersion with prescribed fundamental forms. The complete classification of the isothermic
surfaces is an open problem.

In [5], the author establishes an equation with fourth order partial derivatives from which the problem of
obtaining isothermic surfaces apparently becomes much simpler. Such equation (called Calapso equation)
defined in [5] given by

∆

(
ϕ,12
ϕ

)
+
(
ϕ2
)
,12 = 0,
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describes isothermic surfaces in R3, where ϕ,12 denotes the derivative of ϕ with respect to u1 and u2. The
Calapso equation is very difficult to solve and is strongly connected to the Painleve ODEs, some authors
have found solutions of this equation associated with constant mean curvature surfaces.

It is noted that the transition u2 → iu2 takes the Calapso equation to the Zoomeron equation

∆−1

(
ϕ,12
ϕ

)
+
(
ϕ2
)
,12 = 0,

where ∆−1 =
∂2

∂u2
1

− ∂2

∂u2
2

. Another equation that also very difficult to solve. The solitons of this equation

are referred to as Zoomerons, where they possess the properties of Trappon solitons because they are like
particles trapped in a potential well, changing direction indefinitely.

In [23], the authors introduce the Davey-Stewartson (DS) equation. This equation describe the evolu-
tion of a three-dimensional wave-packet on water of finite depth in the fluid dynamics.

In [35] (page 196), the authors show that for each ϕ(u1, u2) solution of the Zoomeron equation, asso-
ciates a two-parameter family of the solutions u(u1, u2, t) given by

u = ei(νu1+µu2+µνt)ϕ(u1 + µt, u2 + νt), ρ =
|u|,12
u

,

to the Davey-Stewartson III equation

iu,t = u,12 − ρu, ∆−1ρ+
(
|u|2
)
,12

= 0.

Recently, a study on the fully PT-symmetric nonlocal Davey-Stewartson III equation was reported in [26]
and [16], the authors investigated the reverse-time nonlocal of this equation.

In [18], the authors introduce the class of radial inverse mean curvature surfaces (RIMC-surfaces),
which are isothermic surfaces. In addition, they show that for each isothermic surface there is another
solution to the Calapso equation which depends on the metric and on the skew curvature of the surface.
This solution is different from the one presented in [5].

Dupin surfaces were first studied by Dupin in 1822. A surface is said to be Dupin if each principal
curvature is constant along its corresponding surface of curvature. A Dupin submanifold M is said to be
proper if the number g of distinct principal curvatures is constant on M . The simplest Dupin submanifolds
are the isoparametric hypersurfaces, that is, those whose principal curvatures are constant.

Dupin’s surfaces in Euclidean space are classified. There are several equivalent definitions of Dupin
cyclides, for example, in Euclidean space, they can be defined as any inversion of a torus, cylinder or double
cone, i.e, Dupin cyclide is invariant under Möbius transformations. Classically the cyclides of Dupin were
characterized by the property that both sheets of the focal set are curves. Another equivalent definition says
that such surfaces can also be given as surfaces that are the envelope of two families at 1-parameter spheres
(including planes as degenerate spheres). For more on Dupin cyclides see [2, 3].

In this paper, motivated by [5] and [18] we provide a class of surfaces called ϵ-isothermic surfaces in
the pseudo-Euclidean 3-space and we introduce the pseudo-Calapso equation

∆ϵ

(
ϕ,12
ϕ

)
+ ϵ1ϵ3

(
ϕ2
)
,12 = 0,

where ∆ϵ =
∂2

∂u2
1

+ ϵ
∂2

∂u2
2

, ϵ21 = ϵ22 = ϵ23 = 1, ϵ = ϵ1ϵ2.

We show that for each ϵ-isothermic surface of the pseudo-Euclidean 3-space, we can associate to these
surfaces two solutions to the pseudo-Calapso equation. Furthermore, for each solution of the pseudo-
Calapso equation, we have in particular a solution of the Calapso or Zoomeron equations. Consequently, we
obtain solutions of the Davey-Stewartson III equation. In sequence, we consider those proper Dupin surface
of the pseudo-Euclidean 3-space having distinct principal curvatures, parametrized by lines of curvature.
We prove that every Dupin surface parametrized by lines of curvature is a ϵ-isothermic surface and provide
explicit coordinates for such surfaces. As application of the theory, we give explicit solutions of the pseudo-
Calapso, that depend on two functions, each one defined in a given variable. In particular, we provide new
explicit solutions of the Calapso, Zoomeron and Davey-Stewartson III equations. Moreover, we also provide
explicit solutions to these equations that depend on ϵ2−holomorphic functions.

2. ϵ-isothermic surfaces and the pseudo-Calapso equation. In this section, we briefly review the
main definitions, we describe the ϵ-isothermic surfaces in the pseudo-Euclidean 3-space and we obtain the
pseudo-Calapso equation.
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We consider E3 as the pseudo-Euclidean 3-space, i.e, R3 equipped with the metric ⟨, ⟩, given by

⟨(x1, y1, z1), (x2, y2, z2)⟩ = δ1x1x2 + δ2y1y2 + δ3z1z2

where δ2i = 1, 1 ≤ i ≤ 3.
In particular, making δ1 = 1, we consider Cδ2 = {z = u1 + iu2/u1, u2 ∈ R, i2 = −δ2, δ2 = ±1}

with the metric ⟨z, z⟩δ2 = u2
1 + δ2u

2
2. We note that when δ2 = 1 we have the complex numbers and when

δ2 = −1 we have the Lorentz numbers.
Definition 2.1. We define the function f : Cδ2 → Cδ2 , f(z) = f(u1 + iu2) = u(u1, u2) + iv(u1, u2)

as δ2−holomorphic if and only if u,1 = v,2 and u,2 = −δ2v,1 (see [27]). Here the subscript ,i denotes the
derivative with respect to ui.

Definition 2.2. A surface M in pseudo-Euclidean 3-space is called ϵ-isothermic surface if it admits
parametrization by lines of curvature and the first fundamental form is conformal to the metric ϵ1du

2
1 +

ϵ2du
2
2, where for each 1 ≤ i ≤ 2, ϵi = δk for some 1 ≤ k ≤ 3.

Remark 2.1. In possession of the previous definition, we can have up to three classes of ϵ-isothermic
surface in pseudo-Euclidean 3-space. This classes are

(i) The ϵ-isothermic surface M with first fundamental form conformal to the metric δ1du
2
1 + δ2du

2
2.

(ii) The ϵ-isothermic surface M with first fundamental form conformal to the metric δ1du
2
1 + δ3du

2
2.

(iii) The ϵ-isothermic surface M with first fundamental form conformal to the metric δ2du
2
1 + δ3du

2
2.

Remark 2.2. If X : U ⊆ R2 → E3 is a parametrization of a ϵ-isothermic surface M , then the first and
the second fundamental forms are given by

I = e2φ
(
ϵ1du

2
1 + ϵ2du

2
2

)
, II = ldu2

1 + ndu2
2, (2.1)

where for each 1 ≤ i ≤ 2, ϵi = δk for some 1 ≤ k ≤ 3 and ϵ2i = 1.
The Codazzi and Gauss equation are given by

l,2 =
(
l + ϵn

)
φ,2 , (2.2)

n,1 = ϵ
(
l + ϵn

)
φ,1 ,

∆ϵφ = −ϵ2ϵ3lne
−2φ, (2.3)

where ∆ϵφ = φ,11 +ϵφ,22, with ϵ = ϵ1ϵ2.
To integrate the system (2.2) we make the following substitution

l =
1√
2

(
ω +Ω

)
eφ , n =

ϵ√
2

(
ω − Ω

)
eφ. (2.4)

Thus, by (2.4) the system (2.2) can be written as

Ω,1 = ω,1 −
(
ω +Ω

)
φ,1 , (2.5)

Ω,2 = −ω,2 +
(
ω − Ω

)
φ,2 , (2.6)

∆ϵφ =
ϵ1ϵ3
2

(
Ω2 − ω2

)
, (2.7)

where ϵ = ϵ1ϵ2.

Definition 2.3. For each function ω = ω(u1, u2), we define the pseudo-Calapso equation as

∆ϵ

(
ω,12
ω

)
+ ϵ1ϵ3

(
ω2
)
,12 = 0, (2.8)

where ϵ = ϵ1ϵ2 and ϵ21 = ϵ22 = ϵ23 = 1.

Definition 2.4. Let M be a surface with principal curvatures −λ1 and −λ2. The skeaw curvature of
M (see [18]) is given by

H ′ =
λ2 − λ1

2
. (2.9)

Theorem 2.1. Let X(u1, u2) be a ϵ-isothermic surface with first fundamental form given by

I = e2φ
(
ϵ1du

2
1 + ϵ2du

2
2

)
.
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Then the functions

ω = ϵ1
√
2eφH and Ω = ϵ1

√
2eφH ′, (2.10)

are solutions of the pseudo-Calapso equation (2.8), where ϵ = ϵ1ϵ2, H is the mean curvature and H ′ is the
skew curvature of X .

Proof: Differentiating the equation (2.5) with respect to u2 and the equation (2.6) with respect to u1,
adding and subtracting these expression, we obtain

ω,12
ω

= φ,12 +φ,1 φ,2 ,
Ω,12
Ω

= −φ,12 +φ,1 φ,2 . (2.11)

Let

A = ∆ϵ

(
ω,12
ω

)
+ ϵ1ϵ3

(
ω2
)
,12 , (2.12)

using the first equation of (2.11) and properties of the Laplacian operator, we get

A = ϵ1ϵ3
(
ω2
)
,12 +

(
∆ϵφ

)
,12 +φ,2

(
∆ϵφ

)
,1 +φ,1

(
∆ϵφ

)
,2 +2φ,12

(
∆ϵφ

)
,

From (2.7), we have

A =
ϵ1ϵ3
2

[(
ω2 +Ω2

)
,12 +

(
Ω2 − ω2

)
,1 φ,2 +

(
Ω2 − ω2

)
,2 φ,1 +

(
Ω2 − ω2

)
φ,12

]
.

Substituting (ω2 +Ω2),12 and using (2.11), we obtain

A =
ϵ2
2

[
2
(
ω,1 ω,2 +Ω,1 Ω,2

)
+ 2
(
Ω2 + ω2

)
φ,2 φ,1 +

(
Ω2 − ω2

)
,1 φ,2 +

(
Ω2 − ω2

)
,2 φ,1

]
.

Substituting (Ω2 − ω2),1, (Ω2 − ω2),2 and using (2.5), (2.6) and (2.7), we obtain A = 0. Using (2.12) and
(2.4), we get that ω = ϵ1

√
2eφH is a solution to the Pseudo-Calapso equation.

On the other hand, using (2.11) we get

∆ϵ

(
ω,12
ω

)
−∆ϵ

(
Ω,12
Ω

)
= 2∆ϵ

(
φ,12

)
= 2
(
∆ϵφ

)
,12 = ϵ1ϵ2

(
Ω2 − ω2

)
,12 .

This last equation is equivalent to

∆ϵ

(
ω,12
ω

)
+ ϵ1ϵ3

(
ω2
)
,12 = ∆ϵ

(
Ω,12
Ω

)
+ ϵ1ϵ3

(
Ω2
)
,12 .

Since ω is a solution to the pseudo-Calapso equation, then we obtain that Ω = ϵ1
√
2eφH ′ is also a solution

of the pseudo-Calapso equation. The proof is complete. □

Remark 2.3. Consider the pseudo-Calapso equation given by (2.8). Then, for each solution of this
equation, we get a solution of the Calapso or Zoomeron equation. In any case, we have a solution for the
Davey-Stewartson II or Davey-Stewartson III equation, respectively.
In fact,

(i) If ϵ1ϵ3 = 1 and ϵ = ϵ1ϵ2 = −1, then the pseudo-Calapso equation becomes the Zoomeron
equation

∆−1

(
ω,12
ω

)
+
(
ω2
)
,12 = 0. (2.13)

For each ω(u1, u2) solution of the Zoomeron equation, then the function

u = ei(νu1+µu2+µνt)ω(u1 + µt, u2 + νt), ρ =
|u|,12
u

, (2.14)

is a solution of the Davey-Stewartson III equation (see [35], page 196)

iu,t = u,12 − ρu, ∆−1ρ+
(
|u|2
)
,12

= 0. (2.15)

Note that the Zoomeron equation is the stationary case of the Davey-Stewartson III equation (see
[35], page 163).
Moreover, if ϵ1ϵ3 = ϵ1ϵ2 = 1, then the pseudo-Calapso equation becomes in the Calapso equation.
In this case, for each ω(u1, u2) solution to the Calapso equation, if the function ω̃(u1, u2) =
ω(u1, iu2) is a real function, then ω̃(u1, u2) is a real solution of the Zoomeron equation (2.13).
Therefore, for each solution of this equation, we get also a solution of the Davey-Stewartson III
equation (2.15).
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(ii) If ϵ1ϵ3 = ϵ1ϵ2 = −1, then using the transformation (u1, u2) → (u2, u1), we obtain that for each
solution ω(u1, u2) of the (2.8), the function ω̃(u1, u2) = ω(u2, u1) is a solution of the Zoomeron
equation (2.13).
Hence, the function

u = ei(νu1+µu2+µνt)ω(u2 + µt, u1 + νt), ρ =
|u|,12
u

, (2.16)

is a solution of the Davey-Stewartson III equation (2.15).
Moreover, if ϵ1ϵ3 = −1 and ϵ1ϵ2 = 1, then using the transformation (u1, u2) → (iu1, u2),
we have that the pseudo-Calapso equation becomes the Zoomeron equation (2.13). Therefore, as
before, for each solution of this equation, we get a solution of the Davey-Stewartson III equation
(2.15).

(iii) Note that the Calapso equation is the stationary case of the Davey-Stewartson II

iu,t = u,12 − ρu, ∆ρ+
(
|u|2
)
,12

= 0.

Thus, given a solution ω(u1, u2) for the Calapso equation the function u(u1, u2) = eitω(u1, u2)
is a particular solution for the Davey-Stewartson II equation.

(iv) We observe that if ω is a solution of the pseudo-Calapso equation then −ω also is a solution of the
same equation.

3. Classification of Dupin surfaces in Pseudo-Euclidean 3-space. In this section, we provide a
classification of Dupin surfaces parametrized by lines of curvature in pseudo-Euclidean 3-space E3, with
two distinct principal curvatures.

Definition 3.1. An immersion X : U ⊆ R2 → E3 is a Dupin surface if each principal curvature is
constant along its corresponding line of curvature.

Let X : U ⊆ R2 → E3, be a proper Dupin surface parametrized by lines of curvature, with distinct princi-
pal curvatures, −λi, 1 ≤ i ≤ 2, and let N : U ⊆ R2 → E3 be a unit normal vector field of X. Then

⟨X,i , X,j ⟩ = δijgij , 1 ≤ i, j ≤ 2, (3.1)
N,i = λiX,i , 1 ≤ i ≤ 2, (3.2)

⟨N,N⟩ = ϵ3,

λi,i = 0,

where ⟨, ⟩ denotes the pseudo-Euclidean 3-space on E3, ϵ2j = 1, 1 ≤ j ≤ 3.
Moreover, for 1 ≤ i ̸= j ≤ 2, we have

X,ij −Γi
ijX,i −Γj

ijX,j = 0, (3.3)

Γi
ij =

λi,j

λj − λi
, (3.4)

where Γi
ij are the Christoffel symbols.

The Christoffel symbols in terms of the metric (3.1) are given by

Γi
ii =

gii,i
2gii

, Γj
ii = − gii,j

2gjj
, Γi

ij =
gii,j
2gii

, (3.5)

where 1 ≤ i, j ≤ 2 are distinct.
It follows from (3.5), that

Γj
ii = −Γi

ij

gii
gjj

(3.6)

From (3.2) and (3.6), we get

X,ii = Γi
iiX,i −Γi

ij

gii
gjj

X,j −ϵ3λigiiN. (3.7)

Theorem 3.1. Let X : U ⊆ R2 → E3, be a Dupin surface parametrized by lines of curvature, with
two distinct principal curvatures −λ1 and −λ2. Then there is a change in each coordinate separately so
that the first fundamental form is given by

I =
1

(λ2 − λ1)2

(
ϵ1du

2
1 + ϵ2du

2
2

)
, (3.8)
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i.e. X is a ϵ-isothermic surface.
Proof: Using (3.4) and (3.5), we have

λ1,2

λ2 − λ1
=

g11,2
2g11

,
λ2,1

λ1 − λ2
=

g22,1
2g22

.

These last two equations can be rewritten as[
ln

(
1

λ2 − λ1

)2]
,2

=
(
ln |g11|

)
,2
,

[
ln

(
1

λ2 − λ1

)2]
,1

=
(
ln |g22|

)
,1
,

so that

g11 = ϵ1

(
f1

λ2 − λ1

)2

, g22 = ϵ2

(
f2

λ2 − λ1

)2

,

where ϵ2i = 1, fi 1 ≤ i ≤ 2 are an arbitrary real functions of the variable ui.
Therefore, using the change of coordinates dũi = fidui, we have that X is ϵ-isothermic. □

From now on we will consider surfaces parametrized by lines of curvature with ϵ-isothermic parameters
whose first fundamental form is given by (3.8) and we will get all the Dupin surfaces with two distinct
principal curvatures −λ1 and −λ2.

Theorem 3.2. Let X : U ⊆ R2 → E3, be a ϵ-isothermic Dupin surface with two distinct principal
curvatures −λ1 and −λ2. Then
(i) λ1λ2 = 0,
or
(ii)

1. If b1 ̸= 0 and (ϵ3 + b1) ̸= 0, the principal curvatures are given by

λ2 = −ϵ1c1
b1

+A1e
√
b1ϵ1u1 +A2e

−
√
b1ϵ1u1 , (3.9)

λ1 = − ϵ1c1
ϵ3 + b1

+A3e
√

−ϵ2(ϵ3+b1)u2 +A4e
−
√

−ϵ2(ϵ3+b1)u2 .

where

ϵ3c
2
1 − 4b1(ϵ3 + b1)(b1A1A2 − (ϵ3 + b1)A3A4) = 0. (3.10)

2. If b1 = 0, the principal curvatures are given by

λ2 =
c1
2
u2
1 +A5u1 +A6, (3.11)

λ1 = −ϵ3ϵ1c1 +A7 cos(
√
ϵ3ϵ2u2) +A8 sin(

√
ϵ3ϵ2u2).

where

ϵ1(A
2
5 − 2c1A6) + ϵ3(A

2
7 +A2

8 − c21) = 0. (3.12)

3. If b1 = −ϵ3, the principal curvatures are given by

λ2 = ϵ1ϵ3c1 +B5 cos(
√
ϵ3ϵ1u1) +B6 sin(

√
ϵ3ϵ1u1), (3.13)

λ1 =
−ϵ3ϵ1ϵ2c1

2
u2
2 +B7u2 +B8.

where

ϵ2B
2
7 + 2ϵ1c1B8 + ϵ3(B

2
5 +B2

6 − c21) = 0. (3.14)

Conversely, if λi : U ⊆ R2 → R, 1 ≤ i ≤ 2, are distinct real functions at each point satisfying the
condition (i) or (ii), then there is a ϵ-isothermic Dupin surface X : U ⊆ R2 → E3, whose principal
curvatures are the functions −λi.

Proof: From Theorem 3.1, the first fundamental form of X is given by (3.8) and by Gauss equation
(2.3) with φ = − 1

2 ln(λ2 − λ1)
2, using (3.4) we have

ϵ3λ1λ2(
λ2 − λ1

)2 + ϵ2Γ
1
12,2 + ϵ1Γ

2
12,1 = 0. (3.15)
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If λ1 and λ2 are constant, then using (3.4), we have Γ1
12 = 0 and Γ2

12 = 0. Thus we obtain λ1λ2 = 0.
If λ1 = h2(u2) and λ2 = h1(u1), with h′

1(u1) ̸= 0, using (3.4), we obtain

Γ2
12,1 =

(
h′
1

h2 − h1

)
,1

=
h′′
1

h2 − h1
+

(
h′
1

h2 − h1

)2

,

Γ1
12,2 =

(
h′
2

h1 − h2

)
,2

=
h′′
2

h1 − h2
+

(
h′
2

h1 − h2

)2

.

Therefore,(3.15) can be rewritten as,

ϵ3h1h2 + ϵ2h
′′
2(h1 − h2) + ϵ1h

′′
1(h2 − h1) + ϵ1

(
h′
1

)2
+ ϵ2

(
h′
2

)2
= 0. (3.16)

Differentiating (3.16) with respect to u1 and using that h′
1 ̸= 0, we have

ϵ1h
′′′
1

h′
1

=
1

h1 − h2

[
ϵ3h2 + ϵ2h

′′
2 + ϵ1h

′′
1

]
. (3.17)

Differentiating (3.17) with respect to u1, we get(
ϵ1
h′′′
1

h′
1

)
,1

= 0.

Therefore

h′′
1 − ϵ1b1h1 = c1, (3.18)

where b1 and c1 are constants.
Substituting (3.18) in (3.17), we have

h′′
2 + ϵ2(ϵ3 + b1)h2 = −ϵ1ϵ2c1. (3.19)

1. If b1 ̸= 0 and (ϵ3 + b1) ̸= 0, the solutions of (3.18) and (3.19) are given by (3.9). Using (3.9) in
(3.16) we get (3.10).

2. If b1 = 0, the solutions of (3.18) and (3.19) are given by (3.11). Using (3.11) in (3.16) we get
(3.12).

3. If b1 = −1, the solutions of (3.18) and (3.19) are given by (3.13). Using (3.13) in (3.16) we get
(3.14).

If λ1 = h2(u2) and λ2 = h1(u1), with h′
2(u2) ̸= 0, with similarly calculus, differentiating (3.16) with

respect u2, we obtain

h′′
2 − ϵ2b2h2 = c2, h′′

1 + ϵ1(ϵ3 + b2)h1 = −ϵ2ϵ1c2. (3.20)

Defining b2 = −ϵ3 − b1 and c1 = −ϵ2ϵ1c2, then these last two equations coincide with (3.18) and (3.19).

Conversely, let λi : U ⊆ R2 → R, 1 ≤ i ≤ 2, be distinct real functions at each point, given by (i) or
(ii). Consider the quadratic forms

I =
1

(λ1 − λ2)2

(
ϵ1du

2
1 + ϵ2du

2
2

)
, II =

1

(λ1 − λ2)2

(
− λ1ϵ1du

2
1 − λ2ϵ2du

2
2

)
. (3.21)

After very long computations we can show that these functions satisfy the Gauss equation (3.15) and the
Coddazi equation (3.4). Therefore, by the fundamental theorem of surfaces, there is a surface whose first
and second quadratic forms are given by (3.21). As the functions λi given by (i) or (ii) satisfy λi,i = 0,
1 ≤ i ≤ 2, and by (3.21), we have that surface is a ϵ-isothermic Dupin surface with two distinct principal
curvatures −λ1 and −λ2. □

Theorem 3.3. Let X be a ϵ-isothermic Dupin surface as in Theorem 3.2. If −λ1 and −λ2 are constant.
Then, up to an isometry of E3, X is given by

X =
1

c

((
cos
(√

ϵ1ϵ3 u1

)
− 1
)
eϵ3 + ϵ1ϵ3

√
ϵ1ϵ3 sin

(√
ϵ1ϵ3 u1

)
eϵ1 + u2 eϵ2

)
,

or (3.22)

X =
1

c

((
cos
(√

ϵ2ϵ3 u2

)
− 1
)
eϵ3 + ϵ2ϵ3

√
ϵ2ϵ3 sin

(√
ϵ2ϵ3 u2

)
eϵ1 + u1 eϵ2

)
,
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where c ̸= 0 is a real constant, ϵ21 = ϵ22 = ϵ23 = 1 and
〈
eϵi , eϵj

〉
= ϵiδij , 1 ≤ i, j ≤ 3.

Moreover, the Gauss map is, respectively, given by

N = ϵ1ϵ3
√
ϵ1ϵ3 sin

(√
ϵ1ϵ3 u1

)
eϵ1 + cos

(√
ϵ1ϵ3 u1

)
eϵ3 , (3.23)

or

N = ϵ2ϵ3
√
ϵ2ϵ3 sin

(√
ϵ1ϵ3 u2

)
eϵ1 + cos

(√
ϵ2ϵ3 u2

))
eϵ3 . (3.24)

Proof: Let X be a ϵ-isothermic Dupin surface as in Theorem 3.2 with constant principal curvature
−λ1 and −λ2. By item (i) of the Theorem 3.2, suppose that λ2 = 0 and λ1 = c ̸= 0, then by Theorem 3.1,

the first fundamental form of X is I =
1

c2

(
ϵ1du

2
1 + ϵ2du

2
2

)
, ϵ2i = 1, 1 ≤ i ≤ 2 and X satisfy

X,12 = (0, 0, 0),

X,11 =
−ϵ1ϵ3N

c
,

X,22 = (0, 0, 0), (3.25)
N,1 = cX,1 ,

N,2 = (0, 0, 0).

Using the last two equations of (3.25), we have

N = cX +H2 andN = H1, whereHi = Hi(ui), i = 1, 2, (3.26)

are vector valued functions. Therefore

X = G1 −G2, (3.27)

where Gi =
Hi

c
, i = 1, 2 are vector valued functions in E3.

Differentiating (3.27), we have X,11 = G′′
1 and X,22 = −G′′

2 .
Thus, follows from the second and thirty equation of (3.25) that G′′

1 = −ϵ3ϵ1G1 and G′′
2 = 0.

Finally, given initial conditions X,i (0, 0) =
eϵi
c
, i = 1, 2, X(0, 0) = (0, 0, 0), N(0, 0) = eϵ3 , we get

G′
1(0) =

eϵ1
c

, G′
2(0) = −eϵ2

c
and Gi(0) =

eϵ3
c

, where eϵk is a vector of E3, such that,
〈
eϵk , eϵk

〉
= ϵk.

Hence, G1 and G2 are given by

G2 =
1

c

(
eϵ3 − u2 eϵ2

)
, G1 =

1

c

(
ϵ1ϵ3

√
ϵ1ϵ3 sin

(√
ϵ1ϵ3 u1

)
eϵ1 + cos

(√
ϵ1ϵ3 u1

)
eϵ3

)
.

Therefore, using (3.27), we get (3.22) and from (3.26), the Gauss map is given by (3.23).
On the other hand, if we assume that λ1 = 0 and λ2 = c ̸= 0, then similarly to the previous case, we

obtain the expressions (3.22) and (3.24). The proof is complete. □

Theorem 3.4. Let X be a ϵ-isothermic Dupin surface as in Theorem 3.2. If the principal curvatures
−λ1 or −λ2 are not constant. Then, up to an isometry of E3, X is given by

X =
G2 −G1

λ2 − λ1
, (3.28)

where the vector valued functions Gi(xi), 1 ≤ i ≤ 2, are given by
1. If b1 ̸= 0 and (ϵ3 + b1) ̸= 0, then

G1 =
ϵ1
b1

(
cosh

(√
b1ϵ1 u1

)
− 1
)
V1 +

ϵ1
√
b1ϵ1 sinh

(√
b1ϵ1 u1

)
b1

eϵ1 + cosh
(√

b1ϵ1 u1

)
eϵ3 ,

G2 =
ϵ1

ϵ3 + b1

(
cosh

(√
−ϵ2(ϵ3 + b1)u2

)
− 1
)
V1 + cosh

(√
−ϵ2(ϵ3 + b1)u2

)
eϵ3(3.29)

−
ϵ2
√
−ϵ2(ϵ3 + b1) sinh

(√
−ϵ2(ϵ3 + b1)u2

)
ϵ3 + b1

eϵ2
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where

V1 =
ϵ1b1(ϵ3 + b1)

D1

(
ϵ1(A1 −A2)

√
b1ϵ1 eϵ1 + ϵ2(A3 −A4)

√
−ϵ2(ϵ3 + b1) eϵ2

+
(
(ϵ3 + b1)(A3 +A4)− b1(A1 +A2)

)
eϵ3

)
, (3.30)

D1 = −ϵ3ϵ1c1 + b1(ϵ3 + b1)(A1 +A2 −A3 −A4) ̸= 0,

and the constants satisfy (3.10).
2. If b1 = 0, then

G1 =
u2
1

2
V2 + u1 eϵ1 + eϵ3 , (3.31)

G2 = ϵ3ϵ1
(
− 1 + cos (

√
ϵ3ϵ2 u2)

)
V2 + cos (

√
ϵ2 u2) eϵ3 + ϵ2ϵ3

√
ϵ2ϵ3 sin (

√
ϵ3ϵ2 u2) eϵ2 ,

where

V2 =
ϵ1
D2

(
− ϵ1A5 eϵ1 − ϵ2A8

√
ϵ2ϵ3 eϵ2 +

(
ϵ1c1 − ϵ3A7

)
eϵ3

)
, (3.32)

D2 = −ϵ1ϵ3c1 +A7 −A6 ̸= 0,

and the constants satisfy (3.12).
3. If b1 = −ϵ3, then

G1 = ϵ3ϵ1
(
1− cos (

√
ϵ3ϵ1 u1)

)
V3 + cos (

√
ϵ3ϵ1 u1) eϵ3 + ϵ1ϵ3

√
ϵ3ϵ1 sin (

√
ϵ3ϵ1 u1) eϵ1 ,

G2 =
−ϵ1ϵ2u

2
2

2
V3 + u2 eϵ2 + eϵ3 , (3.33)

where

V3 =
ϵ1
D3

(
− ϵ1B6

√
ϵ3ϵ1 eϵ1 − ϵ2B7 eϵ2 −

(
ϵ1c1 − ϵ3B5

)
eϵ3

)
, (3.34)

D3 = B8 −B5 − ϵ1ϵ3c1 ̸= 0,

and the constants satisfy (3.14).
Here ϵ21 = ϵ22 = ϵ23 = 1 and eϵi are vectors of E3, such that

〈
eϵi , eϵj

〉
= ϵiδij , 1 ≤ i, j ≤ 3.

Conversely, given functions λ1 and λ2 by (3.9), (3.11) and (3.13) and the vector valued functions Gi

given by (3.29), (3.31) and (3.33). Then (3.28) is a ϵ-isothermic Dupin surface whose principal curvatures
are the functions −λi, 1 ≤ i ≤ 2.

Proof: Let X be a ϵ-isothermic Dupin surface as in Theorem 3.2. If the principal curvatures −λ1 or
−λ2 are not constant, then −λi, 1 ≤ i ≤ 2, are given by (3.9), (3.11) and (3.13). For simplicity, define
λ1 = h2(u2), λ2 = h1(u1) and suppose that h′

1 ̸= 0.

From Theorem 3.1, the first fundamental form of X is given by I =
1

(h1 − h2)2

(
ϵ1du

2
1+ ϵ2du

2
2

)
, ϵ2i = 1,

1 ≤ i ≤ 2 and X satisfy

X,12 −Γ2
12X,2 −Γ1

12X,1 = 0,

X,11 −Γ2
12X,1 +ϵ1ϵ2Γ

1
12X,2 +

ϵ3ϵ1h2N

(h2 − h1)2
= 0,

X,22 −Γ1
12X,2 +ϵ1ϵ2Γ

2
12X,1 +

ϵ3ϵ2h1N

(h2 − h1)2
= 0, (3.35)

N,1 = h2X,1 ,

N,2 = h1X,2 .

Using (3.4), we obtain

Γ2
12 =

h′
1

h2 − h1
, Γ1

12 =
h′
2

h1 − h2
, (3.36)

Γ2
12,1 −

(
Γ2
12

)2
=

h′′
1

h2 − h1
, Γ1

12,2 −
(
Γ1
12

)2
=

h′′
2

h1 − h2
.



138 Corro A. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 129-146

The last two equations of (3.35), we get

N = h2X +G2 and N = h1X +G1.

Hence

X =
G2 −G1

h1 − h2
and N =

h1G2 − h2G1

h1 − h2
. (3.37)

Substituting (3.37) in the first equation of (3.35), we obtain an identity.
Subtracting the second and third equation of (3.35), we have

ϵ2X,11 −ϵ1X,22 =
ϵ1ϵ2ϵ3N

h1 − h2
+ 2ϵ2Γ

2
12X,1 −2ϵ1Γ

1
12X,2 . (3.38)

On the other hand, differentiating X given by (3.37) and using (3.36), we obtain

X,1 = Γ2
12X +

G′
1

h2 − h1
, X,2 = Γ1

12X +
G′

2

h1 − h2
,

X,11 =
(
Γ2
12,1 − (Γ2

12)
2
)
X + 2Γ2

12X,1 +
G′′

1

h2 − h1
, (3.39)

X,22 =
(
Γ1
12,2 − (Γ1

12)
2
)
X + 2Γ1

12X,2 +
G′′

2

h1 − h2
.

So, using (3.38) and (3.36), we get

−ϵ3N =
(
ϵ1h

′′
1 + ϵ2h

′′
2

)
X + ϵ1G

′′
1 + ϵ2G

′′
2 .

Substituting X and N given by (3.37) and using the Theorem 3.2, we obtain

ϵ2
(
G′′

2 + ϵ2(ϵ3 + b1)G2

)
= −ϵ1

(
G′′

1 − ϵ1b1G1

)
.

Therefore, X is given by (3.28) and the vector valued functions Gi(xi), 1 ≤ i ≤ 2 satisfy

G′′
1 − ϵ1b1Gi = V, (3.40)

G′′
2 + ϵ2(ϵ3 + b1)G2 = −ϵ1ϵ2V, (3.41)

Now, substituting (3.37) and (3.39), in the second equation of (3.35), using (3.36), the Gauss equation,
Theorem 3.2 and (3.28), we obtain

V h2 + ϵ1(ϵ3 + b1)h2G2 + c1G2 + ϵ1ϵ2h
′
2G

′
2 − V h1 − ϵ1b1h1G1 − c1G1 + h′

1G
′
1 = 0. (3.42)

Note that V h2 + ϵ1(ϵ3 + b1)h2G2 + c1G2 + ϵ1ϵ2h
′
2G

′
2 − V h1 − ϵ1b1h1G1 − c1G1 + h′

1G
′
1, is a constant

vector. In fact, it is sufficient differentiate these expression with respect to u1 and u2, using (3.18), (3.19),
(3.40) and (3.41).
Finally, consider eϵj , 1 ≤ j ≤ 3 vectors of E3, such that

〈
eϵi , eϵj

〉
= ϵiδij , 1 ≤ i, j ≤ 3.

Hence, given initial conditions X,1 (0, 0) =
−eϵ1

h1(0)−h2(0)
, X,2 (0, 0) =

eϵ2
h1(0)−h2(0)

, N(0, 0) = eϵ3 ,
X(0, 0) = (0, 0, 0) and using (3.37) and (3.39), we have G′

i(0) = eϵi , Gi(0) = eϵ3 , 1 ≤ i ≤ 2.
Therefore, using (3.42), we get

V =
ϵ1

h2(0)− h1(0)

(
− ϵ1h

′
1(0) eϵ1 − ϵ2h

′
2(0) eϵ2 −

(
(ϵ3 + b1)h2(0)− b1h1(0)

)
eϵ3

)
. (3.43)

1. If b1 ̸= 0 and (ϵ3 + b1) ̸= 0, using (3.9) in (3.43), the solutions of (3.40) and (3.41) are given by
(3.29) where V1 is given by (3.30).

2. If b1 = 0, using (3.11) in (3.43), the solutions of (3.40) and (3.41) are given by (3.31) where V2 is
given by (3.32).

3. If b1 = −ϵ3, (3.13) in (3.43), the solutions of (3.40) and (3.41) are given by (3.33) where V3 is
given by (3.34)

Conversely, consider

X =
G2 −G1

λ2 − λ1
, (3.44)
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where the vector valued functions Gi(xi), 1 ≤ i ≤ 2, are given by (3.29), (3.31) and (3.33), with λ1 and λ2

given by (3.9), (3.11) and (3.13).
After very long computations we can show that the first and second fundamental form of X are given by

I =
1

(λ1 − λ2)2

(
ϵ1du

2
1 + ϵ2du

2
2

)
, II =

1

(λ1 − λ2)2

(
− λ1ϵ1du

2
1 − λ2ϵ2du

2
2

)
. (3.45)

Therefore (3.44) is a ϵ-isothermic Dupin surface whose principal curvatures are the functions −λi, 1 ≤ i ≤
2. □

Examples of ϵ−isothermic Dupin surfaces
Example 3.1. Considering A1 = A2 = 1

2 , A3 = − 1
2 , A4 = − 1

4 , b1 = 1, c1 = 0, ϵ1 = 1, ϵ2 =

−1, ϵ3 = 1 in Theorem 3.4, we have the ϵ−isothermic Dupin surface X =
G2 −G1

λ2 − λ1
(see Figure 3.1),

where

λ2 = coshu1, λ1 = −1

4

(
sinh

(√
2u2

)
+ 3 cosh

(√
2u2

))
,

G1 =

(
sinhu1,−

√
2

7
(coshu1 − 1) ,

1

7
(10− 3 coshu1)

)
,

G2 =

(
0,−

7 sinh
(√

2u2

)
+ cosh

(√
2u2

)
− 1

7
√
2

,
1

7

(
2 cosh

(√
2u2

)
+ 5
))

.

Figure 3.1: ϵ-isothermic Dupin surface

Example 3.2. Considering A1 = A2 = 1
4 , A3 = A4 = 1

2 , b1 = 4, c1 = 2
√
6, ϵ1 = −1, ϵ2 = −1, ϵ3 =

−1 in Theorem 3.4, we have the ϵ−isothermic Dupin surface X =
G2 −G1

λ2 − λ1
(see Figure 3.2), where

λ2 =
1

2

(
cos(2u1) +

√
6
)
, λ1 = cosh

(√
3u2

)
+ 2

√
2

3
,

G1 =
(
− sin(u1) cos(u1), 0,

(√
6− 3

)
sin2(u1)− cos(2u1)

)
,

G2 =

(
0,−

sinh
(√

3u2

)
√
3

,−
(√

6 + 1
)
cosh

(√
3u2

)
+ 2

√
6 + 3

)
.
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Figure 3.2: ϵ-isothermic Dupin surface

Example 3.3. Considering A5 = 1, A6 = 3, A7 =
√
15, A8 = 0, c1 = 2, ϵ1 = 1, ϵ2 = 1, ϵ3 = 1 in

Theorem 3.4, we have the ϵ−isothermic Dupin surface X =
G2 −G1

λ2 − λ1
(see Figure 3.3), where

λ2 = u2
1 + u1 + 3, λ1 =

√
15 cos(u2)− 2,

G1 =

(
u2
1

10− 2
√
15

+ u1, 0, 1−
(√

15− 2
)
u2
1

2
(√

15− 5
) ) ,

G2 =

(
1− cos(u2)√

15− 5
, sin(u2),−

3 cos(u2)−
√
15 + 2√

15− 5

)
.

Figure 3.3: ϵ-isothermic Dupin surface

4. Solutions of the pseudo-Calapso and Zoomeron equations . In this section, using the Theorems
2.1 and 3.2, we give explicit solutions to the pseudo-Calapso equation. In particular, we provide new explicit
solutions of the Zoomeron, Calapso and Davey-Stewartson III equations.

Corollary 4.1. Let X : U ⊆ R2 → E3, be a ϵ-isothermic Dupin surface with two distinct principal

curvatures −λ1 and −λ2. The functions ω =
ϵ1
√
2(λ2 + λ1)

2(λ2 − λ1)
, Ω =

ϵ1
√
2

2
are solutions of the pseudo-

Calapso equation where λ1 and λ2 are given in Theorem 3.2.
Proof: The result it follows from Theorems 2.1 and 3.2. □

Remark 4.1. Consider ϵ = ϵ1ϵ2 = −1 and ϵ1ϵ3 = 1. In this case the pseudo-Calapso equation
becomes the Zoomeron equation (2.13).
By Theorem 3.2 and Corollary 4.1, for each λ1 and λ2 given by (3.9), (3.11) and (3.13), the function

ω =
ϵ1
√
2(λ2 + λ1)

2(λ2 − λ1)
(4.1)
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is a solution of (2.13).
Moreover, as in Remark 2.3, the function u(u1, u2, t) given by

u = ei(νu1+µu2+µνt)ω(u1 + µt, u2 + νt), ρ =
|u|,12
u

,

is a solution of the Davey-Stewartson III equation (2.15), where ω(u1, u2) is given by (4.1).

The next using the Remark 4.1, we present some graphs of solutions to the Zoomeron equation.

Example 4.1. Considering A1 = A2 = 1
2 , A3 = − 1

2 , A4 = − 1
4 , b1 = 1, c1 = 0, ϵ1 = 1, ϵ2 =

−1, ϵ3 = 1 in Theorem 3.2 and using the Corollary 4.1, we have the solution of the Zoomeron equation

ω =

√
2(λ2 + λ1)

2(λ2 − λ1)
(see Figure 4.1), where

λ2 = coshu1, λ1 = −1

4

(
sinh

(√
2u2

)
+ 3 cosh

(√
2u2

))
.

Figure 4.1: Solution of the Zoomeron equation

Example 4.2. Considering A1 = A2 = 1, A3 = A4 = −1, b1 = − 1
2 , c1 = 1, ϵ1 = 1, ϵ2 =

−1, ϵ3 = 1 in Theorem 3.2 and using the Corollary 4.1, we have the solution of the Zoomeron equation

ω =

√
2(λ2 + λ1)

2(λ2 − λ1)
(see Figure 4.2), where

λ2 = 2

(
cos

(
u1√
2

)
+ 1

)
, λ1 = −2

(
cosh

(
u2√
2

)
+ 1

)
.

Figure 4.2: Solution of the Zoomeron equation



142 Corro A. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 129-146

Remark 4.2. Consider ϵ1 = −1 and ϵ2 = ϵ3 = 1. In this case the pseudo-Euclidean 3-space E3 is the
Lorentz-Minkowski 3-space L3.
The pseudo-Calapso equation in L3 is given by

∆ϵ

(
ϕ,12
ϕ

)
−
(
ϕ2
)
,12 = 0, (4.2)

where ∆ϵ =
∂2

∂u2
1

− ∂2

∂u2
2

.

By Theorem 3.2 and Corollary 4.1, for each λ1 and λ2 given by (3.9), (3.11) and (3.13), the function

ω(u1, u2) = −
√
2(λ2 + λ1)

2(λ2 − λ1)
, (4.3)

is a solution of (4.2). Note that, using the transformation (u1, u2) → (u2, u1), we obtain that (4.2) be-
comes the Zoomeron equation. Hence, for each solution ω(u1, u2) of (4.2), we get a solution ω̃(u1, u2) =
ω(u2, u1) of the Zoomeron equation. Therefore, as in the previous remark, we obtain a solution of the
Davey-Stewartson III equation (2.15), given by

u = ei(νu1+µu2+µνt)ω(u2 + µt, u1 + νt), ρ =
|u|,12
u

,

where ω(u1, u2) is given by (4.3).

Example 4.3. Considering A5 = 1, A6 = 3, A7 =
√
15, A8 = 0, c1 = 2, ϵ1 = −1, ϵ2 = ϵ3 = 1

in Theorem 3.2 and using the Corollary 4.1, we have the solution of the pseudo-Calapso equation ω =

−
√
2(λ2 + λ1)

2(λ2 − λ1)
(see Figure 4.3), where

λ2 = u2
1 + u1 + 3, λ1 =

√
15 cos(u2) + 2.

Figure 4.3: Solution of the pseudo-Calapso equation

Example 4.4. Considering B5 = 2, B6 = 0, B7 = 2, B8 = −1, c1 = −2, ϵ1 = −1, ϵ2 = 1, ϵ3 = 1
in Theorem 3.2 and using the Corollary 4.1, we have the solution of the pseudo-Calapso equation ω =

−
√
2(λ2 + λ1)

2(λ2 − λ1)
(see Figure 4.4), where

λ2 = 2(cosh(u1) + 1), λ1 = −(u2 − 1)2.

The following result generalizes the Proposition 5.6 in [18].

Proposition 4.1. If f is a ϵ2−holomorphic function, ϵ2 = ±1, then the function ω given by

ω =
2
√
2|⟨f ′, f ′⟩ϵ2 |

1 + ϵ3⟨f, f⟩ϵ2
(4.4)

is a solution to the pseudo-Calapso equation.
Proof: Let ϵ2 = ±1 and f is a ϵ2−holomorphic function and define the application

X(z) =

(
2f

1 + ϵ3⟨f, f⟩ϵ2
,
ϵ3⟨f, f⟩ϵ2 − 1

1 + ϵ3⟨f, f⟩ϵ2

)
, z ∈ Cϵ2
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Figure 4.4: Solution of the pseudo-Calapso equation

where ϵ23 = 1.
This application is a parametrization of the sphere in R3 with metric du2

1 + ϵ2du
2
2 + ϵ3du

2
3. In fact, it is

easy to see that ⟨X,X⟩ = ϵ3. Moreover, the first fundamental form of X is given by

I =
4|⟨f ′, f ′⟩ϵ2 |(

1 + ϵ3⟨f, f⟩ϵ2
)2 [du2

1 + ϵ2du
2
2

]
.

Using Theorem 2.1, we get the result. □

The next using the Proposition 4.1, we present some graphs of solutions to the Calapso equation.

Example 4.5. Considering the 1-holomorphic functions f(z) = cosh z, f(z) = z3 + 1, ϵ1 = ϵ2 =
ϵ3 = 1 in Proposition 4.1, we have respectively, the solutions of the Calapso equation

ω =
4
√
cosh(2u1)− cos(2u2)

cosh(2u1) + cos(2u2) + 2
,

ω =
6
√
2(u2

1 + u2
2)

3u2
1u

4
2 + 3 (u3

1 − 2)u1u2
2 + u6

1 + 2u3
1 + u6

2 + 2
,

whose graphs are given in Figures 4.5 and 4.6.

Figure 4.5: Solution of the Calapso equation
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Figure 4.6: Solution of the Calapso equation

Remark 4.3. From Remark 2.3 and Proposition 4.1, we get that if f is a -1-holomorphic function, then

u = ei(νu1+µu2+µνt)ω(u1 + µt, u2 + νt), ρ =
|u|,12
u

,

u = ei(νu1+µu2+µνt)ϕ(u2 + µt, u1 + νt), ρ =
|u|,12
u

,

are solutions for the Davey-Stewartson III equation (2.15) where ω(u1, u2) =
2
√

2|⟨f ′, f ′⟩ϵ2 |
1 + ⟨f, f⟩ϵ2

and ϕ(u1, u2) =

2
√
2|⟨f ′, f ′⟩ϵ2 |

1− ⟨f, f⟩ϵ2
. Moreover, ω(u1, u2) and ϕ̃(u1, u2) = ϕ(u2, u1) are the solutions of the Zoomeron equa-

tion.

Example 4.6. Considering the -1-holomorphic functions f(z) = sin(u1) cos(u2)+i cos(u1) sin(u2), ϵ1 =
1, ϵ2 = −1, ϵ3 = 1 in Proposition 4.1 and using the Remark 4.3 we have the solution of the Zoomeron equa-
tion

ω =
2
√
2
√

cos2(u1) + cos2(u2)− 1

1− cos2(u1) + cos2(u2)
,

whose graph is given in Figure 4.7.

Figure 4.7: Solution of the Zoomeron equation

Remark 4.4. Consider ϵ1 = ϵ2 = ϵ3 = 1. In this case we get the Euclidean 3-space R3. By Theorem

3.2 and Corollary 4.1, for each λ1 and λ2 given by (3.9), (3.11) and (3.13), the function ω =

√
2(λ2 + λ1)

2(λ2 − λ1)
,

is a solution of the Calapso equation

∆

(
ϕ,12
ϕ

)
+
(
ϕ2
)
,12 = 0,

where ∆ is the usual Laplacian of R2.
Moreover, by Remark 2.3, if ω(u1, u2) is a solution for the Calapso equation, then the function ω̃(u1, u2) =
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ω(u1, iu2) is a solution of the Zoomeron equation.
Therefore,

u = ei(νx+µy+µνt)ω̃(u1x+ µt, u2 + νt), ρ =
|u|,12
u

is a solution of the Davey-Stewartson III equation (2.15).

5. Conclusions. From the results obtained in this work we can make the following conclusions:
We show that for each ϵ-isothermic surface of the pseudo-Euclidean 3-space, we can associate to these
surfaces two solutions to the pseudo-Calapso equation. Furthermore, for each solution of the pseudo-
Calapso equation, we have in particular a solution of the Calapso or Zoomeron equations. Consequently,
we obtain solutions of the Davey-Stewartson III equation. Also, we consider those proper Dupin surface
of the pseudo-Euclidean 3-space having distinct principal curvatures, parametrized by lines of curvature.
We show that every Dupin surface parametrized by lines of curvature is a ϵ-isothermic surface and provide
explicit coordinates for such surfaces. Finally, as application of the theory, we give explicit solutions of
the pseudo-Calapso, that depend on two functions, each one defined in a given variable. In particular, we
provide new explicit solutions of the Calapso, Zoomeron and Davey-Stewartson III equations and we also
provide explicit solutions to these equations that depend on ϵ2−holomorphic functions.
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[6] Calapso MT, Udrişte C. Isothermic surfaces as solutions of Calapso PDE. Balkan Journal of Geometry and Its Applications

2008; 13(1):20-26.
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