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Abstract
In this paper, we consider a method of constructing isothermic surfaces in S3 based on Ribaucour transfor-
mations. By applying the theory to the flat torus, we obtain two family of complete isothermic surfaces in
S3. One four-parameter family of complete isothermic surfaces that contains n-bubble surfaces inside and
outside of the torus. We also get another four-parameter of complete isothermic surfaces which are Dupin
surfaces. As aplication we obtain explicit solutions of the Calapso equation.

Keywords . Isothermic surfaces, Ribaucour transformations, Dupin surfaces, Calapso equation.

Resumen
En este artı́culo, consideramos un método para construir superficies isotérmicas en S3 basadas en transfor-
maciones de Ribaucour. Aplicando la teorı́a al toro plano, obtenemos dos familias de superficies isotérmi-
cas completas en S3. Una familia de cuatro parámetros de superficies isotérmicas completas que contiene
superficies de n burbujas dentro y fuera del toro. También obtenemos otros cuatro parámetros de superficies
isotérmicas completas que son superficies de Dupin. Como aplicación obtenemos soluciones explı́citas de
la ecuación de Calapso.

Palabras clave. Superficies isotérmicas, Transformaciones de Ribaucour, Superficie de Dupin, ecuación de Ca-
lapso.

1. Introduction. The Ribaucour transformations for hypersurfaces parametrized by lines of curvature
were classically studied by Bianchi [1]. They can be applied to obtain surfaces of constant Gaussian cur-
vature and surfaces of constant mean curvature, from a given surface, with constant Gaussian curvature
and constant mean curvature, respectively. An application of this method to minimal and cmc surfaces in
R3 was obtained by Corro, Ferreira, and Tenenblat in [11]-[12]. For more applications of this method, see
[10]-[13], [19], [24], [22] and [25].

A regular surfaceM is isothermic if, locally, near to each non umbilical point of M, it admits isothermic
parameters, whose coordinate curves are curvature lines. Particular classes of isothermic surfaces are the
constant mean curvature surfaces, quadrics surfaces, and surfaces whose lines of curvature have constant
geodesic curvature. Isothermic surfaces are preserved by isometries of the ambient space S3, dilations and
inversions. The classification of isothermic surfaces is an open problem.

The theory of isothermic surfaces has been widely studied by several eminent geometers as Christoffel
[8], Darboux [17] and [16], Bianchi [1]. In their works the authors present transformations between sur-
faces that preserve the property of being isothermic, which are called transformations of Darboux-Bianchi.
Cieśliński in [6] explores these Darboux-Bianchi transformations and in [7] the author study the Darboux
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transformations iterated via Clifford numbers. More recently in [9], the authors shows that two-step Dar-
boux transforms with the same spectral parameter are obtained by a Sym-type construction.

In [2], the authors study surfaces with harmonic inverse mean curvature (HIMC surfaces), they also
distinguish a subclass of θ − isothermic susrfaces, and if θ = 0, the surfaces are isothermic.

In [5], the author shows that the theory of soliton surfaces, modified in an appropriate way, can be
applied also to isothermic immersions in R3. In this case, the so called Sym’s formula gives an explicit
expression for the isothermic immersion with prescribed fundamental forms.

In [3], the authors shows how pairs of isothermic surfaces are given by curved flats in a pseudo Rie-
mannian symmetric space and vice versa.

In [20], the author use quaternionic calculus to discuss the relation between curved flats in the symmet-
ric space of point pairs and Darboux and Christoffel pairs of isothermic surfaces. In [21], using quaternionic
calculus, the authors develop isothermic surface theory in codimension 2.

In [4], the author shows that for each isothermic surface there is a solution of an equation with partial
derivatives of fourth order, called the Calapso equation, given by(

ω,u1u2

w

)
, u1u1

+

(
ω,u1u2

w

)
, u2u2

+
(
ω2

)
, u1u2

= 0.

This solution depends on the metric and on the mean curvature of the surface. The Calapso equation is very
difficult to solve and is strongly connected to the Painleve ODEs, some authors have found solutions of this
equation associated with constant mean curvature surfaces.

It is noted that the transition u2 → iu2 takes the Calapso equation to the Zoomeron equation(
ω,u1u2

w

)
, u1u1

−
(
ω,u1u2

w

)
, u2u2

+
(
ω2

)
, u1u2

= 0.

Another equation that also is very difficult to solve. The solitons of this equation are referred to as
Zoomerons, where they possess the properties of Trappon solitons because they are like particles trapped in
a potential well, changing direction indefinitely.

In [18], the authors introduced the Davey-Stewartson (DS) equation. This equation describe the evolu-
tion of a three-dimensional wave-packet on water of finite depth in the fluid dynamics.

In [23], the authors shows that for each ϕ(u1, u2) solution of the Zoomeron equation, associates a
two-parameter family of the solutions u(u1, u2, t) given by

u = ei(νu1+µu2+µνt)ϕ(u1 + µt, u2 + νt), ρ =

∣∣∣u∣∣∣ ,u1u2

u
,

to the Davey-Stewartson III equation

iu,t = u,u1u2
− ρu, ρ, u1u1

− ρ, u2u2
+

( ∣∣∣u∣∣∣2 ),u1u2
= 0.

In [14], the authors introduce the class of radial inverse mean curvature surfaces ( RIMC - surfaces
), which are isothermic surfaces. In addition, they show that for each isothermic surface there is another
solution to the Calapso equation which depends on the metric and on the skew curvature of the surface.
This solution is different from the one presented in [4].

In [15], the authors used Ribaucour transformations to obtain new isothermic surfaces in R3 associated
to cylinder. Moreover, the authors obtained new solutions to the Calapso and Zoomeron equation.

In this paper, motivated by [15], we use the Ribaucour transformations to obtain a family of isothermic
surfaces from a given such surface. As an application of the theory, we obtain two families of complete
isothermic surfaces associated to the torus S1(r1) × S1(r2). One of them families depends on four pa-
rameters. One of the parameters is b: when b = 0, the surfaces have constant mean curvature r22−r

2
1

2r1r2
and

depending on the sign of b and using stereographic projection, we have surfaces in R3 with n-bubbles inside
or outside the torus of the R3. A second parameter is c: if

√
|r21 + cr21r

2
2| is not a rational number, then the

stereographic projection of the surfaces obtained are complete immersions of R2 into R3, and they are not
periodic in any of the two variables. However, if

√
|r21 + cr21r

2
2| = n

m is an irreducible rational number,
then the stereographic projection of the surfaces obtained are torus immersed in R3 with n-bubbles, two
ends of geometric index m, and n isolated points of maximum and of minimum for the Gaussian curvature.
The last parameters appear from the integration of the Ribaucour transformation.

Moreover, motivated by [4] and [14], we associate explicit solutions to the Calapso equation for each
isothermic surface obtained by the Ribaucour transformations. Such solutions depend on two functions,
each one defined in a given variable. Applying isometries, dilations and inversions, we obtain new isother-
mic surfaces and new solutions to the Calapso equation.
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2. Preliminary. This section contains the definitions and the basic theory of Ribaucour transforma-
tions for surfaces in a space form. ( For more details see [25] )

(i) A congruence of geodesic spheres in S3 is a family of n-parameter geodesic spheres in S3 such that
the set of centers of the geodesic spheres is a surface of S3 and the radii of the geodesic spheres
are given by a differentiable function on the surface.

(ii) An involute of a congruence of geodesic spheres is an two-dimensional submanifold M of S3,
such that each point of M is tangent to a geodesic sphere of the congruence of geodesic spheres.

(iii) Let M and M̃ be the surfaces in S3. We say that M and M̃ are associated by a congruence of
geodesic spheres, if there exists a diffeomorfism ψ : M → M̃ such that, at the corresponding
points p and ψ(p), M and M̃ are tangent to a same geodesic sphere of the congruence of geodesic
spheres.

An important special case of item (iii) is when dψ maps n principal vector fields of M to n principal vector
fields of M̃ .

LetM be an orientable surface in S3 without umbilic points, with Gauss map we denote byN . Suppose
that there exist 2 orthonormal principal vector fields e1 and e2 defined on M . We say that M̃ ⊂ S3 is
associated to M by a Ribaucour transformation with respect to e1 and e2, if there exist a differentiable
function h defined on M and a diffeomorphism ψ :M → M̃ such that

(a) for all p ∈M , expph(p)N(p) = expψ(p)h(p)Ñ(ψ(p)), where Ñ is the Gauss map of M̃ and exp
is the exponential map of S3;

(b) the subset {expph(p)N(p), p ∈M}, is a two-dimensional submanifold of S3;
(c) dψ(ei) 1 ≤ i ≤ 2 are orthogonal principal directions of M̃ .

Remark 2.1. LetM and M̃ be surfaces of S3 as in definition above, we can rewrite condition (a) above
as

p+ tan(ϕ(p))N(p) = ψ(p) + tan(ϕ(p))Ñ(p),

where ϕ :M →
(
0 ,

π

2

)
.

The following result gives a characterization of Ribaucour transfomations in terms of differencial equa-
tions, when the ambient space is S3. ( see [25] for a proof and more details)

Theorem 2.1. Let M be an orientable surface of S3 parametrized by X : U ⊆ R2 → M , without
umbilic points. Assume ei = X,i

ai
, 1 ≤ i ≤ 2 where ai =

√
gii are orthogonal principal directions,

−λi the corresponding principal curvatures, and N is a unit vector field normal to M . A surface M̃
is locally associated to M by a Ribaucour transformation if and only if there is differentiable functions
W,Ω,Ωi : V ⊆ U → R which satisfy

Ωi,j = Ωj
aj,i
ai
, for i ̸= j,

Ω,i = aiΩi, (2.1)
W,i = −aiΩiλi.

W (W + λiΩ) ̸= 0 and X̃ : V ⊆ U → M̃ , is a parametrization of M̃ given by

X̃ =

(
1− 2Ω2

S

)
X − 2Ω

S

( 2∑
i=1

Ωiei −WN

)
, (2.2)

where

S =

2∑
i=1

(
Ωi

)2
+W 2 +Ω2. (2.3)

Moreover, the normal map of X̃ is given by

Ñ = N +
2W

S

( 2∑
i=1

Ωiei −WN +ΩX

)
, (2.4)

and the principal curvatures and coefficients of the first fundamental form of X̃ , are given by

λ̃i =
WTi + λiS

S − ΩTi
, g̃ii =

(
S − ΩTi

S

)2

gii, (2.5)
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where Ωi, Ω and W satisfy (2.1), S is given by (2.3), gii, 1 ≤ i ≤ 2 are coefficients of the first fundamental
form of X , and

T1 = 2

(
Ω1,1

a1
+
a1,2
a1a2

Ω2 −Wλ1 +Ω

)
, T2 = 2

(
Ω2,2

a2
+
a2,1
a1a2

Ω1 −Wλ2 +Ω

)
. (2.6)

Remark 2.2. Let Y : U ⊂ R2 → R3 be a surface parametrized by lines of curvature, with principal
curvatures, −ki, 1 ≤ i ≤ 2, first fundamental form IY and NY : U ⊂ R2 → R3 be a unit normal vector
field of Y . Consider the reverse application of stereographic projection π−1 : R3 → S3, given by

π−1(x) =
2

1 + |x|2

(
x+

|x|2 − 1

2
e4

)
,

where x = (x1, x2, x3, 0) ∈ R3 and e4 = (0, 0, 0, 1).
Let X = π−1 ◦ Y : U ⊂ R2 → S3. Then the first fundamental form and the principal curvatures, −λi,
1 ≤ i ≤ 2 of the X , are given by

IX =
1

Γ2
IY , (2.7)

λi = Γki− < Y,NY >, (2.8)

where Γ =
1 + |Y |2

2
.

A surface is called isothermic if it admits parametrization by lines of curvature and the first fundamental
form is conformal.

In [4], the author define the Calapso equation by(
ω,u1u2

w

)
,u1u1 +

(
ω,u1u2

w

)
,u2u2 +

(
ω2

)
,u1u2 = 0. (2.9)

Such equation describes isothermic surfaces in R3.

The following result gives a solutions of the Calapso equation. ( see [14] for a proof and more details)

Theorem 2.2. Let X(u1, u2) be an isothermic surface in R3 with the first fundamental form givem by

I = e2φ
(
du21 + du22

)
.

Then the functions ω =
√
2eφH and Ω =

√
2eφH ′ are solutions of the Calapso equation, where H is the

mean curvature of X and H ′ is the skew curvature of M .

3. Ribaucour transformation for isothermic surface of S3. In this section we provides a sufficient
condition for a Ribaucour transformation to transform a isothermic surface into another such surface.

Theorem 3.1. Let M be a surfaces of S3 parametrized by X : U ⊆ R2 →M , without umbilic points
and let M̃ parametrized by (2.2) be associated to M by a Ribaucour transformation, such that the normal
lines intersect at a distance function h. Assume that h = Ω

W is not constant along the lines of curvature and
the function Ω, Ωi and W satisfy one of the additional relation

T1 + T2 =
2S

Ω
or T1 − T2 = 0 (3.1)

where S is given by (2.3) and Ti, 1 ≤ i ≤ 2 are defined by (2.6). Then M̃ parameterized by (2.2) is a
isothermic surface, if and only if M is isothermic surface.

Proof: Suppose that M̃ is a isothermic surface, then the coefficients of the first fundamental form of
X̃ satisfy, g̃11 = g̃22. So, using (2.5), we have(

S − ΩT1
S

)2

g11 =

(
S − ΩT2

S

)2

g22, (3.2)

where gii, 1 ≤ i ≤ 2 are the coefficients of the first fundamental form of X .
If T1 + T2 = 2S

Ω , then isolating T1 and substituting in (3.2), we get g11 = g22.
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On the other hand, if T1 − T2 = 0, then we have from (3.2) that g11 = g22. Therefore, M is a isothermic
surface. □

Conversely, suppose thatM is a isothermic surface, then using (3.1), immediately from (2.5), we obtain
that M̃ is a isothermic surface.

Remark 3.1. Let X : U ⊆ R2 →M a isothermic parametrized for M ⊆ S3. So, the first fundamental
form of X is given by I = e2φ

(
du21 + du22

)
. Thus, the additional relations given by (3.1) are, respectively,

equivalent to

∆Ω− (λ1 + λ2)We2φ + 2Ωe2φ =
Se2φ

Ω
(3.3)

Ω,11 − Ω,22 − 2φ,1 Ω,1 +2φ,2 Ω,2 − e2φ(λ1 − λ2)W = 0 (3.4)

In fact, under these conditions using (2.1), Ti 1 ≤ i ≤ 2 given by (2.6), can be rewritten as

T1 =
2

e2φ

(
Ω,11 − φ,1 Ω,1 +φ,2 Ω,2 −Wλ1e

2φ +Ωe2φ
)
, (3.5)

T2 =
2

e2φ

(
Ω,22 − φ,2 Ω,2 +φ,1 Ω,1 −Wλ2e

2φ +Ωe2φ
)
. (3.6)

Therefore, T1 + T2 = 2
e2φ

(
∆Ω − e2φW (λ1 + λ2) + 2Ωe2φ

)
and the first additional relation of (3.1) is

equivalent to (3.3). Substituting (3.5) in T1 − T2 = 0, we obtain (3.4).

Remark 3.2. Let X as in the previous remark. Then the parameterization X̃ of M̃ , locally associated
to X by a Ribaucour transformation, given by (2.2), is defined on

V = {(u1, u2) ∈ U ; ΩT1 − S ̸= 0}.

4. Families of isothermic surfaces associated to the Flat Torus in S3. In this section, by applying
Theorem 3.1 to the Flat Torus in S3, we obtain two families of complete isothermic surfaces associated to
the Torus, in S3. One of the families obtained depends on four parameters. The outher family is made up
of Dupin surfaces.

Theorem 4.1. Consider the Flat Torus in S3 parametrized by

X(u1, u2) = (r1 cos(r2u1), r1 sin(r2u1), r2 cos(r1u2), r2 sin(r1u2)), (u1, u2) ∈ R2 (4.1)

ri, 1 ≤ i ≤ 2 are positive constants satisfying r21 + r22 = 1, as isothermic surface in S3 where the first
fundamental form is I = r21r

2
2

(
du21+du

2
2

)
. A parametrized surface X̃(u1, u2) is isothermic surface locally

associated to X by a Ribaucour transformation as in Theorem 3.1 with additional relation given by (3.3),
if and only if, up to an isometries of S3, it is given by

X̃ =
1

M



(
M − 2r22f

)
r1 cos(r2u1) + 2r1r2f

′ sin(r2u1),(
M − 2r22f

)
r1 sin(r2u1)− 2r1r2f

′ cos(r2u1),(
M − 2r21g

)
r2 cos(r1u2) + 2r1r2g

′ sin(r1u2),(
M − 2r21g

)
r2 sin(r1u2)− 2r1r2g

′ cos(r1u2)

 (4.2)

defined on V = {(u1, u2) ∈ R2; f + g ̸= 0} where M = 2b + (r22 − c)(f − g) c ̸= 0, b is real constant,
and f(u1), g(u2) are solutions of the equations

f ′′ +
(
r22 − r21r

2
2c
)
f = b, (4.3)

g′′ +
(
r21 + r21r

2
2c
)
g = b

with initial conditions satisfying[(
f ′
)2

+
(
r22 − r21r

2
2c
)
f2 − 2bf +

(
g′
)2

+
(
r21 + r21r

2
2c
)
g2 − 2bg

]
(u01, u

0
2) = 0. (4.4)

Moreover, the normal map of X̃ is given by

Ñ =
1

M(f + g)



(
2r22f

2 − 2r21fg −M(f + g)
)
r2 cos(r2u1)− 2(r22f − r21g)f

′ sin(r2u1),(
2r22f

2 − 2r21fg −M(f + g)
)
r2 sin(r2u1) + 2(r22f − r21g)f

′ cos(r2u1),(
− 2r21g

2 + 2r22fg +M(f + g)
)
r1 cos(r1u2)− 2(r22f − r21g)g

′ sin(r1u2),(
− 2r21g

2 + 2r22fg +M(f + g)
)
r1 sin(r1u2) + 2(r22f − r21g)g

′ cos(r1u2)

 .
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Proof: Consider the first fundamental form of the Flat Torus ds2 = r21r
2
2(du

2
1 + du22) and the prin-

cipal curvatures −λi 1 ≤ i ≤ 2 given by λ1 = −r2
r1

, λ2 = r1
r2

. Using (2.1), to obtain the Ribaucour
transformations, we need to solve the following of equations

Ωi,j = 0, Ω,i= r1r2Ωi, W,i= −r1r2Ωiλi, 1 ≤ i ̸= j ≤ 2. (4.5)

Therefore we obtain

Ω = r1r2
(
f1(u1) + f2(u2)

)
, W = −r1r2

(
λ1f1 + λ2f2

)
+ c, Ωi = f ′i , 1 ≤ i ̸= j ≤ 2, (4.6)

where c is a real constant. Thus, from (2.3), S = (f ′1)
2 + (f ′2)

2 + (W )2 +Ω2.
Using (3.3), the associated surface will be isothermic when

∆Ω

r21r
2
2

− (λ1 + λ2)W + 2Ω =
S

Ω
.

Therefore, we obtain that the functions f1 and f2 satisfy

f ′′1 + f ′′2
r1r2

− (λ1 + λ2)W +Ω =
(f ′1)

2 + (f ′2)
2 + (W )2

Ω
. (4.7)

Differentiate this last equation with respect x1 and x2, using (4.5) and (4.6) we get

f ′′′1

r21r
2
2

+ r1r2
(
1 + λ21

)
f ′1 =

−f ′1
Ω

(
−f ′′1 + f ′′2
r1r2

−
(
λ2 − λ1

)
W

)
, (4.8)

f ′′′2

r21r
2
2

+ r1r2
(
1 + λ22

)
f ′2 =

f ′2
Ω

(
−f ′′1 + f ′′2
r1r2

−
(
λ2 − λ1

)
W

)
. (4.9)

From this last equation, we obtain

f ′′1 − f ′′2
r1r2

+
(
λ2 − λ1

)
W = cΩ. (4.10)

where c is a real constant. Thus from (4.6), we have that f1 and g2 satisfy

f ′′1 + r21r
2
2

(
λ21 + 1− c

)
f1 = f ′′2 + r21r

2
2

(
λ22 + 1 + c

)
f2 − cr1r2(λ2 − λ1).

Now defining f(u1) = f1(u1)−
c

r1r2(λ1 − λ2)
and g(u2) = f2(u2) +

c

r1r2(λ1 − λ2)
, we obtain that f

and g satisfy (4.3) and

Ω = r1r2
(
f(u1) + g(u2)

)
, W = −r1r2

(
λ1f + λ2g

)
. (4.11)

Moreover, using (4.7) we get that the initial conditions satisfying (4.4) and using the Theorem 2.1, X̃
is give by (4.2) and from Remark 3.2 is defined in V = {(u1, u2) ∈ R2; f + g ̸= 0}. □

Remark 4.1. Each isothermic surfaces associated to the flat torus as in Theorem 4.1, is parametrized
by lines of curvature and from (2.5), the metric is given by ds2 = ψ2(du21 + du22), where

ψ =
|cr21r22

(
f + g

)
|

|2b+ cr21r
2
2

(
f − g

)
|
. (4.12)

Moreover, from (2.5), the principal curvatures of the X̃ are given by

λ̃1 =

(
2b+ 2cr21r

2
2f

)
g − cr21r

4
2

(
f + g

)2
cr31r

3
2

(
f + g

)2 , λ̃2 =

(
2b− 2cr21r

2
2g
)
f + cr41r

2
2

(
f + g

)2
cr31r

3
2

(
f + g

)2 . (4.13)

Using (4.13) we obtain immediately

Proposition 4.1. Consider the isothermic surfaces associated to the flat torus parametrized by (4.2).
Then the mean curvature of the X̃ is given by

H̃ =
r22 − r21
2r1r2

− b

cr31r
3
2

(
f + g

) . (4.14)
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Proposition 4.2. Consider the isothermic surfaces associated to the flat torus parametrized by (4.2).
Then X̃ is r22−r

2
1

2r1r2
− cmc, if and only if, b = 0.

Proposition 4.3. Consider the isothermic surfaces associated to the flat torus parametrized by (4.2).
Then the surface X̃ is is determined by the functions

(i) If c > 1
r21

, then

f =
√
A1 cosh

(
r2

√
−1 + r21c u1

)
+

b

r22(1− r21c)
,

g =
√
B1 sin

(
r1

√
1 + r22c u2

)
+

b

r21(1 + r22c)
, (4.15)

where
b2

r22r
2
1(1 + r22c)(−1 + r21c)

= r22(−1 + r21c)A1 − r21(1 + r22c)B1, with B1 > 0.

(ii) If
−1

r22
< c <

1

r21
, then

f =
√
A1 sin

(
r2

√
1− r21c u1

)
+

b

r22(1− r21c)
,

g =
√
B1 sin

(
r1

√
1 + r22c u2

)
+

b

r21(1 + r22c)
, (4.16)

where
b2

r22r
2
1(1 + r22c)(1− r21c)

= r22(1− r21c)A1 + r21(1 + r22c)B1, with B1 > 0 and A1 > 0.

(iii) If c <
−1

r22
, then

f =
√
A1 sin

(
r2

√
1− r21c u1

)
+

b

r22(1− r21c)
,

g =
√
B1 cosh

(
r1

√
−1− r22c u2

)
+

b

r21(1 + r22c)
, (4.17)

where
b2

r22r
2
1(1 + r22c)(1− r21c)

= r22(1− r21c)A1 + r21(1 + r22c)B1, with A1 > 0.

(iv) If c =
−1

r22
, then

f =
√
A1 sin(u1) + b, g =

b

2
u22 + a2u2 + b2, (4.18)

where A1 + a22 + b22 −
(
b+ b2

)2
= 0, with A1 > 0.

(v) If c =
1

r21
, then

f =
b

2
u21 + a2u1 + b2, g =

√
B1 sin(u2) + b, (4.19)

where B1 + a22 + b22 −
(
b+ b2

)2
= 0, with B1 > 0.

Proof: Consider the isothermic surfaces associated to the flat torus parametrized by (4.2) that is not
cmc.
If c > 1

r21
, then using (4.3), we get

f = a1 cosh
(
r2

√
−1 + r21cu1

)
+ a2 sinh

(
r2

√
−1 + r21cu1

)
+

b

r22(1− r21c)
,

g = b1 sin
(
r1

√
1 + r22cu2

)
+ b2 cos

(
r1

√
1 + r22cu2

)
+

b

r21(1 + r22c)
,

Where from (4.4) we have

b2

r22r
2
1(1 + r22c)(−1 + r21c)

+ r21(1 + r22c)(b
2
1 + b22) = r22(−1 + r21c)(a

2
1 − a22).
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This last equation, we have a21 − a22 > 0 and we can rewrite f and g as

f =
√
A1 cosh

(
r2

√
−1 + r21cu1 +A2

)
+

b

r22(1− r21c)
,

g =
√
B1 sin

(
r1

√
1 + r22cu2 +B2

)
+

b

r21(1 + r22c)
,

where A1 = a21 − a22 and B1 = b21 + b22.
The constants A2 and B2, without loss of generality, my be considered to be zero. One can verify that the
surfaces with different values of A2 and B2 are congruent. In fact, using the notation X̃A2B2

for the surface
X̃ with fixed constants A2 and B2, we have

X̃A2B2
= R

(
−A2
c1

,
−B2
c2

)
X̃00 ◦ h

where h(u1, u2) =
(
u1 +

A2

c1
, u1 +

B2

c2

)
with c1 = r2

√
−1 + r21c, c2 = r1

√
1 + r22c and

R(θ,ϕ)(x1, x2, x3, x4) = (x1 cos θ− x2 sin θ, x1 sin θ+ x2 cos θ, x3 cosϕ− x4 sinϕ, x3 sinϕ+ x4 cosϕ).

We conclude that f and g are given by (4.15). Where from (4.4) we obtain
b2

r22r
2
1(1 + r22c)(−1 + r21c)

= r22(−1 + r21c)A1 − r21(1 + r22c)B1, with B1 > 0.

Finally, with analogous argument, we obtain (4.16)-(4.19). □
Proposition 4.4. Any isothermic surfaces associated to the flat torus X̃ , given by Theorem 4.1 is

complete.
Proof: For divergent curves γ(t) = (u1(t), u2(t)), such that lim

t→∞

(
u21 + u22

)
= ∞, we have l(X̃◦γ) =

∞.
In fact, if c ≥ 1

r21
, then the functions f and g are given by (4.15), and from (4.12) the coefficients of the

first fundamental form is

ψ =
|cr21r22

(
f + g

)
|

|2b+ cr21r
2
2

(
f − g

)
|
.

Therefore, lim
|u1|→∞

ψ = 1 uniformly in u2. Hence, there exist k > 0 such that |ψ(u1, u2)| > 1
2 for

(u1, u2) ∈ R2 with |u1| > k. Let

m = min

{
|ψ(u1, u2)|; (u1, u2) ∈ [−k, k]×

[
0,

2π

r1
√
1 + r22c

]}
. (4.20)

Note that, g(u2) = g(u2 +
2π

r1
√

1+r22c
), therefore |ψ(u1, u2)| > m in [−k, k]×R. Consider

m0 = min{m, 12}, then |ψ(u1, u2)| > m0 in R2. Thus l(X̃ ◦ γ) = ∞. The case c ≤ −1

r22
is analogous.

Finally if
−1

r22
< c <

1

r21
, then the functions f and g are given by (4.16), and from (4.12) the coefficients

of the first fundamental form is ψ =
|cr21r22

(
f + g

)
|

|2b+ cr21r
2
2

(
f − g

)
|
. In this case, let

m0 = min

{
|ψ(u1, u2)|; (u1, u2) ∈

[
0,

2π

r2
√
1− r21c

]
×
[
0,

2π

r1
√

1 + r22c

]}
. (4.21)

Note that, g(u2) = g(u2 +
2π

r1
√

1+r22c
) and f(u1) = f(u1 +

2π

r2
√

1−r21c
), therefore |ψ(u1, u2)| > m0 in R2.

Thus l(X̃ ◦ γ) = ∞ and we conclude that X̃ is a complete surface. □

Remark 4.2. Consider the isothermic surfaces associated to the flat torus parametrized by (4.2).
I) If c > 1

r21
, then f and g are given by (4.15) and if

√
1 + cr22 = n

m irreducible rational number, then

X̃(u1, u2) = X̃(u1, u2 +
2mπ
r1

), i.e, X̃ is periodic in the variable u2 with period 2mπ
r1

.
Let π : S3 → R3 be the stereographic projection. Therefore we get an n-bubble surface into R3 parametrized
by Ỹ = π ◦ X̃ . Moreover, if b < 0, then we have n-bubble outside Ỹ , and if b > 0, we have n-bubble inside
Ỹ .
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For example, consider r1 = 12
13 , r2 = 5

13 b = −8
√
165, c = 5408

45 , A1 = 4. B1 = 1. In this case,√
1 + cr22 = 13

3 . Let π : S3 → R3 be the stereographic projection. Therefore we have 13-bubble surface
into R3 parametrized by Ỹ = π ◦ X̃ . ( See Figure 4.1 )

Figure 4.1

Another example, consider r1 = 12
13 , r2 = 5

13 b =
−504

√
18469

2197 , c = 1352
25 , A1 = 4. B1 = 1. In this case,√

1 + cr22 = 3
1 . Let π : S3 → R3 be the stereographic projection. Therefore wee have 3-bubble surface

into R3 parametrized by Ỹ = π ◦ X̃ . (See Figure 4.2)

Figure 4.2

The next example, consider r1 = 12
13 , r2 = 5

13 b =
48

√
107041
2197 , c = 507

25 , A1 = 4. B1 = 1. In this case,√
1 + cr22 = 2

1 . Let π : S3 → R4 be the stereographic projection. Therefore we have 2-bubble surface into
R3 parametrized by Ỹ = π ◦ X̃ . In this case, b > 0 thus we have 2-bubble inside torus. (See Figure 4.3)

Figure 4.3

II) If − 1
r22

< c < 1
r21

, then f and g are given by (4.16) and if
√

1 + cr22 = n
m or

√
1− cr22 = n

m

irreducible rational number, then X̃(u1, u2) = X̃(u1, u2+
2mπ
r1

) or X̃(u1, u2) = X̃(u1+
2mπ
r2
, u2), i.e, X̃

can be periodic in the variable u2 with period 2mπ
r1

or in the variable u1 with period 2mπ
r2

or in both variables.

Theorem 4.2. Consider the Flat Torus in S3 parametrized by

X(u1, u2) = (r1 cos(r2u1), r1 sin(r2u1), r2 cos(r1u2), r2 sin(r1u2)), (u1, u2) ∈ R2 (4.22)

ri, 1 ≤ i ≤ 2 are positive constants satisfying r21 + r22 = 1, as isothermic surface in S3 where the first
fundamental form is I = r21r

2
2

(
du21+du

2
2

)
. A parametrized surface X̃(u1, u2) is isothermic surface locally

associated to X by a Ribaucour transformation as in Theorem 3.1 with additional relation given by (3.4),
if and only if, up to an isometries of S3, it is given by

X̃ =
1

S



(
r1S − 2r1Ω

2 − 2r2ΩW
)
cos(r2u1) + r2

√
A1Ωsin(2r2u1),(

r1S − 2r1Ω
2 − 2r2ΩW

)
sin(r2u1)− 2r2

√
A1Ωcos2(r2u1),(

r2S − 2r2Ω
2 + 2r1ΩW

)
cos(r1u2) + r1

√
B1Ωsin(2r1u2),(

r2S − 2r2Ω
2 + 2r1ΩW

)
sin(r1u2)− 2r1

√
B1Ωcos2(r1u2)

 (4.23)

defined on V = {(u1, u2) ∈ R2; f + g ̸= 0} where

S =
b2

r21r
2
2

+ 2b
√
A1 sin(r2u1) + 2b

√
B1 sin(r1u2) +B1r

2
1 +A1r

2
2 (4.24)

Ω = r1r2
(√

A1 sin(r2u1) +
√
B1 sin(r1u2)

)
+

b

r1r2
(4.25)

W = r22
√
A1 sin(r2u1)− r21

√
B1 sin(r1u2), (4.26)
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with the constants satisfying r21r
2
2

(
B1r

2
1 +A1r

2
2

)
− b2 ̸= 0 Moreover, the normal map of X̃ is given by

Ñ =
1

S



(
− r2S − 2r2W

2 + 2r1ΩW
)
cos(r2u1) + r2

√
A1Ωsin(2r2u1),(

− r2S − 2r2W
2 + 2r1ΩW

)
sin(r2u1)− 2r2

√
A1Ωcos2(r2u1),(

r1S + 2r1W
2 − 2r2ΩW

)
cos(r1u2) + r1

√
B1Ωsin(2r1u2),(

r1S + 2r1W
2 − 2r2ΩW

)
sin(r1u2)− 2r1

√
B1Ωcos2(r1u2)

 . (4.27)

Proof: Consider the first fundamental form of the Flat Torus ds2 = r21r
2
2(du

2
1+du

2
2) and the principal

curvatures λ1 = −r2
r1

, λ2 = r1
r2

. Using (2.1), to obtain the Ribaucour transformations, we need to solve the
following of equations

Ωi,j = 0, Ω,i= r1r2Ωi, W,i= −r1r2Ωiλi, 1 ≤ i ̸= j ≤ 2. (4.28)

Therefore we obtain

Ω = r1r2
(
f1(u1) + f2(u2)

)
, W = −r1r2

(
λ1f1 + λ2f2

)
+ c, Ωi = f ′i , 1 ≤ i ̸= j ≤ 2,

where c is a real constant. Thus, from (2.3), S = (f ′1)
2 + (f ′2)

2 + (W )2 +Ω2.

Using (3.4), the associated surface will be isothermic when
Ω,11 − Ω,22

r21r
2
2

− (λ1 − λ2)W = 0. Therefore,

using (4.6) we obtain that the functions f1 and g2 satisfy

f ′′1 − f ′′2 = r21f2 − r22f1 − c.

Now defining f = f1 + c and g = f2 − c, we obtain that

Ω = r1r2
(
f(u1) + g(u2)

)
, W = −r1r2

(
λ1f + λ2g

)
. (4.29)

and f and g satisfy

f ′′ + r22f = g′′ + r21g = b.

Therefore, f and g are given by

f =
√
A1 sin

(
r2u1 +A2

)
+

b

r22
g =

√
B1 sin

(
r1u2 +B2

)
+

b

r21
.

The constants A2 and B2, without loss of generality, my be considered to be zero. One can verify that the
surfaces with different values ofA2 andB2 are congruent. In fact, using the notation X̃A2B2 for the surface
X̃ with fixed constants A2 and B2, we have

X̃A2B2 = R
(
−A2
r2

,
−B2
r1

)
X̃00 ◦ h

where h(u1, u2) =
(
u1 +

A2

r2
, u1 +

B2

r1

)
and

R(θ,ϕ)(x1, x2, x3, x4) = (x1 cos θ− x2 sin θ, x1 sin θ+ x2 cos θ, x3 cosϕ− x4 sinϕ, x3 sinϕ+ x4 cosϕ).

We conclude that f and g are given by

f =
√
A1 sin

(
r2u1

)
+

b

r22
, g =

√
B1 sin

(
r1u2

)
+

b

r21
.

Therefore substituting in (4.29) and S = (f ′1)
2+(f ′2)

2+(W )2+Ω2, we have (4.25)-(4.26) and from (2.2)
and (2.4) we have (4.23) and (4.27). From the condition of regularity we obtain that the constants satisfy
r21r

2
2

(
B1r

2
1 +A1r

2
2

)
− b2 ̸= 0. □

Proposition 4.5. Let X̃ be a isothermic surface locally associated by a Ribaucour transformation to
flat torus given by Theorem 4.2. Then X̃ is a Dupin surfaces.
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Proof: From (2.5) the principal curvatures of the X̃ are given

λ̃1 =
−r2

(
2br21

√
B1 sin(r1u2) + r21r

2
2(r

2
1B1 + r22A1) + b2

)
r1(r41r

2
2B1 + r42r

2
1A1 − b2)

, (4.30)

λ̃2 =
r1
(
2br22

√
A1 sin(r2u1) + r21r

2
2(r

2
1B1 + r22A1) + b2

)
r2(r41r

2
2B1 + r42r

2
1A1 − b2)

. (4.31)

Therefore, X̃ is a Dupin surfaces. □

Remark 4.3. Let X̃ be a isothermic surface locally associated by a Ribaucour transformation to flat
torus given by Theorem 4.2 Using (2.5) we obtain that the first fundamental form of the X̃ is given by

I =

(
1

λ̃1 − λ̃1

)2(
du21 + du22

)
, (4.32)

where −λ̃i, 1 ≤ i ≤ 2, are the principal curvature of the X̃ .

5. Solution of the Calapso Equation.. In the section, we obtain solutions of the Calapso Equation
(2.9).

Proposition 5.1. Consider the isothermic surfaces associated to the flat torus parametrized by (4.2),
whose first fundamental form is given by

I =

(
cr21r

2
2

(
f + g

)
M

)2(
du21 + du22

)
,

where the functions f and g are given by (4.15)-(4.18) and M = 2b+ cr21r
2
2(f − g). Then the functions

ω =
ϵ
√
2

2

(
(r22 − r21)cr

2
1r

2
2(f + g)− 2b− 2cr31r

3
2ΓÑ4(f + g)

r1r2M

)
and Ω =

ϵ
√
2(f − g)

2r1r2(f + g)
,

with ϵ = 1 if c > 0 and ϵ = −1 if c < 0, are solutions of the Calapso equation, where Γ = 1

1−X̃4
,

X̃4 =< X̃, e4 >, Ñ4 =< Ñ, e4 >, e4 = (0, 0, 0, 1) and X̃ , Ñ are given by Theorem 4.1
Proof: Consider stereographic projection π : S3 → R3

π(x1, x2, x3, x4) =
1

1− x4

(
x1, x2, x3

)
(5.1)

where x21 + x22 + x23 + x24 = 1.
Let Y = π ◦ X̃ : U ⊂ R2 → R3, where X̃ is an isothermic surface locally associated by a Ribaucour
transformation to flat torus, given by (4.2). Thus Y is an isothermic surface in R3, where by (2.7) and
(4.12), the first fundamental form is given by

IY =

(
cr21r

2
2

(
f + g

)
Γ

M

)2(
du21 + du22

)
, (5.2)

where Γ = 1

1−X̃4
, X̃4 =< X̃, e4 >, e4 = (0, 0, 0, 1), M = 2b + cr21r

2
2(f − g) and the functions f and g

are given by Proposition 4.3.
From stereographic projection, we obtain that the unit normal vector field of Y , is given by NY =

dπX̃(Ñ)

Γ
, where Ñ is given by Theorem 4.1 Therefore

NY = Ñ4Y + Ñ − Ñ4e4, (5.3)

where Ñ4 =< Ñ, e4 >. Hence we obtain that < Y,NY >= ΓÑ4 and from (2.8) we get that principal
curvatures −ki, 1 ≤ i ≤ 2 of Y are given by

ki = λ̃i(1− X̃4) + Ñ4, (5.4)
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where −λ̃i, 1 ≤ i ≤ 2 are the principal curvature of the X̃ given by (4.13).
Using (4.14) and this last equation, we obtain the mean and skew curvatures of Y ,

H =
(r22 − r21)cr

2
1r

2
2(f + g)− 2b− 2Γr31r2

3(f + g)Ñ4

2cΓr31r
3
2(f + g)

, (5.5)

H ′ =
M(f − g)

2cΓr31r
3
2(f + g)2

. (5.6)

Therefore, using the Theorem 2.2, we obtain that

ω =
ϵ
√
2

2

(
(r22 − r21)cr

2
1r

2
2(f + g)− 2b− 2cr31r

3
2ΓÑ4(f + g)

r1r2M

)
and Ω =

ϵ
√
2(f − g)

2r1r2(f + g)
,

with ϵ = 1 if c > 0 and ϵ = −1 if c < 0, are solutions of the Calapso equation. □

Example 5.1. Consider the isothermic surfaces associated to the flat torus given by (4.2).
We have b = 4

3 , c = 3, r1 =
√
2√
3

, r2 = 1√
3

. In this case, c = 3 > 1
r21

= 3
2 . Hence, from Proposition 4.3

f and g are given by (4.15). Choosing A1 = 16 and B1 = 1 we have f(u1) = 4 cosh
(√

3
3 u1

)
− 4 and

g(u2) = sin
(
2
√
3

3 u2
)
+ 1. Using the Proposition 5.1, we have the solutions of the Calapso equation

ω =
−ϵ

(
f + g + 12 + 2

√
2ΓÑ4(f + g)

)
3M

, Ω =
3ϵ
(
f − g

)
2
(
f + g

) ,
where Γ = 1

1−X̃4
and

X̃4 =

√
3
(
3M − 4g

)
sin

(√
6
3 u2

)
− 6

√
2g′ cos

(√
6
3 u2

)
9M

, (5.7)

Ñ4 =
−
√
6
(
4g2 − 2fg − 3M(f + g)

)
sin

(√
6
3 u2

)
+ 3g′

(
2f − 4g

)
cos

(√
6
3 u2

)
9M(f + g)

. (5.8)

The isothermic surface of this example is given in Figure 5.1.

Figure 5.1: In the figure above we have an isothermic surface Y = π ◦ X̃ in R3 used in the Example 5.1.

Figure 5.2: In the figure above we have the isothermic surface Y = π ◦ X̃ in R3 where X̃ is an isothermic
associated to the flat torus in S3 with r1 =

√
2√
3

, r2 = 1√
3

, b = 2, c = 15, A1 = 4
9 and B1 = 1

4 .

Example 5.2. Consider the isothermic surfaces associated to the flat torus given by (4.2).
We have b = 24

25 , c = −69
50 , r1 =

√
2√
3

, r2 = 1√
3

. In this case, −3 = −1
r22

< c = −69
50 < 1

r21
= 3

2 .
Hence, from Proposition 4.3 f and g are given by (4.16). Choosing A1 = 4 and B1 = 4 we have f(u1) =
2 sin

(
4
5u1

)
+ 3

2 and g(u2) = 2 sin
(
3
5u2

)
+ 8

3 . Using the Proposition 5.1, we have the solutions of the
Calapso equation

ω =
ϵ
(
23(f + g)− 432 + 46

√
2ΓÑ4(f + g)

)
150M

, Ω =
3ϵ
(
f − g

)
2
(
f + g

) ,
where Γ = 1

1−X̃4
, X̃4 and Ñ4 are given by (5.7) and (5.8). The isothermic surface of this example is given

in Figure 5.3.
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Figure 5.3: In the figure above we have an isothermic surface Y = π ◦ X̃ in R3 used in the Example 5.2.

Example 5.3. Consider the isothermic surfaces associated to the flat torus given by (4.2).
We have b = 4

√
6, c = −33

2 , r1 =
√
2√
3

, r2 = 1√
3

. In this case, −3 = −1
r22

> c = −33
2 . Hence,

from Proposition 4.3 f and g are given by (4.17). Choosing A1 = 1 and B1 = 4 we have f(u1) =

sin
(
2u1

)
+

√
6 and g(u2) = 2 cosh

(√
3u2

)
− 4

√
6

3 . Using the Proposition 5.1, we have the solutions of
the Calapso equation

ω =
ϵ
(
11(f + g)− 72

√
6 + 22

√
2ΓÑ4(f + g)

)
6M

, Ω =
3ϵ
(
f − g

)
2
(
f + g

) ,
where Γ = 1

1−X̃4
, X̃4 and Ñ4 are given by (5.7) and (5.8). The isothermic surface of this example is given

in Figure 5.4.

Figure 5.4: In the figure above we have an isothermic surface Y = π ◦ X̃ in R3 used in the Example 5.3.

Figure 5.5: In the figure above we have the isothermic surface Y = π ◦ X̃ in R3 where X̃ is an isothermic
surface associated to the flat torus in S3 with r1 =

√
2√
3

, r2 = 1√
3

, b = −4
√
6, c = −33

2 ,A1 = 1 andB1 = 4.

Example 5.4. Consider the isothermic surfaces associated to the flat torus given by (4.2).
We have b = 2, c = −3, r1 =

√
2√
3

, r2 = 1√
3

. In this case, −3 = −1
r22

= c. Hence, from Proposition 4.3 f and

g are given by (4.18). Choosing A1 = 16 and b2 = 3 we have f(u1) = 4 sin
(
u1

)
+2 and g(u2) = u22 +3.

Using the Proposition 5.1, we have the solutions of the Calapso equation

ω =
ϵ
(
f + g − 18 + 2

√
2ΓÑ4(f + g)

)
3M

, Ω =
3ϵ
(
f − g

)
2
(
f + g

) ,
where Γ = 1

1−X̃4
, X̃4 and Ñ4 are given by (5.7) and (5.8). The isothermic surface of this example is given

in Figure 5.6.
Example 5.5. Consider the isothermic surfaces associated to the flat torus given by (4.2).

We have b = 2, c = 3
2 , r1 =

√
2√
3

, r2 = 1√
3

. In this case, c = 3
2 = 1

r21
. Hence, from Proposition 4.3 f and g

are given by (4.19). Choosing B1 = 16 and b2 = 3 we have f(u1) = u21 + 3 and g(u2) = 4 sin
(
u2

)
+ 2.

Using the Proposition 5.1, we have the solutions of the Calapso equation

ω =
−ϵ

(
f + g + 36 + 2

√
2ΓÑ4(f + g)

)
6M

, Ω =
3ϵ
(
f − g

)
2
(
f + g

) ,
where Γ = 1

1−X̃4
, X̃4 and Ñ4 are given by (5.7) and (5.8). The isothermic surface of this example is given

in Figure 5.8.
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Figure 5.6: In the figure above we have an isothermic surface Y = π ◦ X̃ in R3 used in the Example 5.4.

Figure 5.7: In the figure above we have the isothermic surface Y = π ◦ X̃ in R3 where X̃ is an isothermic
surface associated to the flat torus in S3 with r1 =

√
2√
3

, r2 = 1√
3

, b = −8, c = −3, A1 = 16 and b2 = 3.

Figure 5.8: In the figure above we have an isothermic surface Y = π ◦ X̃ in R3 used in the Example 5.5.

Proposition 5.2. Consider the isothermic surfaces associated to the flat torus parametrized by (4.23),
whose first fundamental form is given by

I =

(
1

λ̃1 − λ̃2

)2(
du21 + du22

)
,

where −λ̃i, 1 ≤ i ≤ 2, are the principal curvature of the (4.23), given by (4.30) and (4.31). Then the

functions ω =
ϵ
√
2
(
λ̃1 + λ̃2

)(
1− X̃4

)
+ 2Ñ4

2
(
λ̃1 − λ̃2

)(
1− X̃4

) and Ω =
ϵ
√
2

2
, with ϵ2 = 1, are solutions of the Calapso

equation, where X̃4 =< X̃, e4 >, Ñ4 =< Ñ, e4 >, e4 = (0, 0, 0, 1) and X̃ , Ñ , respectively, are given by
(4.23) and (4.27).

Proof: Consider stereographic projection π : S3 → R3 given by (5.1). Let Y = π ◦ X̃ : U ⊂ R2 →
R3, where X̃ is an isothermic surface locally associated by a Ribaucour transformation to flat torus, given
by (4.23). Thus Y is an isothermic surface in R3, where by (2.7), the first fundamental form is given by

IY =

(
1

k1 − k2

)2(
du21 + du22

)
, (5.9)

where ki, 1 ≤ i ≤ 2, are given by (5.4). Therefore, using the Theorem 2.2, we conclude the proof. □

Example 5.6. Consider the isothermic surfaces associated to the flat torus given by (4.23).
We have b = 1, r1 =

√
6
3 , r2 =

√
3
3 , A1 = 1 and B1 = 1. Using the Proposition 5.2, we have the

solutions of the Calapso equation

ω =
ϵ
√
2
(
− 33− 12

√
3 + (36 + 29

√
3) sin

(√
6
3 u2

)
− (36 + 8

√
3) sin

(√
3
3 u1

))
99 + 36

√
3 + (36 + 29

√
3) sin

(√
6
3 u2

)
+ (36 + 8

√
3) sin

(√
3
3 u1

) , Ω =
ϵ
√
2

2
.

The isothermic surface of this example is given in first surface in the Figure 5.9.

Figure 5.9: In the figures above we have isothermic surfaces Y = π ◦ X̃ in R3. The first surface is that of
the Example 5.6. On the second surface we have, r1 = 3

5 , r2 = 4
5 , b = 30, A1 = B1 = 1. On the third

surface we have, r1 = 3
5 , r2 = 4

5 , b = A1 = B1 = 1.
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6. Conclusions. From the results obtained in this work we can make the following conclusions:
All isothermic surfaces in S3 locally associated to the flat torus by a Ribaucour transformation are complete
surfaces. Moreover, these surfaces has no umbilic points.
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[23] Rogers R, Schief WK. Bäcklund and Darboux transformations. Cambridge University Press; 2002.
[24] Tenenblat K. On Ribaucour transformations and applications to linear Weingarten surfaces. Anais da Academia Brasileira de

Ciências (Impresso), ABC. 2002; 74:559-575.
[25] Tenenblat K, Wang Q. Ribaucour Transformations for Hypersurfaces in Space Forms. Annals of Global Analysis and Geometry.

2006; 29:157-185.

https://orcid.org/0000-0002-6864-3876
https://orcid.org/0000-0001-6832-2274
https://creativecommons.org/licenses/by/4.0/

