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Abstract
In this work, we simulate the dynamics of COVID-19 pandemic using a deterministic SIRD model and
its stochastic SIRD model version. The model is used under a closed population of 32 625 984 from the
peruvian country, where the coefficient of the transmission rate, the recovery rate, the dead rate and the
initial condition are given for the data taken from the initial days reported by the first disease people in
Perú.
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1. Introduction. In recent years, the world has suffered a tremendous pandemic named Covid-19,
which is a respiratory disease that generally transmits through direct contact with an infected person, but
it also can spread by indirect contact with a virus infected environment. This changed the lifestyle at all
the human beings, in schools, workplaces, etc. Mathematical models are tools for modeling and studying
disease transmission.

The COVID-19 is focused to developed in Perú and the parameters of the model are determined with
the data of peruvian stations, the reports of infected, deceased and recovered people provided are used. As
a result, we obtained the configuration of the infected, susceptible and removed populations.

There are many studies that have adopted mathematic approaches to model the transmission of COVID-
19. For example, in [1], the authors used the classical deterministic SIR epidemic model to formulate a
model for the transmission of COVID-19 in Perú and for differents peruvian regions [2].

El Koufi [3], presents a stochastic model of the COVID-19 epidemic for a population with five com-
partments.

Jianhai Bao et al. [4], using a variation-of-constants formula for a class of SDEs with jumps, they pro-
vide an explicit solution for one-dimensional competitive Lotka–Volterra population dynamics with jumps,
and investigate the sample Lyapunov exponent for each component and the extinction to n-dimensional
model.

Gao and Wang [5] have studied a stochastic mutualism model integrating the Lévy and Markov pro-
cesses.This article presents a stochastic model of the Covid-19 epidemic for a population with five com-
partments.
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The present work shows a deterministic model and a stochastic model of the COVID-19 epidemic
for the peruvian population using a basic SIRD model. A numerical study is made of the both proposed
deterministic and stochastic models. Also, the results of each model are compared.

2. Deterministic model. When in a certain population N there is someone people infected with a
virus, it is divided into the group of infected (I), group of susceptible (S), the group of recovered (R) and
the group of dead (D), and that over time evolve according to the scheme of the figure 2.1.

Figure 2.1: Dynamic of the pandemic population

Wich is expressed at a modification of the mathematical model( proposed in 1927 by Kermack &
McKendrick [6]) by the system of four equations:

dS(t)
dt = −λS(t)I(t),

dI(t)
dt = λS(t)I(t)− γI(t)− µI(t),

dR(t)
dt = γI(t),

dD(t)
dt = µI(t).

(2.1)

It is called the model SIRD, where the variables and parameters are described in Table 2.1

Variables Meaning

S(t) Susceptible population to be infected at time t,

I(t) Infected population at time t,

R(t) Recovered population at time t,

D(t) Dead population at time t,

t The time expresed at days.

λ The trasmission rate through exposure of the disease,

γ The rate of recovering,

µ Mortality rate.

Table 2.1: Variables and parameters for the system (2.1).

All the variables must be satisfy the compatibility condition N = S(t) + I(t) + R(t) +D(t), that is,
the total population remain unchanged.

2.1. Population data of Perú. According to the national census of October 22, 2017, the Peruvian
population reaches 31 million 237 thousand 385 people, and based on forecasts as of June 30 of each year
[7], from the estimate of this Institucion indicates that the aproximate population is N = 32625948.
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Therefore, for this work, we assume that data of global population is the estimate N = 32625948.

2.2. Data COVID-19 of Perú (March-September 2020). To use the system of equations (2.1) in the
calculation of the parameters we need the values of S(t), I(t), R(t) and D(t), which have been obtained
from the official reports of MINSA (Ministry of Health) [2] from March 5 to September 30, 2020. For
example, the Table 2.2, shows only some days.

Day t Date Susceptible S(t) Infected I(t) Recovered R(t) Deceased D(t)

0 mar-05 32 625 948 0 0 0

1 mar-06 32 625 947 1 0 0

12 mar-17 32 625 831 116 0 1

26 mar-31 32 624 883 630 394 41

27 apr-01 32 624 625 829 447 47

33 apr-07 32 622 994 1 734 1 100 120

40 apr-14 32 615 645 7 204 2869 230

47 apr-21 32 608 111 10 371 6 982 484

56 apr-30 32 588 972 25 520 10 405 1 051

57 may-01 32 585 489 28 206 11 129 1 124

71 may-15 32 541 453 54 956 27 147 2 392

87 Jun-01 32 455 909 96 898 68 507 4 634

117 Jul-01 32 337 471 100 372 178 245 9 860

148 Aug-01 32 203 765 111 940 290 835 19 408

179 Set-01 31 962 511 154 001 480 177 29 259

208 Set-30 31 807 651 95 234 690 528 32 535

Table 2.2: Data related to COVID-19 in Perú (Mar. 05 to Set. 30, 2020).

2.3. Estimate of parameters λ, γ and µ. The equations of the former model for COVID-19 implies
the determination of parameters λ, γ and µ based on the evolution of the official data of the effects of
COVID-19 (see Table 2.2) reported by the respective Regional Health Managements[2], which satisfy the
system of equations (2.1).

In order to calculate the parameters we use the approximation of the derivative by central difference
f ′(t) ≈ f(t+h)−f(t−h)

2h , implies that for each day of the sample data t = 1, 2, ...208 = T we calculate the
parameters λt, γt y µt, which give us a sequence of data. Then we calculate the simple average of such
values to have the final parameters which we can see at table 2.3 .

λ =

T∑
t=1

λt

T
, where λt =

S(t+ 1)− S(t− 1)

2S(t)I(t)
, (2.2)

γ =

T∑
t=1

γt

T
, where γt =

R(t+ 1)−R(t− 1)

2I(t)
, (2.3)

µ =

T∑
t=1

µt

T
, where µt =

D(t+ 1)−D(t− 1)

2I(t)
. (2.4)
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Country t=0 S(0) I(0) R(0) D(0) λ γ µ

Perú march 17 32 525 831 116 0 1 2.53195E-09 0.0457600061 0.0019902810

Table 2.3: Parameters of model SIR for Covid-19 in Perú (Mar. 17 to Set. 30, 2020).

Figure 2.2: Deterministic results with Data: from Mar. 17 to Set. 30 of 2020.

2.4. Deterministic simulation results. Now, we solve the equation system (2.1), using de initial val-
ues and parameters of Table 2.3 and we get the results shown in Fig. 2.2

In the projection to May 2021 we can see that the period of greatest infection is from February 09 -
March 30, the day of greatest infection is March 11, which reaches 2,708,144 infected.

The code is tested with observed data and we see that the simulated data behaves very well for short
periods of time, as see the period 01 september to 30 of september, see the subfigure 2.3a, but for longer
periods such as July 1 to September 30, there are some separation at the final part, see subfigure 2.3b

(a) Comparison September 1 to September 30 (b) Comparison July 1 to September 30

Figure 2.3: Two periods of comparison of deaths .

3. Stochastic model. Note that in the deterministic model all parameters are assumed to be determin-
istic, regardless of environmental fluctuations. From a biological point of view, this hypothesis imposes
some limitations on the mathematical modeling of ecological systems, as we can see in the behavior of the
deceased variable, in figure 3.1, the behaviour of the observed data and the simulated data, from march 19
to may 16; population dynamics in the real world are inevitably affected by environmental noise.

from the environment affects the spread of covid 19 and considering that we are still not sure that we
have the completely accurate data. we consider that the stochastic aspect could be interesting. In addition,
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in the case of infected people who do not develop the disease and disperse it (for example, the case of some
children) But we can also mention the case of asymptomatic patients who are not monitored, but are the
cause of transmission in the community.

Figure 3.1: Dead in Perú, Mar. 19 to May. 16, 2020 (simulated vs observed data).

There is other possibility, of touching an infected object could be generate transmission of the disease,
this is a variety of posibilities of transmisssion consequently we can assume that there are two ways consid-
ered in the literature for modelling the influence of environmental fluctuations in population dynamics[4].
One is to consider random perturbations of each of the variables and their not very well known influence
between the susceptible ones in the infected and the recovered ones by a white noise. Similar to Jiang et al.
[8] it is proposed a stochastic system of the form:

dS(t) = −λS(t)I(t)dt+ σ1S(t)dW1(t), S(0) = s0,

dI(t) = (λS(t)I(t)dt− γI(t))dt+ σ2I(t)dW2(t), I(0) = i0,

dR(t) = γI(t)dt+ σ3R(t)dW3(t), R(0) = r0,

dD(t) = µI(t)dt+ σ4D(t)dW4(t), D(0) = d0.

(3.1)

Here, s0, i0, r0, d0 ≥ 0 with s0 + i0 + r0 + d0 = 1; Wi(t) are independent standard Brownian motions and
σ2
i ≥ 0 represent the intensities of Wi(t), i = 1, 2, 3, 4.

In addition to the above, the unpredictability of growth can be considered, this implies the existence
of a stochastic disturbance of the growth rate λ(t) due to white noise, therefore, the growth rate has the
following transformation:

λ → λ+ σ5(t)Ẇ (t),

leading to the next system, similar to one at [9]:

dS(t) = −λS(t)I(t)dt+ σ1S(t)dW1(t)− σ5S(t)I(t)dW5(t),

dI(t) = (λS(t)I(t)− γI(t)− µI(t))dt+ σ2I(t)dW2(t) + σ5S(t)I(t)dW5(t),

dR(t) = γI(t)dt+ σ3R(t)dW3(t),

dD(t) = µI(t)dt+ σ4D(t)dW4(t).

(3.2)

where W5(t) is the classic Brownian motion, σ5 is the intensity of the environmental white noise.
The entire system is defined on a complete probability space (Ω,F ,P) with a filtration Ft≥0 satisfying

the usual conditions (i.e., it is right continuous and increasing, while F0 contains all the null sets on P ).
On the existence and uniqueness of the solution of the system (3.2), the coefficients of the system do

not satisfy the Lipschitz condition and linear growth, as required in [10], only satisfy a local continuous
Lipschitz . However, under certain conditions, Zhou et al.[11] proved the existence of the unique global
solution of the system (3.2).
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3.1. Numerical simulation: Milstein method. Before the discretization of model (3.2), we will nor-
malized the system; as the population considered has a constant size N = 32625948, and we used this con-
stant to normalized the variables in order to have N = 1, therefore we have S(t)+ I(t)+R(t)+D(t) = 1
for all t ≥ 0. The initial conditions of system (3.2) is given as follows:

S(0) = 32645831
N ,

I(0) = 116
N ,

R(0) = 0
N ,

D(0) = 1
N .

(3.3)

For obtain a approximate solution of the system (3.2), we take dwl ∼ ∆Wl = ζl
√
dt where ζl is the

standard Gaussian randon variable whit mean 0 and variance 1.
Then we have to do the discretization of the system, for this we use the finite difference method called,

the Milstein’s Higher Order Method given in [12], we get the discretization equation:

Si+1 = Si − λSiIi∆t+ Si[σ1ζ1,i
√
∆t+ 1

2σ
2
1(ζ

2
1,i − 1)∆t]

− SiIi

[
σ5ζ5,i

√
∆t+ 1

2σ
2
5(ζ

2
5,i − 1)∆t

]
,

Ii+1 = Ii + (λSiIi − γIi − µIi)∆t+ Ii

[
σ2ζ2,i

√
∆t+ 1

2σ
2
2(ζ

2
2,i − 1)∆t

]
+

+ SiIi

[
σ5ζ5,i

√
∆t+ 1

2σ
2
5(ζ

2
5,i − 1)∆t

]
,

Ri+1 = Ri + γIi∆t+Ri[σ3ζ3,i
√
∆t+ 1

2σ
2
3(ζ

2
3,i − 1)∆t],

Di+1 = Di + µIi∆t+Di[σ4ζ4,i
√
∆t+ 1

2σ
2
4(ζ

2
4,i − 1)∆t],

(3.4)

3.1.1. Results. The discrete equations (3.4) is solved explicitly by a code written in octave, whose
results we present.

At the following we proceed to present some results obtanined by the Milstein method. For this we
use the following data: the interval step dt = 0.01 days, the parameters given by the table 2.3, that is λ =
0.00000000253195, γ = 0.047600061, µ = 0.0019902810 and the initial point S(0) = 32625831

N , I(0) =
116
N , R(0) = 0

N , D(0) = 1
N . For numerical simulations of discrete stochastic system (3.4) is used with the

noise parameters σ1 = σ2 = σ3 = σ4 = σ5 = 0.03.
The figure 3.2 present the stochastic simulations of discretized trajectories over the interval [0, 360],

with a sample of n = 100 paths, for each separate variables, Susceptibles, Infected, Recovered and Dead
populations, with σ1 = 0 and σ2 = σ3 = σ4 = σ5 = 0.03.

Figure 3.2: Susceptible, infected, recovered and dead: ensemble of 100 sample paths.

In figure 3.3, we present a comparison between the sample mean of stochastic solutions given in (3.2)
with blue lines and the solutions of deterministic system (2.1) with red lines;
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Figure 3.3: Deterministics solution(red) and sample mean stochastic solution(blue) with σi = 0.03, i=1:5.

At the following we present a sequence of results of the adimensionalized variables, for diferent pa-
rameter values σ1, σ2, σ3, σ4, σ5, compared with the deterministics case (σi = 0, i = 1, . . . , 5), in order to
understand their role on the dynamics:

In the figure 3.4a for the susceptible variable, we see the comparison between the stochastic paths
generated by stochastic system (3.2) for differente noise values and the deterministics path given by the
equation system (2.1);

(a) Susceptible. (b) Infected.

Figure 3.4: Dynamics of susceptible and infected variables.

Figure 3.4b shows the dynamics of the infected variable, we see the comparison between the paths of
the stochastic system (3.2) for different noise values and the deterministic path given by the system (2.1).

In the figures 3.5a the Recovered variable and 3.5b the Dead variable, also are presented with some
paths of stochastic system (3.2) for diferents noise values and the path of the deterministics system (2.1)
respectiveley.

When intensities of white noise increasing, the maximums of I(t) and R(t) decrease, moreover the du-
ration of the disease increases, the curves of system (3.2) always fluctuate around the curves of deterministic
system (2.1).

Finally, we present some results where we can see that the presence of the random fluctuation of the
variables as well as the random variation of the transmission rate allows us to improve the approximation
of the simulated data to the observed data.
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(a) Reovered. (b) Dead.

Figure 3.5: Dynamics of recovered and death variables.

(a) Trajectory 1 vs observed data. (b) Trajectory 2 vs observed data.

(c) Trajectory 3 vs observed data. (d) Sample mean vs observed data.

Figure 3.6: Comparison data observed vs data simulated stochastic case: July 01 to september 30 of 2020.

Unlike the deterministics case, presented in the figure 2.3, where we can see that after day 92 the
difference between the observed and simulated data is 4020 units. In stochastic case presented in the figure
3.6, we can see that: three random paths at subfigures ()()() compared with the observed data, moreover in
the subfigure 3.6d we present the sample mean of 100 paths compared with the observed data, we see that at
day 92 the difference between the simulated data and observed one of 950 units, with which the stochastic
prediction could be more reliable than in the deterministics dynamic, with which we can conclude that
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stochasticity incorporates improves at the simulation.
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