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Abstract
We consider the adaptive finite element discretization of parameter estimation problems for nonlinear ellip-
tic partial differential equations. The idea is to use a gradient method on the finite-dimensional parameter
space for the minimization of the least-squares residual. Since the gradient involves solution of partial
differential equations, it is not accesable, and is replaced by an approximation obtained by finite elements.
This results into a perturbed gradient method. We use an (a posteriori) error estimator to control the accu-
racy of the gradient approximation and propose an algorithm, which links the estimator to the progress of
the iteration. We show convergence of the algorithm under typical structural assumptions.

Keywords . Adaptive finite element methods, parameter estimation, gradient method.

1. Introduction. We consider parameter estimation for a nonlinear elliptic partial differential equa-
tions in a bounded polyhedral domain Ω ⊂ Rd, d ∈ N1,

−div (A(u)∇u) = f(u) + b(p) in Ω, u = 0 on ∂Ω, (1.1)

where f(u), b(p) ∈ L2(Ω) and the right-hand side depends smoothly on u and a finite-dimensional param-
eter p ∈ Q = RnQ . The parameter is sought to best fit given data CD ∈ Z = RnZ in the least-squares
sense, minimizing

J(p, u) :=
1

2

nZ∑
i=1

Ri(u)
2 +

αLS

2
∥p∥2 , Ri(u) := Ci(u)− CD

i , (1.2)

where C = V → Z is the observation operator (supposed to be linear), Ri is the least-squares residual, and
0 ≤ αLS. We throughout suppose that this parameter estimation problem is well-defined, i.e., there exists is
unique solution p∗ depending continuously on data. The latter property amounts in the considered smooth
case to have a strictly positive Hessian of the reduced functional Ĵ in a neighborhood of the solution.

The discretization of the state equation (1.1) by a conforming finite-element method leads to an approx-
imate parameter estimation problem; suppose its solution is p∗h. In the case of linear state equation (1.1), a
priori and a posteriori error estimates for the error in parameter, ∥p∗ − p∗h∥, have been derived in [1]. These
estimates differ from previous estimates in the literature on optimal control problems, since they avoid
suboptimal bounds, which typically arise, when the sum of bounds of the energy errors for the state and
adjoint variables are used. This allows to have sharper estimates for the parameter error in many cases, see
also Lemmas 3.2 and 3.3 below. Moreover, optimal convergence rates of an adaptive finite element method
(AFEM) in terms of unknowns (and even work) have been shown in [1].

Our present concern is the generalization of the above-mentioned results to (1.1). In addition, here
we wish to consider the problem from an optimization point of view. More precisely, instead of solving
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the optimization problem on a sequence of meshes, we consider a perturbed gradient method for the con-
tinuous minimization problem, and interpret discretization as perturbation to the functional and gradient
evaluations.

In Section 2 we describe the considered setting based on weak formulations of the different partial
differential equations of interest. We discuss the computation of the reduced least-squares functional and
its gradient, both on continuous and discrete level. This information is then used in Section 3 in order
to obtain error estimators of the functional value and gradient. Since the gradient error is related to the
parameter error, we derive estimators as discussed above similar to [1]. The error estimator enables us
to propose a perturbed gradient method in Section 4. The idea is to couple the estimator bounding the
approximation of the gradient to the norm of the approximated gradient, which measures the progress of
the iteration. Under typical assumptions of AFEM theory, we prove that the total error, the weighted sum
of the estimator and the continuous functional gap, converge quasi-geometrically. The rate has the typical
behavior of a gradient method with respect to the condition number of the function (ratio of the Lipschitz
constant of the gradient to the strong convexity parameter). Finally we draw some conclusions in Section 5
and discuss some generalisations.

2. Considered parameter estimation problem. The state equation (1.1) is understood in the weak
formulation, written with V = H1

0 (Ω) as

u = u(p) ∈ V : a(u)(v) = l(p)(v) ∀v ∈ V. (2.1)

Here a : V ×V → R denotes a smooth (not necessarily bilinear) form. We suppose that it is monotone and
Lipschitz-continuous, {

a(u)(u− v)− a(v)(u− v) ≥ α ∥u− v∥2V ∀u, v ∈ V,

a(u)(v)− a(w)(v) ≤ Ca ∥u− w∥V ∥v∥V ∀u, v, w ∈ V.
(2.2)

We note that monotonicity is equivalent to

a′(u)(v, v) ≥ α ∥v∥2V ∀u, v ∈ V. (2.3)

By our assumptions, for given p ∈ Q, we have a unique solution u(p) to (2.1) and we can introduce
the reduced functional

Ĵ(p) := J(p, u(p)). (2.4)

Its gradient can be computes as

⟨∇Ĵ(p), q⟩ = αLS⟨p, q⟩+ l′(p)(q, z(p)), (2.5)

where z ∈ V is the unique solution to

z = z(p) ∈ V : a′(u(p))(v, z) = J ′
u(p, u(p))(v) ∀v ∈ V, (2.6)

see for example [2]. We make the hypothesis of µ-convexity of the reduced functional, which means that
there exists µ > 0, such that

⟨∇2Ĵ(p)q, q⟩ ≥ µ ∥q∥2 ∀q ∈ Q. (2.7)

Let Vh ⊂ V be a conforming finite-element subspace, where h ∈ H is an element of a given shape-
regular family of simplicial meshes H. Then uh = uh(p) is defined by the discrete problem

uh ∈ Vh : a(uh)(v) = l(p)(v) ∀v ∈ Vh, (2.8)

and

zh = zh(p) ∈ Vh : a′(uh(p))(v, zh) = J ′
u(p, uh(p))(v) ∀v ∈ Vh. (2.9)

Similar to (2.12) we have for the discrete reduced functional Ĵh(p) := J(p, uh(p)) that

⟨∇Ĵh(p), q⟩ = αLS⟨p, q⟩+ l′(p)(q, zh(p)). (2.10)

Note that, in contrast to the infinite-dimensional case, (2.7) does in general not require αLS > 0.
Instead of (2.1) we consider the adjoint equations for z(i) = z(i)(p) (for 1 ≤ i ≤ nZ)

z(i) ∈ V : a′(u(p))(v, z(i)) = Ci(v) ∀v ∈ V, (2.11)
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which leads to z =
∑nZ

i=1 Ri(u)z
(i) and we have

⟨∇Ĵ(p), q⟩ = αLS⟨p, q⟩+
nZ∑
i=1

Ri(u)l
′(p)(q, z(i)). (2.12)

A gradient step for the minimization of the discrete functional ∇Ĵh(p) starting from pk can now be per-
formed by solving the discrete state equation (2.8) and the discrete adjoint equations for z(i)h = z

(i)
h (p)

z
(i)
h ∈ Vh : a′(uh(p))(v, z

(i)
h ) = Ci(v) ∀v ∈ Vh. (2.13)

We can then perform a step of the gradient method,

⟨pk+1, q⟩ = ⟨(1− tkαLS)pk, q⟩+ tk

nZ∑
i=1

Ri(uh(pk))
(
l′(p)(q, z

(i)
h )− a′(pk)(q, z

(i)
h (pk))

)
∀q ∈ Q,

(2.14)
where tk is the step size.

Finally, we state that µ-convexity of the reduced functional leads to the following bound for the param-
eter error with

Lemma 2.1.

∥p∗ − p∗h∥ ≤ µ− 1
2

∥∥∥∇Ĵ(p∗h)−∇Ĵh(p
∗
h)
∥∥∥ . (2.15)

An alternative formula for the gradient of the reduced functional relies on the solution to the tangent
problem for u′ = u′(p)(q)

u′ ∈ V : a′(u(p))(u′, v) = l′(p)(q, v) ∀v ∈ V. (2.16)

We then have

⟨∇Ĵ(p), q⟩ = αLS⟨p, q⟩+
nZ∑
i=1

Ri(u)Ci(u
′(p)(q)). (2.17)

Let (ej)1≤j≤nQ
be a basis of Q. Then we have u′(p)(q) =

∑nQ

j=1 u
(j)(p)qj , where, with l′j(p, v) =

l′(p)(ej , v), and

u(j)(p) ∈ V : a′(u(p))(u(j)(p), v) = l′j(p)(v) ∀v ∈ V. (2.18)

The analogous formula holds for the gradient of the discrete reduced functional by means of

u
(j)
h (p) ∈ V : a′(u(p))(u

(j)
h (p), v) = l′j(p)(v) ∀v ∈ Vh. (2.19)

We have the following Céa-type results.
Lemma 2.2.

∥u− uh∥V ≤ Ca

α
inf

vh∈Vh

∥u− vh∥V ,∥∥∥z(i) − z
(i)
h

∥∥∥
V
≤ Ca

α
inf

vh∈Vh

∥∥∥z(i) − vh

∥∥∥
V
+

C ′
a|||Ci|||
α2

∥u− uh∥V ,∥∥∥u(j) − u
(j)
h

∥∥∥
V
≤ Ca

α
inf

vh∈Vh

∥∥∥u(j) − vh

∥∥∥
V
+

C ′
a|||l′(p)|||
α2

∥u− uh∥V .

(2.20)

Proof: By (2.2)

α ∥u− uh∥2V ≤a(u)(u− uh)− a(uh)(u− uh)

=a(u)(u− vh)− a(uh)(u− vh) ≤ Ca ∥u− uh∥ ∥u− vh∥V .

With v = z(i) − z
(i)
h

α
∥∥∥z(i) − z

(i)
h

∥∥∥2
V
≤a′(uh)(z

(i) − z
(i)
h , v) = a′(u)(z(i), v)− a′(uh)(z

(i)
h , v) + a′(uh)(z

(i), v)− a′(u)(z(i), v)

≤a′(u)(z(i), v − vh)− a′(uh)(z
(i)
h , v − vh) + C ′

a ∥u− uh∥V
∥∥∥z(i)∥∥∥

V
∥v∥V

≤Ca

∥∥∥z(i) − z
(i)
h

∥∥∥ ∥v − vh∥+ C ′
a ∥u− uh∥V

|||Ci|||
α

∥∥∥z(i) − z
(i)
h

∥∥∥
V
.

The last inequality is similar. □
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3. A posteriori error estimation. For a given mesh h ∈ H, we denote the set of cells by Kh. For
illustration, we suppose that the right-hand side is of the form (1.1) and Ci(u) =

∫
Ω
giu with gi ∈ L2(Ω)

and l′j(p) ∈ L2(Ω). Next we define the error estimators

ρ2h(uh) =
∑

K∈Kh

ρ2K(uh), ρ2h(zh) =
∑

K∈Kh

ρ2K(zh), ρ2h(u
′
h) =

∑
K∈Kh

ρ2K(u′
h)

ρ2K(uh) = h2
K ∥f(u) + l(p) + div(A(u)∇uh)∥2K +

hK

2
∥[A(u)∇uh · nK ]∥∂K\∂Ω ,

ρ2K(z
(i)
h ) = h2

K

∥∥∥gi + f ′(uh) + div(A′(uh)∇z
(i)
h )

∥∥∥2
K
+

hK

2

∥∥∥[A′(uh)∇z
(i)
h · nK

]∥∥∥
∂K\∂Ω

,

ρ2K(u
(j)
h ) = h2

K

∥∥∥f ′(uh) + l′j(p) + div(A′(uh)∇u
(j)
h )

∥∥∥2
K
+

hK

2

∥∥∥[A′(uh)∇u
(j)
h · nK

]∥∥∥
∂K\∂Ω

.

We have the following a posteriori bounds.
Lemma 3.1. 

∥u− uh∥V ≤Cint

α
ρh(uh),∥∥∥z(i) − z

(i)
h

∥∥∥
V
≤Cint

α
ρh(z

(i)
h ) +

|||Ci|||C ′
aCint

α2
ρh(uh),∥∥∥u(j) − u

(j)
h

∥∥∥
V
≤Cint

α
ρh(u

(j)
h ) +

|||b′j(p)|||C ′
aCint

α2
ρh(uh).

(3.1)

Proof: By (2.2) with v := u− uh

α ∥u− uh∥2V ≤a(u)(v)− a(uh)(v) = a(u)(v − vh)− a(uh)(v − vh) = l(p)(v − vh)− a(uh)(v − vh).

Then integration by parts and appropriate interpolation give the result. See [3, 4, 5] for details. With
v = z(i) − z

(i)
h

α
∥∥∥z(i) − z

(i)
h

∥∥∥2
V
≤a′(uh)(v, z

(i) − z
(i)
h ) = a′(u)(v, z(i))− a′(uh)(v, z

(i)
h ) + a′(uh)(v, z

(i))− a′(u)(v, z(i))

≤Ci(v − vh)− a′(uh)(z
(i)
h , v − vh) + C ′

a ∥u− uh∥V
∥∥∥z(i)∥∥∥

V
∥v∥V

≤Cintρh(z
(i)
h ) ∥v∥V +

|||Ci|||C ′
aCint

α
ρh(uh) ∥v∥V

since

α
∥∥∥z(i)∥∥∥2

V
≤ a′(u)(z(i), z(i)) = Ci(z

(i)) ≤ |||Ci|||
∥∥∥z(i)∥∥∥

V
.

The last inequality is similar. □
Lemma 3.2. (Error in functional) We have

Ĵ(p)− Ĵh(p) ≤
nZ∑
i=1

Ei(Ei +Ri(uh)), Ei :=
C2

int

α
ρh(uh)

(
ρ(z

(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh)

)
(3.2)

Proof: We have for any v ∈ Vh

0 = a(u)(v)− a(uh)(v) =

∫ 1

0

a′(uh + t(u− uh))(u− uh, v) dt,

so

a′(uh)(u− uh, v) =

∫ 1

0

(a′(uh)− a′(uh + t(u− uh))) (u− uh, v) ≤
C ′

a

2
∥u− uh∥2 ∥v∥ . (3.3)

With v := u− uh and (3.3)

Ci(u)− Ci(uh) =a′(u)(u− uh, z
(i)) = a′(u)(u− uh, z

(i))− a′(uh)(u− uh, z
(i)
h ) + a′(uh)(u− uh, z

(i)
h )

≤Ci(v − vh)− a′(uh)(v − vh, z
(i)
h ) +

C ′
a

2
∥u− uh∥2

∥∥∥z(i)h

∥∥∥
≤Cintρ(z

(i)
h ) ∥v∥V +

C ′
a ∥Ci∥
2α

∥u− uh∥2 .
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Then with (3.1)

Ci(u)− Ci(uh) ≤
C2

int

α
ρh(uh)

(
ρ(z

(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh)

)
(3.4)

Ĵ(p)− Ĵh(p) =
1

2

nZ∑
i=1

(
R2

i (u)−R2
i (uh)

)
=

1

2

nZ∑
i=1

(Ri(u)−Ri(uh))
2
+

nZ∑
i=1

(Ri(u)−Ri(uh))Ri(uh)

=
1

2

nZ∑
i=1

(Ci(u)− Ci(uh)) (Ci(u)− Ci(uh) + 2Ri(uh)) .

□
Lemma 3.3. (Error in gradient) We have with

Ei := ρ(z
(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh), F :=

 nQ∑
j=1

(
ρh(u

(j)
h ) +

|||l′j(p)|||C ′
a

α
ρh(uh)

)2
 1

2

∥∥∥∇Ĵ(p)−∇Ĵh(p)
∥∥∥ ≤ C2

int

α

nZ∑
i=1

Ei (ρh(uh)|||l′(p)||||||Ci|||+Ri(uh)F ) . (3.5)

Remark 3.1. Both error estimates, (3.2) and (3.5), have a quadratic behavior, since they consist of
sums of products of the different residual estimators.

Proof: We have from (2.17) with u′ = u′(p)(q) and u′
h = u′

h(p)(q)

⟨∇Ĵ(p)−∇Ĵh(p), q⟩ =
nZ∑
i=1

(Ri(u)Ci(u
′)−Ri(uh)Ci(u

′
h)))

=

nZ∑
i=1

((Ci(u)− Ci(uh))Ci(u
′) +Ri(uh)(Ci(u

′)− Ci(u
′
h)))

For the first term we have with

α ∥u′∥2V ≤ a′(u)(u′, u′) = l′(p)(q, u′) ≤ |||l′(p)||| ∥q∥ ∥u′∥V .

and (3.4)

(Ci(u)− Ci(uh))Ci(u
′) ≤ C2

int

α
ρh(uh)

(
ρ(z

(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh)

)
|||l′(p)|||Ci|||||| ∥q∥ .

For the second term similarly as before with v = u(j) − u
(j)
h

Ci(u
(j))− Ci(u

(j)
h ) =a′(u)(u(j) − u

(j)
h , z(i)) = a′(u)(v, z(i))− a′(uh)(v, z

(i)
h ) + a′(uh)(v, z

(i)
h )

≤Ci(v − vh)− a′(uh)(v − vh, z
(i)
h ) +

C ′
a

2
∥u− uh∥ ∥v∥

∥∥∥z(i)h

∥∥∥
≤Cintρ(z

(i)
h ) ∥v∥V +

C ′
a|||Ci|||Cint

2α2
ρh(uh) ∥v∥ .

Using (3.1) we get

Ci(u
(j))− Ci(u

(j)
h ) ≤ C2

int

α

(
ρ(z

(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh)

)(
ρh(u

(j)
h ) +

|||l′j(p)|||C ′
a

α
ρh(uh)

)
and

Ci(u
′)− Ci(u

′
h) ≤

C2
int

α

(
ρ(z

(i)
h ) +

C ′
a|||Ci|||
2α2

ρh(uh)

) nQ∑
j=1

F 2
j

 1
2

∥q∥ .

□



56 Becker R.- Selecciones Matemáticas. 2023; Vol. 10(1): 51-59

4. Perturbed gradient method. In this section, we use the notation of optimization, replacing Ĵ by
f , P by X and p by x. So we consider a perturbed gradient method of the form

xk+1 = xk − tkgk (4.1)

for the unconstrained minimization problem

min {f(x) | x ∈ X} , (4.2)

where f : X → R is a µ-convex function with L-Lipschitz gradient, i.e.

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥x− y∥2 , ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ . (4.3)

In each step of the iteration, only an approximation fk of f is known (which corresponds for our parameter
estimation problem to the reduced functional on a finite-element sub-space Vk), and gk = ∇fk(xk).

To be more precise, let H be a lattice of meshes with ordering h′ < h if h′ is a refinement of h. We
suppose to have an error estimator ηh and a refinement algorithm R : H → H satisfying

∥∇f(x)−∇fh(x)∥ ≤ ηh(x) (4.4)

and with qR < 1 for h′ = R(h)

ηh′(x) ≤ qRηh(x), η2h(x) ≤ η2h(y) + CS ∥x− y∥2 . (4.5)

Remark 4.1. For simpler computations, we suppose the constant in the upper bound (4.4) to be one.
In comparison to the preceding section, this requires proper scaling of the error estimator. Following [6],
we do not suppose to have a lower bound, but instead decrease of the estimator under refinement. This
typically holds for residual-type estimators of the above form, see also [7]. We consider the following
algorithm with constant step tk = 1/L.

Algorithm 1 GM with constant step-size
Inputs: x0 ∈ X , ε > 0, 0 < λ < 1

2 , h0 ∈ H, and L > 0. Set k = 0.
(1) gk := ∇fhk

(xk).
(2) if ηhk

(xk) + ∥gk∥ ≤
√
2εµ then STOP

(3) ELSE IF ηhk
(xk) > λ ∥gk∥ hk+1 = R(hk)

xk+1 = xk hk+1 = hk

xk+1 = xk − 1
Lgk

(4) Increment k and go to (1).

Remark 4.2. The algorithm performs a gradient step if ηhk
(xk) ≤ λ ∥gk∥. This condition controls the

approximation of the gradient thanks to (4.4). It is similar to the angle condition in the classical analysis of
the gradient method [8]. The algorithm terminates thanks to Proposition 4.1 below. We have the following
justification of the stopping criterium.

Lemma 4.1. If the algorithm stops we have f(xk)− f(x∗) ≤ ε and ∥xk − x∗∥ ≤
√
2ε/µ.

Proof: Let q(y) := f(xk)+ ⟨∇f(xk), y−xk⟩+ µ
2 ∥y − xk∥2. Then argmin q = xk − 1

µ∇f(xk) and

q∗ = min q = f(xk)− 1
2µ ∥∇f(xk)∥2. By µ-convexity (4.3) we have f(y) ≥ q(y) for for all y ∈ X . Then

f(xk)− f(x∗) ≤ f(xk)− q(x∗) ≤ f(xk)− q∗ =
1

2µ
∥∇f(xk)∥2 ≤ 1

2µ
(∥gk∥+ ∥∇f(xk)− gk∥)2 .

We conclude by (4.4). We also have

µ ∥xk − x∗∥2 ≤ ⟨∇f(xk)−∇f(x∗), xk − x∗⟩ ≤ ∥∇f(xk)∥ ∥xk − x∗∥ .

giving the second bound. □
Lemma 4.2. If ηhk

(xk) ≤ λ ∥gk∥ we have

f(xk+1) ≤ f(xk)−
1− 2λ

2L
∥gk∥2 (4.6)
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and

η2hk+1
(xk+1) ≤ qRη2hk

(xk) +

(
(1− qR)λ2 +

CS

L2

)
∥gk∥2 . (4.7)

In addition, if x∗ is a minimizer we set ∆fk := f(xk)− f(x∗). Then for 0 < θ < 1
2 − λ

∆fk+1 ≤ (1− θ)∆fk +
θL

2

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+

θ

µ
η2hk

(xk)−
1− 2λ− 2θ

2L
∥gk∥2 . (4.8)

Proof: We first note that with (4.4) we have

∥∇f(xk)∥ ≤ ∥gk∥+ ∥∇f(xk)− gk∥ ≤ (1 + λ) ∥gk∥
∥gk∥ ≤ ∥∇f(xk)∥+ ∥∇f(xk)− gk∥ ≤ ∥∇f(xk)∥+ λ ∥gk∥

so

(1− λ) ∥gk∥ ≤ ∥∇f(xk)∥ ≤ (1 + λ) ∥gk∥ . (4.9)

By (4.3) we have

f(xk+1)− f(xk) ≤⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

=− 1

L
⟨∇f(xk), gk⟩+

1

2L
∥gk∥2

=− 1

2L

(
∥gk∥2 + ∥∇f(xk)∥2 − ∥∇f(xk)− gk∥2

)
+

1

2L
∥gk∥2

≤− 1

2L

(
∥gk∥2 + (1− λ)2 ∥gk∥2 − λ2 ∥gk∥2

)
+

1

2L
∥gk∥2

≤− 1

L
(1− λ) ∥gk∥2 +

1

2L
∥gk∥2 = −1− 2λ

2L
∥gk∥2 .

Since in case ηhk
(xk) ≤ λ ∥gk∥ we have hk+1 = hk we get from (4.5)

η2hk+1
(xk+1) =η2hk

(xk+1) ≤ η2hk
(xk) + CS ∥xk+1 − xk∥2

≤qRη2hk
(xk) + (1− qR)λ2 ∥gk∥2 + CS ∥xk+1 − xk∥2 = qRη2hk

(xk) +

(
(1− qR)λ2 +

CS

L2

)
∥gk∥2 .

Further by (4.3) we have

f(xk)− f(x∗) ≤⟨∇f(xk), xk − x∗⟩ − µ

2
∥xk − x∗∥2

=⟨gk, xk − x∗⟩ − µ

2
∥xk − x∗∥2 + ⟨∇f(xk)− gk, xk − x∗⟩

=
L

2

(
1

L2
∥gk∥2 + ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
− µ

2
∥xk − x∗∥2 + ⟨∇f(xk)− gk, xk − x∗⟩

≤L

2

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+

1

L
∥gk∥2 +

1

µ
η2hk

(xk).

Adding θ-times the last inequality to (4.6) yields the result. □
We conclude from (4.6) and (4.7) that under the hypothesis of Lemma 4.2 we have α > 0 sufficiently

small such that there exists c0 > 0 satisfying for ant qR ≤ q′R < 1

f(xk+1)− f(xk) + αη2hk+1
(xk+1) + c0 ∥gk∥2 ≤ αq′Rη2hk

(xk). (4.10)

This is the basic estimate to obtain the following result.
Proposition 4.1. Let {x | f(x) ≤ f(x0)} be bounded. The sequence generated by the gradient method

converges towards the unique solution x∗.
Proof: We show that in the first case of the algorithm an estimate similar to (4.10) still holds. In this

case we have f(xk+1) = f(xk), reduction (4.5), and ∥gk∥ ≤ λ−1ηhk
(xk), such that

η2hk+1
(xk+1) + c0 ∥gk∥2 ≤ qRη2hk

(xk) +
c0
λ2

η2hk
(xk) ≤ q′Rη2hk

(xk)

with qR ≤ q′R < 1 if c0 > 0 sufficiently small. So we have (4.10) in both cases.
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Summing up (4.10) from n to N > n leads to

f(xN+1) + αq′Rη2hN+1
(xN+1) + α(1− q′R)

N+1∑
k=n+1

η2hk
(xk) + c0

N∑
k=n

∥gk∥2 ≤ f(xn) + αq′Rη2hn
(xn).

Since the right-hand side is independent of N we can pass to the limit N → ∞ and obtain lim
k→∞

∥gk∥ = 0

and lim
k→∞

ηhk
(xk) = 0. Then by (4.4)

∥∇f(xk)∥ ≤ ∥gk∥+ ∥∇f(xk)− gk∥ ≤ ∥gk∥+ ηhk
(xk) → 0 (k → ∞) .

□
Finally we consider the convergence rate of the algorithm.
Theorem 4.1. Let κf := L/µ and Ek := ∆fk + 1

Lη
2
hk
(xk). Then there exist C > 0 and 0 < ρ < 1

such that

En+k ≤ CρkEn ∀k, n ∈ N, (4.11)

where ρ = 1− 1/C and C ≤ C0κf with C0 > 0 independent of κf .
Remark 4.3. Although we know by (4.6) that the functional is monotone, the total error can in general

not be expected to have the same behavior. This is reflected in (4.11), where a quasi-geometric convergence
is stated. The dependance of ρ on κf is optimal, see [9].

Proof: In case ηhk
(xk) ≤ λ ∥gk∥, we use (4.8) (4.7) and (4.6).

∆fk+1 +
1

L
η2hk+1

(xk+1) ≤(1− θ)∆fk +

(
qR +

θL

µ

)
1

L
η2hk

(xk)+

θL

2

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+B (f(xk)− f(xk+1)) ,

with

B :=
1

L

(
(1− qR)λ2 +

CS

L2

)
2L

1− 2λ
= 2

(1− qR)λ2 + CS/L
2

(1− 2λ)
.

In case ηhk
(xk) > λ ∥gk∥ we have

∆fk+1 +
1

L
η2hk+1

(xk+1) ≤(1− θ)∆fk + θ (f(xk)− f(x∗)) + qR
1

L
η2hk

(xk).

By (4.3), Young’s inequality and (4.9)

f(xk)− f(x∗) ≤ ⟨∇f(xk), xk − x∗⟩ − µ

2
∥xk − x∗∥2 ≤ 1

2µ
∥∇f(xk)∥2 ≤ (1 + λ)2

2µ
∥gk∥2 ,

such that with ∥gk∥2 ≤ η2hk
(xk)/λ

2

∆fk+1 +
1

L
η2hk+1

(xk+1) ≤(1− θ)∆fk +

(
qR +

θ(1 + λ)2L

2µλ2

)
1

L
η2hk

(xk).

Let

q′ := qR + θmax

{
L

µ
,
(1 + λ)2L

2µλ2

}
= qR + θκf

(1 + λ)2

2λ2
,

where we have used (1+λ)2 ≥ 2λ2. For θ small enough we have q′ < 1 and then with q̃ := max {(1− θ), q′}

∆fk+1 +
1

L
η2hk+1

(xk+1) ≤q̃

(
∆fk +

1

L
η2hk

(xk)

)
+

θL

2

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+B (f(xk)− f(xk+1)) .

We know already that η2hk
(xk) → 0 and xk → x∗, so summing up the last inequality from n to N > n and

letting N → ∞ we find

(1− q̃)

∞∑
k=n+1

Ak ≤q̃An +
θL

2
∥xn − x∗∥2 +B (f(xn)− f(x∗))

≤q̃An +

(
θL

µ
+B

)
(f(xn)− f(x∗)) ,
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such that
∞∑

k=n+1

Ak ≤ CAn,

with C :=
(
q̃ + θL

µ +B
)
/(1− q̃).

With Sn :=
∑∞

k=n Ak, the last inequality reads

Sn+1 ≤ C (Sn − Sn+1) ⇒ Sn+k ≤ ρkSn, ρ :=
C

C + 1
.

And finally

An+k ≤ Sn+k ≤ ρk−1Sn+1 ≤ C

ρ
ρkAn = (C + 1)ρkAn.

Finally we analyze the dependance of C on κf . Let θ := (1−qR)λ2)
κf (1+λ)2 , which is possible if κf ≥ 1 is large. It

turns out that q̃ = 1− θ and then

C =
q̃ + θL

µ +B

1− q̃
=

1− θ + κfθ +B

θ
≤

1 + κfθ + 2 (1−qR)λ2+CS

(1−2λ)

θ
≤ C0κf ,

with C0 depending on λ, qR, and CS, but not on κf . □

5. Conclusion. In this contribution, we have shown how adaptive discretization of PDE-constrained
minimization in form of parameter identification can be cast into the framework of a perturbed gradient
method. The important ingredient is an error estimator for the error in gradient. It is used to adjust the finite
element discretization during the iteration and also allows for a simple stopping criterion of the algorithm,
which is shown to have the typical convergence rate of a gradient method.

In contrast to [1], we have not touched the crucial theoretical question of convergence rates in terms of
unknowns. One would like to ensure that the parameter error f(xk)− f(x∗) behaves like N−s

k , where Nk

is the sum of dimensions of all finite element spaces used up to iteration k, and s > 0 is any possible rate.
Further possible extensions are the generalization to adaptive step-sizes and the incomplete solution

of the discrete state equation. Adaptive step-sizes are important to treat nonlinearities that are only lo-
cally Lipschitz-continuous [10], and avoid the explicit knowledge of a Lipschitz-constant. Although the
presented algorithm avoids solution of the optimization problem on each finite element space, it supposes
solution of the nonlinear state equation. This seems to be unsatisfactory from a practical point of view,
where one would like to be able to do a single linearization step. By including the residual of the non-
linear equation into the estimator, it seems to possible to generalize the perturbed gradient method in this
direction.
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