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Abstract
The objective of the research is to estimate the transmission rate of an infection (β) in the SI epidemical
model, using Bayesian statistical methods from observed data in Peru. After studying the SI mathematical
model and Bayesian statistical inference methods, a Bayesian estimator is proposed to estimate the trans-
mission rate of an infection in this model and a procedure is proposed to estimate this rate using Montecarlo
simulation based on Markov chains - MCMC.

Keywords . Ordinary differential equation, multiple level, stability, SI model, Montecarlo Simulation, Bayesian
estimator, MCMC.

Resumen
El objetivo de la investigación es estimar la tasa de transmisión de una infección (β) en el modelo SI,
utilizando métodos estadı́sticos bayesianos a partir de datos observados en el Perú. Luego de estudiar el
modelo matemático SI y los métodos de inferencias estadı́stica bayesiana se propone un estimador baye-
siano para estimar la tasa de transmisión de una infección en este modelo y se propone un procedimiento
para estimación de dicha tasa utilizando simulación Montecarlo basado en cadenas de Markov - MCMC.

Palabras clave. Ecuación diferencial ordinaria, muĺtiple nivel, estabilidad, modelo SI, Simulación Montecarlo ,
estimador Bayesiano, MCMC.

1. Introduction. Currently, the spread of infectious diseases is a major concern in public health anal-
ysis, including the design of strategies to manage the threat of infectious diseases, and this is possible by
mathematical modeling of diseases. Since D’Alembert was one of the first to describe the spread of in-
fectious diseases by means of a mathematical model in the 18th century. In this same century, Bernoulli
proposed mathematical models based on differential equations to represent the evolution of some infectious
diseases. These results are still useful today. Ross, with the study of human malaria, obtained the Nobel
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Prize in 1902, Kermack and McKendrick, considered the endemic diseases and several interesting findings
were related to experimental data with rats. The outstanding result was the famous threshold theorem, ac-
cording to which the introduction of infectious individuals into a population of susceptibles could lead to an
epidemic only if the density of susceptibles exceeds a certain threshold value. If the threshold is exceeded,
then an outbreak occurs, otherwise it disappears. ([1]).

Acquired Immunodeficiency Syndrome (AIDS) is the final and most serious stage of the disease caused
by the Human Immunodeficiency Virus (HIV) ([2]), and has experienced a rapid growth in the world since
1981. The main form of infection is sexual, producing progressive destruction of the immune system.
Currently the number of infected people worldwide is approximately 40 million, calling the attention of
scientists, physicians and world health organizations to counteract the advance of this dreaded retrovirus.
It is a major social problem, so it is important to understand the dynamics of the spread of this disease,
which together with the analysis of epidemiological studies will result in strategic plans for awareness and
prevention of the spread of the virus.

Nowadays, mathematical models are of great importance for the study of problems in medicine, biol-
ogy, epidemiology, among other areas of knowledge, since they allow describing, explaining and predicting
the dynamics of transmission and control of infectious diseases. Health data modeling is based on math-
ematical sciences with the objective of defining future scenarios based on historical information and thus
better understand the behavior and spread of diseases ([3]).

Epidemiological models assume that individuals are in one of several possible states. Depending on
these states, the population can be included in categories: susceptible (S), infected (I) or removed (R)
individuals, etc. The most important models are: SI, SIS and SIR, which can be modeled deterministically
or stochastically and in all of them it is assumed that the interaction between individuals is random ([1]).

For most sexually transmitted diseases (STDs), the SIS model is more useful, since only a small number
of STDs confer post-infection immunity. HIV is a clear exception and can still be adequately described, at
least in the western world, by a model called SI.

2. MCMC Estimation. There are several methods for estimating the parameters of mathematical
models for infectious and contagious diseases, among which the most widely used method is the least
squares, which minimizes the sum of squares of the deviations of the data from the proposed model [4], [5].

Another method used for fitting models for infectious diseases is the maximum likelihood , using the
iterative algorithm of maximizing the expectation of the score function (EM). This method was used by
[6], during the period 1708 - 1748 in London to estimate the parameters of a model for smallpox, with
data on deaths from this disease. A variant of this method was used by [7] to estimate the parameters
of a long-term dynamic model of HIV. A more sophisticated method for obtaining good estimates for the
unknown parameters of mathematical models for infectious diseases is to adopt a Bayesian approach using
Montecarlo Markov chain (MCMC) simulations.

Montecarlo Markov chain (MCMC) simulation with Bayesian approach is one of the most modern
and advanced methods used to obtain good estimates for unknown parameters of mathematical models for
infectious diseases, in which the parameter of interest is considered to have an a priori probability distri-
bution, based on the researcher’s knowledge. Subsequently, based on a random sample of the population,
parameter of interest and the a priori distribution and using Bayes’Theorem, aposteriori of the estimator
and the estimation of the corresponding parameter. MCMC methods are a class of algorithms for sampling
from probability distributions based on a Markov chain with stationary distribution. In Bayesian models,
the MCMC method estimates the a posteriori probability distribution of the parameters [8]. According to
[9] the reasons why Bayesian MCMC has become an attractive option for estimating the parameters of
models for infectious diseases is that

• is easy to implement and provides a great deal of modeling flexibility.
• allows the analysis of all model parameters and parameter functions.
• does not provide point estimates of the parameters, but their probability distributions, which cap-

ture the uncertainty.
• a posteriori summaries such as means, medians, maxima, minima, credibility intervals, etc., can

be easily obtained for individual parameters or for joint distributions of parameters.
• if the amount of available data is limited, this is reflected in the result, since the a posteriori

distributions of the parameters show greater variability.
Model fitting by the MCMC method involves [9]

1. to build a mathematical model of the disease.
2. to have appropriate epidemiological data on the disease.
3. to perform Bayesian inference, in which information on model parameters obtained from previous

studies is considered as a priori knowledge and combined with epidemiological data to update
information on unknown model parameters.
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The Monte Carlo Markov chain (MCMC) method is used to update the parameter distributions.
Let, a model be given by a set of differential equations, and let Di = D(ti) : i = 1, 2, . . . , n; epi-

demiological data at discrete time points t1, t2, . . . , tn, the objective is to find a set of free parameters such
that the model fits the data at those time points. Let y(ti/θ) be the data series produced by the proposed
mathematical model at the discrete time point, ti.

a) The objective function, E2, is constructed by calculating the sum of squares of the deviations of
the observed data (Di) from the data produced by the proposed model (y(ti/θ))

E2 =

n∑
i=1

(Di − y(ti/θ))
2 (2.1)

b) A likelihood function for the model parameters. The likelihood function is obtained by assigning
some probability distribution to the perturbations of model (2.1). This function can be, for exam-
ple, a normal, binomial, poisson or other probability distribution. In many practical situations, a
standard normal distribution is assumed for (2.1) and the likelihood function is written as:

L(θ) = Pr(D/θ) = exp
(
−E2

)
(2.2)

c) An a priori probability function for the model parameters, Pr(θ), is established. In the uninfor-
mative case, a non-informative a priori distribution can be used.

d) Finally, the a posteriori distribution of the unknown parameters is calculated, which is the condi-
tional distribution of the parameter values, given the data (likelihood function). By Bayes’ theorem
[10].

Pr(θ/D) =
Pr(D/θ)Pr(θ)

Pr(D)
(2.3)

where:
Pr(θ/D) is the posteriori distribution of θ,
Pr(D/θ) is the distribution function of D given the value of θ
Pr(θ) is the a priori distribution y
Pr(D) is the empirical evidence and is expressed as :

Pr(D) =

∫
Pr(D/θ)Pr(θ)dθ. (2.4)

The a posteriori distribution can be estimated by calculating the expression (2.3).
Unfortunately, Pr(D) is computationally difficult, if not impossible, to calculate. However, we do know
that the a posteriori distribution is proportional to the numerator of the expression (2.3)

Pr(θ/D) ∝ Pr(D/θ)Pr(θ). (2.5)

Using the expression (2.5) and by using a simple Metropolis algorithm; a Markov chain is formed that
converges asymptotically to the a posteriori distribution.

The Metropolis algorithm is an iterative procedure that uses an acceptance/rejection rule to achieve
convergence to the required distribution. [8].

The algorithm consists of the following steps:
1. Start with an initial θ0 estimate for the parameter values. This initial estimate is drawn at random

from the a priori distribution, Pr(θ).
2. For each iteration, i = 1, 2, 3, . . .

a. A new set of θ∗ parameter values is generated by sampling from a proposed distribution,
J(θ∗/θn−1). In order to use this algorithm, the proposed distribution J(θ∗/θn−1) must be
symmetric, i.e., J(θ∗/θn−1) = J(θn−1/θ∗).

b. Using the likelihood function, an r value is calculated which is the minimum between 1 and
the ratio of the a posteriori probabilities.

r = min

{
Pr(θ∗/D)Pr(θ∗)

Pr(θn−1/D)Pr(θn−1)
, 1

}
(2.6)

c. A random number with uniform distribution, α(0, 1), is generated. Then the values of the
parameters for this iteration are

θn =

 θ∗ si α < r

θn−1 en other case
(2.7)

The iterative algorithm should be repeated until the estimated parameter values converge to the a posteriori
distribution so that errors are minimized.
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Figure 3.1: Flowchart of the SI model without life dynamics, where β(S, I) = βI .

3. Mathematical epidemiological Model SI. An SI model [3] is applied to a contagious disease from
which the infected never recover. It is the simplest model, where the population consists of susceptibles
(S) and infected (I), if an individual becomes infected, the disease is permanent. The diagram representing
the dynamics of the SI model without life dynamics is as follows where the parameter β controls how fast
people move from being susceptible (S) to infected (I); is the transmission rate, average number of contacts
suitable for infection of a person per unit time and, the parameter φ controls deaths from infection, is the
rate of death from infection. The state variables at time t are :

S(t)is the number of susceptible individuals.
I(t) is the number of infected individuals.

Continuous and discrete SI epidemic model without vital dynamics. The continuous SI model is
expressed in the following system of ordinary differential equations

dS

dt
= −βSI, (3.1)

dI

dt
= βSI − φI, (3.2)

where; (3.1) is the average change in the susceptible population (S) per unit time (t), this change is given
in relation to the probability of becoming infected, upon contact between a susceptible (S) and an infected
(I), which is represented as βSI and (3.2) is the average change of the infected population (I) per unit
of time (t), the expression βSI represents the susceptibles that became infected to which is subtracted the
expression φI that represents the infected that die from the infection.

The applicability of these models is achieved by establishing a good approximation of the values of
the model parameters or at least those that are more sensitive with respect to the initial conditions [11], [7].
The equivalent of continuous versus discrete dynamics is obtained by starting from the continuous model

Figure 3.2: Infected populations trajectories under several values of parameter β (sensibility of β).
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dS

dt
= −βSI

dS ≈ −βSI dt.

We integrate from t to t+ 1

∫ t+1

t

dS

S
dt =

∫ t+1

t

−βI(t)dt,

we obtain

S(t+ 1) = (1− βI(t))S(t).

This is the equivalent model to the continuous model considered in (3.1). And it indicates that the number
of susceptible individuals passing to the infected at time t is betaS(t)I(t). Likewise, the displacement of
infected individuals, including their death by infection, is given by

I (t+ 1) = (1 + βS (t)− φ)I(t).

As can be seen, the variables depend on each other, therefore the discrete SI system is studied without vital
dynamics.  S(t+ 1) = (1− βI(t))S(t),

I(t+ 1) = (1 + βS(t)− φ)I(t).
(3.3)

Another SI Model without vital dynamics. The flow diagram of the modified SI model without life
dynamics [12] life dynamics and death by infection [3] is explained in the Fig(3.3).
where

S
β(S,I) // I

φ

��

Figure 3.3: Flowchart of the SI model without life dynamics, where β(S, I) = k ln

(
1 +

βI

k

)
.

N = S + I is the total population
β is the transmission rate, the average number of contacts suitable for infection of a person per unit

of time
k is the overdispersion parameter, i.e. the measure of the degree of contagion.
φ is the death rate due to infection

The continuous version is given by the following system of ordinary differential equations

dS

dt
= −kS ln

(
1 +

βI

k

)
, (3.4)

dI

dt
= kS ln

(
1 +

βI

k

)
− φI. (3.5)

Without loss of generality, it is assumed that the total number of infected individuals is constant and inte-
grating (3.4) over a unit time interval:

S(t+ 1) = S(t)

(
k

k + βI(t)

)k

.
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This implies that the fraction of susceptible individuals surviving in that time span is
(

k

k + βI(t)

)k

. Like-

wise, consider that the average number of newly infected individuals is 1−S(t)

(
k

k + βI(t)

)k

, therefore,

the discrete version of the SI model (3.4-3.5), is

S(t+ 1) = S(t)

(
k

k + βI(t)

)k

I(t+ 1) = S(t)

[
1−

(
k

k + βI(t)

)k
]
− φI(t)

(3.6)

dS

dt
= lim

h→0

S (t+ h)− S(t)

h

which represents the instantaneous change in continuous dynamics.

Figure 3.4: Solutions trajectories of the basic SI model. System (3.1 - 3.2).

Figure 3.5: Solutions trajectories of the basic SI model. System (3.4 - 3.5).

In Fig.3.4 and Fig.3.5, we appreciate the second system is sensible to parameter k (contagion index)
which control the incidence rate β.
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Bayesian Estimation of parameters in the system (3.6). If S(t) = s, I(t) = i, the new infections at
time (t+ 1), is obtained from

Î|s, i ∼ B(s, pi (i, β, k)),

where

pi (i, β, k) = 1−
(

k

k + βi

)k

.

Then, let be the number of new infected at time T ,

ît = S (t− 1)− S(t)

The likelihood function for data observed at time T is given by

T∏
t=1

B(t|S(t− 1), pi (I(t− 1), β, k))

Samples for beta and k can be obtained from the Metropolis-Hastings algorithm, thus the conditional based
on previous sample values (β, k) is (β∗, k∗), which can be obtained by the Metropolis algorithm inside the
Gibbs Sampler using:

P (β∗|k) ∝
T∏

t=1

B(̂it|S(t− 1), pi (I (t− 1) , β∗, k)),

and

P (k∗|β∗) ∝
T∏

t=1

B(̂it|S(t− 1), pi (I (t− 1) , β∗, k∗)).

4. Application of the Bayesian estimation of Parameters. In the present section, the methodology
exposed in section 2 is implemented to the model given in (3.1) and (3.2), where the parameters and initial
conditions for the model are given in the Table (4.1).

Parameter Meaning Value Reference

β Per capita transmission rate 0.000055047 (year×person) −1 Estimated

φ Per capita HIV-related death rate 0.029789 (year−1) Assumed

S(0) Initial susceptible population 9000 (person) Assumed

I(0) Initial infected population 1 (person) [13]

Table 4.1: System parameters and initial conditions for SI model without vital dynamics.

Frequently, it is difficult to have data of all variables related to an specific model. In epidemiology con-
text, morbidity and mortality data is usually available, for this reason, the following example uses real data
based on the monitoring of HIV (human immunodeficiency virus) and AIDS (acquired immunodeficiency
syndrome) in the Peruvian population [13]. On the other hand, the transmission rate is the most impor-
tant parameter in epidemiology models, it depends on the contact rate and the probability to be infected,
and those factors are not easy to be estimated [3]. Taking this into account, the authors developed a case
study where the per capita HIV-related death rate is known and the transmission rate is estimated, using the
infected-HIV people data to fit the model.

The data was tabulated, processed and plotted using the packages Pandas 1.1.0 and the Bayesian pa-
rameter estimation was performed with PyMC3 3.11.5 [14] and ArviZ 0.11.0 [15] in Python language. The
data is shown in Figure 4.1 and the initial infected population was taken from this data. The initial suscepti-
ble population used to the estimation and simulation was taken arbitrarily because is difficult to access this
information in a close population during these years.

The parameter φ can be interpreted and assumed as the average remaining period off life for a HIV-
infected person, whose value can be calculated as the inverse mean infection period for the HIV [16]. The
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Figure 4.1: HIV-infected Peruvian population from 1983 to 2021
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Figure 4.2: Bayesian parameter estimation plots and model fit considering a Normal prior distribution for
the parameter β.
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Figure 4.3: Bayesian parameter estimation plots and model fit considering a Uniform prior distribution for
the parameter β.

parameter β was estimated using the Bayesian approximation and its mean value is shown in the Table 4.1.
In order to estimate β, two different a priori distribution were used: Normal (Figure 4.2), and Uniform

(Figure 4.3). The error function is given by equation (2.1), while the likelihood function was implemented
using the Log-Normal with mean equal 0 and standard deviation equal one, from equation (2.2) is possible
to derive the following likelihood expression:

Loglik (θ) = log (L (θ)) = log (Pr (D/θ)) = −E2.

A random seed equal 369 was used in all the simulations, and the sample method to run the MCMC was
Metropolis-Hastings with 100000 samples and two Markov chains are shown. The initial guess for param-
eter β was 0.0005, and the Uniform distribution was implemented with a lower bound equal to 0 and an
upper bound equal to 1. Also, the mean position of the β value is specified as a vertical blue line in the
posterior density plots together with the high density intervals (HDI) at the 90%, which means that there is
90% probability the belief is between 5.5045× 10−5 and 5.5049× 10−5 for the mean β value, for example
(Figure 4.3b).

5. Conclusions. The estimate for the transmission rate of an infection in the SI model can be obtained
from the conditional distributions using the Metropolis Hasting algorithm within the Gibbs Sampler. Also,
a procedure has been derived to estimate this rate using Monte Carlo simulation based on Markov chains -
MCMC.

As a result of this work, Bayesian estimation works well to estimate the parameter: HIV transmission
rate per inhabitant in Perú, from a priori normal distribution and based on the posterior distribution it can
be concluded that the posterior mean is 0.000055 per year, so it can be interpreted that if an individual is
infected with HIV, he/she infects another with a rate of 0.000055 per year.
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