
Special issue: Peruvian Conference on Scientific Computing 2022, Cusco - Peru

Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS
Universidad Nacional de Trujillo

ISSN: 2411-1783 (Online)
2023; Vol. 10(1): 1-15.

Domain Decomposition with Neural Network Interface Approximations for
time-harmonic Maxwell’s equations with different wave numbers

Tobias Knoke∗ , Sebastian Kinnewig† , Sven Beuchler‡ , Ayhan Demircan§ , Uwe
Morgner¶ and Thomas Wick∥

Received, Jan. 15, 2023 Accepted, Mar. 03, 2023

How to cite this article:
Knoke T. et al. Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s
equations with different wave numbers. Selecciones Matemáticas. 2023;10(1):1–15. http://dx.doi.org/10.
17268/sel.mat.2023.01.01

Abstract
In this work, we consider the time-harmonic Maxwell’s equations and their numerical solution with a do-
main decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced
approximation of the interface conditions between the subdomains. The advantage is that the interface
condition can be updated without recomputing the Maxwell system at each step. The main part consists of
a detailed description of the construction of the neural network for domain decomposition and the training
process. To substantiate this proof of concept, we investigate a few subdomains in some numerical exper-
iments with low frequencies. Therein the new approach is compared to a classical domain decomposition
method. Moreover, we highlight current challenges of training and testing with different wave numbers and
we provide information on the behaviour of the neural-network, such as convergence of the loss function,
and different activation functions.

Keywords . Time-Harmonic Maxwell’s Equations, Machine Learning, Feedforward Neural Network, Domain
Decomposition Method.

1. Introduction. The Maxwell’s equations for describing electro-magnetic phenomena are of great
interest in current research fields, such as optics. One present example of employing Maxwell’s equations
can be found in the Cluster of Excellence PhoenixD (Photonics Optics Engineering Innovation Across Dis-
ciplines)1 at the Leibniz University Hannover, in which modern methods for optics simulations are being
developed. Therein, one focus is on the efficient and accurate calculation of light distribution in an optical
material to design optical devices on the micro- and nanoscale [1, 2]. In comparison to other partial differ-
ential equations, such as in solid mechanics or fluid flow, the Maxwell’s equations have some peculiarities
such as the curl operator, which has in two-dimensional problems, a one-dimensional image, but in three-
dimensional problems, it has a three-dimensional image. Moreover, the requirements for the discretization
and definiteness of the final linear system are specific. In more detail, in numerical mathematics, Maxwell’s
equations are of interest because of their specific mathematical structures [3, 4, 5, 6], requirements for finite
elements [3, 5, 7, 8, 9, 10, 11], their numerical solution [12, 13, 14, 15] as well as postprocessing such as

∗Institute of Applied Mathematics at Leibniz University Hannover, Germany (tobias.knoke@stud.uni-hannover.de).
†Institute of Applied Mathematics at Leibniz University Hannover, Germany (kinnewig@ifam.uni-hannover.de).
‡Institute of Applied Mathematics at Leibniz University Hannover, Germany (beuchler@ifam.uni-hannover.de).
§Institute of Quantum Optics at Leibniz University Hannover, Germany (demircan@iqo.uni-hannover.de).
¶Institute of Quantum Optics at Leibniz University Hannover, Germany (morgner@iqo.uni-hannover.de).
∥Institute of Applied Mathematics at Leibniz University Hannover, Germany (thomas.wick@ifam.uni-hannover.de).

1https://www.phoenixd.uni-hannover.de/en/

1

http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0003-2987-5110
https://orcid.org/0000-0002-0923-7413
https://orcid.org/0000-0001-9411-8701
https://orcid.org/0000-0002-0015-2077
https://orcid.org/0000-0001-5103-9632
https://orcid.org/0000-0002-1102-6332
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17268/sel.mat.2023.01.01
http://dx.doi.org/10.17268/sel.mat.2023.01.01
https://www.phoenixd.uni-hannover.de/en/

2 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

a posteriori error control and adaptivity [16, 17]. As their numerical solution is challenging due to their ill-
posed nature, e.g., [18], one must apply suitable techniques. The most prominent approach in the literature
is based on domain decomposition (DD) techniques [19, 15]. The geometric multigrid solver developed by
Hiptmair [12] can only be applied to the problem in the time domain (i.e., the well-posed problem).

In this work, we concentrate on the numerical solution using a domain decomposition method. Specif-
ically, our starting point is the method developed in [18], based on ideas from [20], and which was realized
in the modern open-source finite element library deal.II [21, 22]. The domain decomposition method’s
crucial point is the interface operator derivation [20]. Our main objective in the current work is to design a
proof of concept to approximate the interface operator with the help of a feedforward neural network (NN)
[23, 24, 25]. We carefully derive the governing algorithms and focus on a two-domain problem to study
our new approach’s mechanism and performance. Implementation-wise, the previously mentioned deal.II
library (in C++) is coupled to the PyTorch (in python) [26] library, which is one of the standard packages
for neural network computations. Our main aim is to showcase that our approach is feasible and can be
a point of departure for further future extensions. We notice that the current work is an extension of the
conference proceedings paper [27] with more mathematical and algorithmic details, and different numerical
tests, specifically the studies on different wave numbers and comparison of two NN activation functions.

The outline of this work is as follows: In Section 2, we introduce the time-harmonic Maxwell’s equa-
tions and our notation. Next, in Section 3, domain decomposition and neural network approximations are
introduced. Afterwards, we address in detail the training process in Section 4. In Section 5, some numerical
tests demonstrate our proof of concept. Our work is summarized in Section 6.

2. Equations. For the sake of simplicity, we only consider the two-dimensional time-harmonic Maxwell’s
equations. In the following, we will introduce these equations in detail.

2.1. Fundamental operators. To comprehensively describe the problem, we introduce the basic op-
erators needed to describe two-dimensional electro-magnetic problems. Therefore, let us assume a scalar
function ϕ : R → R and v ∈ R2 to be a two-dimensional vector. Then the gradient of ϕ is given
by ∇ϕ =

(
∂ϕ
∂x1

, ∂ϕ
∂x2

)
, and the divergence of v is given by div(v) := ∇ · v :=

∑2
i=1

∂vi

∂xi
. Next,

a · b = (a1, a2)
T · (b1, b2)T = a1b1 + a2b2 denotes the scalar product. We can furthermore write down the

description of the two-dimensional curl operator

curl(v) =
∂v2
∂x1

− ∂v1
∂x2

, (2.1)

and the curl operator applied to a scalar function

curl(ϕ) =

 ∂ϕ
∂x2

− ∂ϕ
∂x1

 . (2.2)

2.2. Time-harmonic Maxwell’s equations. Let Ω ⊂ R2 be a bounded domain with sufficiently
smooth boundary Γ. The latter is partitioned into Γ = Γ∞ ∪ Γinc. The main governing function space
is defined as

H(curl,Ω) := {v ∈ L2(Ω) | curl(v) ∈ L2(Ω)},

where L2(Ω) is the well-known space of square-integrable functions in the Lebesgue sense. In order to
define boundary conditions, we introduce the traces

γt : H(curl,Ω) → H
−1/2
× (div,Γ),

γT : H(curl,Ω) → H
−1/2
× (curl,Γ),

which are defined by

γt (ϕ) =

 ϕ n2

−ϕ n1

 and γT (v) = v − (n · v) · n,

where n ∈ R2 is the normal vector of Ω, H−1/2
× (div,Γ) := {v ∈ H−1/2(Γ) | v · n = 0, divΓv ∈

H−1/2(Γ)} is the space of well-defined surface divergence fields and H(curl,Γ) := {v ∈ H−1/2(Γ) | v ·
n = 0, curlΓ (v) ∈ H−1/2(Γ)} is the space of well-defined surface curls, see [3, Chapter 3.4]. In the

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 3

following, we first state the strong form of the system. The time-harmonic Maxwell’s equations are then
defined as follows: Find the electric field E : Ω → C2 such that

curl

(
µ−1 curl (E)

)
− εω2E = 0 in Ω

µ−1γt (curl (E))− iκωγT (E) = 0 on Γ∞

γT (E) = Einc on Γinc,

(2.3)

where Einc : R2 → C2 is some given incident electric field, µ ∈ R+ is the relative magnetic permeability,
κ =

√
ε, ε ∈ C relative permittivity, ω = 2π

λ is the wave number and λ ∈ R+ is the wave length and i
denotes the imaginary number. System (2.3), as well as its weak form, is called time-harmonic, because the
time dependence can be expressed by eiωτ , where τ ≥ 0 denotes the time.

2.3. Weak formulation. In this subsection, we derive the weak form. This is the starting point for a
finite element method (FEM) discretization. For the derivation, we first begin by rewriting the curl product
with the help of integration by parts:

∫
Ω

curl (ϕ) · u dx =

∫
Ω

ϕ curl (u) dx+

∫
∂Ω

γt(ϕ) · u ds, (2.4)

see for instance [28, 3]. We want to derive the weak formulation from the strong formulation (2.3) in the
following:

∫
Ω

curl
(
µ−1 curl (E)

)
· φ dx− εω2

∫
Ω

E · φ dx = 0,

(2.4)⇒
∫
Ω

µ−1 curl (E) curl (φ) dx− εω2

∫
Ω

E · φ dx+

∫
∂Ω

µ−1γt (curl (E)) · φ ds = 0. (2.5)

By applying the definition of the boundaries Γ∞ and Γinc from equation (2.3) to equation (2.5), we obtain
the weak formulation of the time-harmonic Maxwell’s equations. Find E ∈ H(curl,Ω) such that for all
φ ∈ H(curl,Ω)

∫
Ω

(
µ−1 curl (E) curl (φ)− εω2E · φ

)
dx+iκω

∫
Γ∞

γT (E) · γT (φ) ds

=

∫
Γinc

γT
(
Einc) · γT (φ) ds. (2.6)

2.4. Two-dimensional Nédélec elements. For the implementation with the help of a Galerkin finite
element method (FEM), we need the discrete weak form. Based on the De-Rham cohomology, we must
choose our basis functions out of the Nédélec space Vh. Therefore, we want to introduce the definition of
the space Vh in the following, based on the formalism introduced by Zaglmayr [29, Chapter 5.2].

As a suitable polynomial basis, we introduce the integrated Legendre polynomials. Let x ∈ [−1, 1].
The following recursive formula defines the integrated Legendre polynomials:

L1(x) = x,

L2(x) = 1
2

(
x2 − 1

)
,

(n+ 1)Ln+1(x) = (2n− 1)xLn(x)− (n− 2)Ln−1(x), for n ≥ 2.

(2.7)

Let us choose the quadrilateral reference element as Q = [0, 1]× [0, 1].

4 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

V0 V1

V2 V3

E0 E1

E2

E3

x

y

λ0 = (1− x)(1− y), σ0 = (1− x) + (1− y),

λ1 = x(1− y), σ1 = x+ (1− y),

λ2 = (1− x)y, σ2 = (1− x) + y,

λ3 = xy, σ3 = x+ y

Figure 2.1: Left: Vertex and edge ordering on the reference cell, right: parametrisation of the reference
cell.

We continue by defining the set of all edges E = {Em}0≤m<4 with local edge-ordering Em = {Vi, Vj},
where (i, j) ∈ {(0, 2), (1, 3), (0, 1), (2, 3)}, see Figure 2.1. We denote the cell itself with local vertex-
ordering C = {V0, V1, V2, V3}. The polynomial order is given by p =

(
{pE}E∈E , pC

)
.

H(curl) conforming basis function

Vertex-based shape functions

There are no DoFs on the vertices.

Edge-based shape functions

for 0 ≤ i < pE , E ∈ E, where λα and σα, α ∈ {0, 1, 2, 3} are defined in Figure 2.1

Lowest order φN0

Em
= 1

2∇ (σe2 − σe1) (λe1 + λe2)

Higher-order φEm
i = ∇ (Li+2 (σe2 − σe1) (λe1 + λe2))

Cell-based functions

0 ≤ i, j < pC

Type 1: φC,1
(i,j) = ∇(Li+2(ξF)Lj+2(ηF))

Type 2: φC,2
(i,j) = ∇̃(Li+2(ξF)Lj+2(ηF))

where ∇̃(a b) := (a′ b− a b′)

Type 3: φC,3
(0,j) = Li+2(2y − 1)ex

φC,3
(i,0) = Li+2(2x− 1)ey

Figure 2.2: The definition of the H(curl) basis-functions on the reference element with barycentric coor-
dinates λα and σα, α ∈ {0, 1, 2, 3}.

With the help of these basis functions, we define the two-dimensional Nédélec space

Vh := V N0

h (Th)
⊕
E∈E

V E
h (Th)

⊕
C∈C

V C
h (Th) , (2.8)

where V N0

h is the space of the lowest-order Nédélec function, V E
h is the space of the edge-bubbles and

V C
h is the space of the cell-bubbles. All basis functions on one element with baryzentric coordinates are

displayed in Figure 2.2. Visualizations of some basis functions are displayed in Figure 2.3. The description
of Vh(Ω) is still not complete, so far we only described Vh(Q), with Q as previously defined. It remains to
introduce the Piola transformation, which is used to transform the reference element to any given physical
element, see Monk [3] (Lemma 3.57, Corollary 3.58).

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 5

Figure 2.3: Plots of basis functions on (0, 1)2: low order edge function (left above), high order edge based
basis function for p = 2 (right above) to the edge E0, high order cell based basis functions for p = 2 of type
1 and 2 (below).

2.5. Discrete weak formulation. We have gathered everything to write down the discrete weak for-
mulation of the time-harmonic Maxwell’s equations. We obtain the discrete weak formulation by applying
the Galerkin method to the equation (2.6). Find Eh ∈ Vh(Ω) such that∫

Ω

(
µ−1 curl (Eh) curl (φh)− εω2Eh · φh

)
dx+iκω

∫
Γ∞

γT (Eh) · γT (φh) ds

=

∫
Γinc

γT
(
Einc) · γT (φh) ds ∀φh ∈ Vh(Ω). (2.9)

3. Numerical approach. In this section, we first describe domain decomposition and afterwards the
neural network approximation. In the latter, we also outline how to replace the interface operator by the
neural network.

3.1. Domain decomposition. Since the solution of Maxwell’s equation system (2.3) is challenging, as
already outlined in the introduction, we apply a non-overlapping domain composition method (DDM)[19]
in which the domain is divided into subdomains as follows

Ω =

ndom⋃
i=0

Ωi with

Ωi ∩ Ωj = ∅ ∀i ̸= j,

where ndom + 1 is the number of subdomains. In such a way, every subdomain Ωi becomes small enough
so that we can handle it with a direct solver. The global solution of the electric field E is computed via an
iterative method, where we solve the time-harmonic Maxwell’s equations on each subdomain with suitable
interface conditions between the different subdomains. Thus, we obtain a solution Ek

i for every subdomain
Ωi, where k denotes the k-th iteration step. The initial interface condition is given by

gk=0
ji := −µ−1γt

i

(
curl

(
Ek=0

i

))
− iκS

(
γT
i

(
Ek=0

i

))
= 0, (3.1)

6 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

where S describes the interface operator, i is the index of the current domain, and j is the index of the
neighbouring domain [20]. Afterwards, the electric-field Ek+1

i is computed at each step by solving the
following system

curl
(
µ−1 curl

(
Ek+1

i

))
− ω2εEk+1

i = 0 in Ωi,

µ−1γt
i

(
curl

(
Ek+1

i

))
− iωκγT

i

(
Ek+1

i

)
= 0 on Γ∞

i ,

γT
i

(
Ek+1

i

)
= γT

i

(
Einc

i

)
on Γinc

i ,

µ−1S
(
γt
i

(
curl

(
Ek+1

i

)))
− iωκγT

i

(
Ek+1

i

)
= gkji on Σij ,

(3.2)

where Σij = Σji := ∂Ωi ∩ ∂Ωj denotes the interface of two neighbouring elements and the interface
condition is updated by

gk+1
ji = −µ−1γt

i

(
curl

(
Ek+1

i

))
− iκS

(
γT
i

(
Ek+1

i

))
= −gkij − 2iκS

(
γT
i

(
Ek+1

i

))
. (3.3)

In case of success we obtain limk→∞ Ek
i = E|Ωi , but this convergence depends strongly on the chosen

interface operator S (see [15, 20]). The implementation of this approach into deal.II was done in [18].

3.2. Our new approach: Neural network approximation of S. Since the computation of a good
approximation of S is challenging, we examine a new approach in which we attempt to approximate this
operator with the help of a neural network (NN). For a first proof of concept, we choose a prototype example
and explore whether an NN can approximate the interface values. As it is not feasible to compute the
exact interface operator S, we aim to compute gk+l

ij , l > 0 with an NN, using gkij and Ek+1
i as input.

Another benefit of this approach is that we can quickly generate a training data set from a classical domain
decomposition method, as described in Section 4.4. We choose S = 1 for simplicity inside our classical
domain decomposition method. Hence, the advantage of this approach is that one can update the interface
condition without recomputing the system (3.2) at each step, raising the hope of reducing the computational
cost.

4. Neural network training. The first step in neural network approximations is the training process,
which is described in this section. Besides the mathematical realization, we also need to choose the software
libraries. We utilize deal.II [22] to discretize the time-harmonic Maxwell’s equations with the finite element
method. The neural network is trained with PyTorch [26]. The exchange of information between the results
of the deal.II code and the PyTorch code take place via the hard disk.

4.1. Basic definitions. First of all, we give a short definition of the neural network type employed in
this work, and we introduce the basic parameters. Further information can be found in [23, 30, 31, 32, 33].
The following notation and descriptions of this subsection are mainly based on [34].

Definition 4.1 (Artificial neuron). An (artificial) neuron (also known as unit [35], [23][Section 5.1])
u is a tuple of the form (x,w, σ). The components have the following meanings:

• x = (x0, . . . ,xn) ∈ Rn+1 is the input vector. It contains the information, that the neuron receives.
• w = (w0, . . . ,wn) ∈ Rn+1 is the weight vector, which determines the influence of the individual

input information on the output of the neuron. Later, w denotes the weight vector of all neurons.
• σ : R → R, with σ =

∑n
i=0 xiwi 7→ a is the activation function. It determines the so-called

activation level a from the input and the weights, which represent the output of the neuron.
Definition 4.2 (Neural network). An (artificial) neural (feedforward-) network is a set of neurons

U with a disjoint decomposition U = U0∪̇ . . . ∪̇Ul. The partition sets Uk, k = 0, . . . , l are called layers.
Here, U0 is the input layer. It contains the neurons that receive information from outside. Moreover, Ul is the
output layer with the neurons that return the output. Finally, U1, . . . , Ul−1 are the so-called hidden layers.
Starting from any neuron u ∈ Uk, there is a connection to each neuron û ∈ Uk+1 for k = 0, . . . , l− 1. Such
a connection illustrates that the output a of the neuron u is passed on to the neuron û. This property is the
reason for the name feedforward network.

Each U0, . . . , Ul−1 contains a so-called bias neuron of the form (0, 0, 1). It has no input, weights and
a constant output value 1 and only transfers a constant bias in the form of the weight to each neuron of the
subsequent layer.

Remark 4.1. In the following examples all neurons of the layer Uk will have the same activation
function, given by σ(k) for k = 0, . . . , l. Here, Dk := |Uk| − 1 for k = 0, . . . , l − 1 denotes the number
of neurons of the k-th layer (without bias neuron) and Dl := |Ul| is the number of neurons of the output
layer.

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 7

4.2. Decomposing the domain. Before constructing the NN, we choose the domain, the decomposi-
tion and the grid on which the system (3.2) is solved to obtain the training values because they will influence
the network size. The domain in our chosen example, given by

Ω = (0, 1)× (0, 1),

is divided into two subdomains

Ω0 = (0, 1)× (0, 0.5) and Ω1 = (0, 1)× (0.5, 1) (see Figure 4.1),

and the grid on which the FEM is applied is a mesh of 32× 32 elements with quadratic Nédélec elements.
Hence 32 elements with each 4 degrees of freedom (dofs) are located on the interface in both subdomains.

Ω0

Ω1

Γinc

Γ∞

Σ01 = Σ10

g01

g10

Figure 4.1: Visualization of the domain Ω with the chosen decomposition.

We evaluate the interface condition and the solution on each dof and use the values as the NN’s input and
target. Therefore the input contains 4 · dim(gij) + 4 · dim(Ei) = 16 values, and the output consists of
4 · dim(gji) = 8 values, and we obtain 32 input-target pairs with one computation.

4.3. Neural network construction. Regarding the considerations above, we need an input layer with
16 neurons (without bias) and an output layer with 8 neurons. Furthermore, we use one hidden layer with
500 neurons (without bias). Hence, for the governing network, we have

U = U0∪̇U1∪̇U2

with D0 = 16, D1 = 500 and D2 = 8. Our tests, presented in Section 5, revealed that this is a sufficient
size for our purpose. The activation function per layer is chosen as follows:

σ(0) = id (input layer),

σ(1) =
1

1 + e−x
(hidden layer),

σ(2) = id (output layer),

where σ(1) is known as the sigmoid function, which turned out to be the most effective since the error could
be reduced more and more quickly than with other functions we tested e.g.

σ(1) = tanh(x),

σ(1) = log

(
1

1 + e−x

)
(LogSigmoid),

σ(1) = max(0, x) + min(0, ex − 1) (CELU),

σ(1) = a (max(0, x) + min (0, b (ex − 1))) (SELU),
with a ≈ 1.0507, and b ≈ 1.6733.

An exception represents the ReLU function, which we will discuss later in Section 5.4. Moreover, we
apply separate networks U01 and U10 of the same shape for both interface conditions g01 and g10 since it

8 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

turned out that they are approximated differently, fast and accurately. The resulting programming code is
displayed in Figure 4.2.

import torch.nn as nn
import torch.nn.functional as F
class Maxwell(nn.Module):
def __init__(self):
super(Maxwell, self).__init__()

self.lin1 = nn.Linear(16, 500)
self.lin2 = nn.Linear(500, 8)

def forward(self, x):
x = torch.sigmoid(self.lin1(x))
#x = F.relu(self.lin1(x))
x = self.lin2(x)
return x

net = Maxwell()
print(net)

Figure 4.2: PyTorch code of the implementation of the network construction.

4.4. Training. To obtain enough training data, we vary the boundary condition Einc and create train-
ing and test values to control the network during the training and avoid overfitting. The training and test
sets are generated by the boundary values listed in Table 4.1.

Einc for the training set Einc for the test set e
−(x−0.7)2

0.008

0

 cos(π2y) + sin(π2x)i

sin(π2y) + 0.5 cos(π2x)i

 e
−(x−0.5)2

0.003

0

 e
−(x−0.2)2

0.002

1

 sin(π2x) + sin(π2x)i

sin(π2y) + 0.5 cos(π2x)i

 cos(π2y) + sin(π2x)i

cos(π2y) + 0.5 cos(π2x)i

 e
−(x−0.7)2

0.003

1

 sin(π2x) + sin(π2x)i

sin(π2x) + 0.5 cos(π2x)i

 e
−(x−0.8)2

0.003

sin(π2x)

 cos(π2y) + sin(π2x)i

cos(π2x) + 0.5 cos(π2x)i

 e
−(x−0.5)2

0.003

cos(π2x)

 cos(π2x) + sin(π2x)i

cos(π2y) + 0.5 cos(π2x)i

Table 4.1: Boundary values for generating the training set and the test set

Since we choose 10 different boundary values for the training set and 2 for the test set and each of
them generates a set of 32 training/test values (one per element on the interface), we obtain all in all a set of
32 ·10 = 320 training values and a set of 32 ·2 = 64 test values for both networks. To keep the computation
simple in a first set of tests, we choose a small wave number ω = 2π

3 , and compute the sets with the iterative
DDM in 4 steps. Afterwards we use the results

(
g1ij , E

2
i

)
as the input and g3ji as the targets to train our NNs

with the application of the mean squared error as the loss function, given by

Loss(w) =
1

2

N∑
i=1

∥t(i) − y(x(i),w)∥2,

where N denotes the number of input-target pairs (in our case N = 320 for the training set and N = 64 for
the test set), t(i) is the target vector, y is the function generated by the network and hence y(x(i),w) denotes

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 9

the output of the NN. We refer the reader to Section 5.1 for the specific realization. As the optimizer, we
use the Adam algorithm [36], which is a line search method based on the following iteration rule

xρ+1 = xρ + αρpρ,

where pρ is called the search direction and αρ is the step size (or learning rate in case of NN) for the iteration
step ρ. The search direction of the Adam algorithm depends on four parameters β1, β2, m1 and m2, where
β1 and β2 are fixed values in the interval [0, 1), and m1 and m2 are updated in each step via

m0
1 = m0

2 = 0, mρ+1
1 = β1m

ρ
1 + (1− β1) · ∇Loss(w)ρ

and mρ+1
2 = β2m

ρ
2 + (1− β2) · ∥∇Loss(w)ρ∥2.

The search direction is then given by

pρ−1 = −m̂ρ
1

/√
m̂ρ

2 + ε

with m̂ρ
1 = mρ

1/(1− (β1)
ρ), m̂ρ

2 = mρ
2/(1− (β2)

ρ) and 0 < ε ≪ 1.
The implementation of this training process in PyTorch is displayed in Figure 4.3.

import torch.optim as optim
import time
start_time = time.time()
tol = 3e-3
max_iter = 20000
iterations = 0
loss_test = tol + 1
optimizer = optim.Adam(net.parameters(), lr=1e-5)
criterion = nn.MSELoss()
while(iterations < max_iter and loss_test > tol):

out = net(inp_training)
optimizer.zero_grad()
loss = criterion(out, target_training)
loss_test = criterion(net(inp_test), target_test)
print("Loss: %.5f" % loss, "Test-Loss: %.5f" % loss_test))
loss.backward()
optimizer.step()
iterations += 1

print("Final Loss: %.5f" % loss_test)
print("Number of iterations: %.0f" % iterations)
time_taken = time.time() - start_time
print("Run-Time: %.4f s" % time_taken)

Figure 4.3: PyTorch code of the implementation of the network training.

The network U01 is trained with the learning rate 10−5. The initial training error of 3.12 and the test
error of 5.87 are reduced to 1.7 · 10−4 and 3 · 10−3 after 29 843 training steps. At U10, the initial training
error of 0.72 and the test error of 1.28 are reduced to 3 · 10−4 and 4 · 10−3 after 20 326 steps with learning
rate of 10−5 and after further training with a learning rate of 10−6 in 3706 steps, we finally achieve the
training error 2.9 · 10−4 and the test error 3 · 10−3.

5. Numerical tests. In this section, we investigate several numerical experiments to demonstrate the
current capacities of our approach. In addition, we highlight and analyze shortcomings and challenges.

5.1. Comparison of new approach and classical DDM. In this first numerical example, we apply
the implemented and trained NNs for the following boundary condition

Einc(x, y) =

 cos
(
π2 (y − 0.5)

)
+ sin

(
π2x

)
i

cos
(
π2y

)
+ 0.5 sin

(
π2x

)
i

 ,

10 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

and compute the first interface conditions g110 and g101 and the solutions E2
1 and E2

0 by solving (3.2) and
(3.3) with the use of the parameters given in Table 5.1. Afterwards, these values are passed on to the
networks U01 and U10. The output they return is then handled as our new interface condition, which we
use to solve system (3.2) one more time. With that, we obtain the final solution. Moreover, we compute
the same example with the DDM in 4 steps. The results that are displayed in Figure 5.1 show excellent
agreement.

Parameter Definition Value

µ relative magnetic permeability 1.00

ε relative electric permittivity 1.492

κ
√
ε = 1.49

λ wave length 3.00

ω wave number 2π
λ = 2π

3.00

grid size 1
32

Table 5.1: Parameters for the DDM

Figure 5.1: First example: Real part (above) and imaginary part (below) of the NN solution (left) and the
DDM solution (right).

5.2. Higher wave numbers. As a second example, we increase the wave number, which leads to a
more complicated problem. Therefore we repeat the same computation with ω = π and leave the other
parameters (especially the parameters and hyperparameters of the neural networks) unchanged. In contrast
to the previous example, the results that are displayed in Figure 5.2 show differences. While the imaginary

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 11

part is still well approximated, the real part of the NN solution differs significantly from the DDM solution
and shows a discontinuity on the interface.

Figure 5.2: Second example: Real part (above) and imaginary part (below) of the NN solution (left) and the
DDM solution (right).

5.3. Refined computational analysis for intermediate wave numbers. A possible reason for the
mismatching results in Section 5.2 is the “problem of big wave numbers”, which is very well-studied for
Helmholtz-type problems [37]. The same problem also applies to Maxwell’s equations [18]. To verify this
conjecture and because of the very distinctive results in Section 5.1 and Section 5.2, we attempt two more
computations with other wave numbers, namely ω = 2π

2.9 and ω = 2π
3.1 . The results, that are displayed in

Figures 5.3 and 5.4, in which we neglect the representation of the meshes to make the differences more
visible, show that the approximation becomes inaccurate if the wave number differs slightly from the one
we used for the training, regardless of whether it is larger or smaller. Therefore the bad approximation is
not due to the big size of the wave number. Instead of this, it can be assumed that the NNs are specialized
for the specific wave number they are trained with and “learn along” this value during the training process.

12 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

Figure 5.3: Third example: Real part (above) and imaginary part (below) of the NN solution (left) and the
DDM solution (right) with ω = 2π

2.9

Figure 5.4: Fourth example: Real part (above) and imaginary part (below) of the NN solution (left) and the
DDM solution (right) with ω = 2π

3.1 .

5.4. Comparison of different neural network activation functions: Sigmoid vs. ReLU. As men-
tioned in Section 4.3, we tested different activation functions to train the NNs before using sigmoid. One

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 13

of these is the ReLU function given by

f(x) = max(0, x),

which is implemented in the PyTorch class torch.nn.functional. This function allows a greater and faster
error reduction than the others we tested, including sigmoid. In most cases, the test error of the network U01

can be reduced after approx. 16000 steps with a learning rate of 10−5 and ca. 6500 steps with a learning
rate of 10−6 to 8 ·10−4, which is almost a quarter compared to the final error in the training of the same NN
with sigmoid as the activation function (see Section 4.4). Also, the test error of U10 can be reduced more
quickly, namely to 2 · 10−3 after ca. 3500 steps with a learning rate of 10−5. However, we also observed
that the test error grows after a short reduction phase in other cases. But in contrast, the training error
continues to shrink, revealing that the training of our ReLU-networks is more susceptible to overfitting.
This suspicion is strengthened when we apply the successfully trained ReLU-networks to the first example
with the same procedure described in Section 5.1. The results displayed in Figure 5.5 show a discontinuity
in the interface. This suggests that even in the lucky cases in which the test error is reduced very well, we
are dealing with overfitting, and the resulting NNs cannot accurately capture the actual problem. Because of
the unreliable training of the ReLU-NNs, it is reasonable to use sigmoid as the activation function instead.

Figure 5.5: Real part (above) and imaginary part (below) of the NN solution with the use of ReLU (left)
and Sigmoid (right) as activation function.

6. Conclusion. In this contribution, we provided a proof of concept and feasibility study for approxi-
mating the interface operator in domain decomposition with a feedforward neural network. These concepts
are applied to the time-harmonic Maxwell’s equations. We carefully described the numerical framework
from the algorithmic and implementation point of view. In the realization, we coupled deal.II (C++) for
solving the Maxwell’s equations with PyTorch for the neural network solution. Afterwards, we conducted
various numerical tests that included comparing our new approach with classical domain decomposition.
Then, we studied higher wave numbers in more detail. Therein, we detected difficulties, which we further
investigated, revealing that the training and testing of the neural network is highly sensitive to the specific
wave number. Finally, a comparison of two different neural network activation functions was undertaken.
As an outlook, we plan to increase the number of subdomains to study other wave numbers further and
apply the method to three-dimensional Maxwell’s equations.

14 Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15

Acknowledgment. This work is funded by the Deutsche Forschungsgemeinschaft (DFG) under Ger-
many’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

ORCID and License
Tobias Knoke https://orcid.org/0000-0003-2987-5110
Sebastian Kinnewig https://orcid.org/0000-0002-0923-7413
Sven Beuchler https://orcid.org/0000-0001-9411-8701
Ayhan Demircan https://orcid.org/0000-0002-0015-2077
Uwe Morgner https://orcid.org/0000-0001-5103-9632
Thomas Wick https://orcid.org/0000-0002-1102-6332

This work is licensed under the Creative Commons - Attribution 4.0 International (CC BY 4.0)

References
[1] Shi L, Babushkin I, Husakou A, Melchert O, Frank B, Yi J, et al. Femtosecond field-driven on-chip unidirectional electronic

currents in nonadiabatic tunneling regime. Laser & Photonics Reviews. 2021;(15).
[2] Melchert O, Kinnewig S, Dencker F, Perevoznik D, Willms S, Babushkin I, et al. Soliton compression and supercontinuum

spectra in nonlinear diamond photonics. 2022, arXiv preprint arXiv:221100492. Available from: arXiv:2211.00492.
[3] Monk P. Finite element methods for Maxwell’s equations. Oxford Science Publications; 2003.
[4] Demkowicz L. Computing with hp-adaptive finite elements. Volume 1 One and Two Dimensional Elliptic and Maxwell Prob-

lems. Chapman and Hall/CRC; 2006.
[5] Langer U, Pauly D, Repin S, editors. Maxwell’s Equations: Analysis and Numerics. De Gruyter; 2019. Available from:

https://www.degruyter.com/document/doi/10.1515/9783110543612/html.
[6] Rodriguez AA, Bertolazzi E, Valli A. In: Langer U, Pauly D, Repin S, editors. 1. The curl–div system: theory and finite

element approximation. Berlin, Boston: De Gruyter; 2019. p. 1-44. Available from: https://doi.org/10.1515/
9783110543612-001 [cited 2023-01-18].

[7] Nédélec JC. Mixed finite elements in R3. Numerische Mathematik. 1980 Sep;35(3):315-41. Available from: https:
//doi.org/10.1007/BF01396415.

[8] Nédélec JC. A new family of mixed finite elements in R3. Numerische Mathematik. 1986 Jan;50(1):57-81. Available from:
https://doi.org/10.1007/BF01389668.

[9] Kinnewig S, Wick T, Beuchler S. Resolving the sign conflict problem for hanging nodes on hp-hexahedral Nédélec elements;
2023. In preparation.

[10] Carstensen C, Demkowicz L, Gopalakrishnan J. Breaking spaces and forms for the DPG method and applications including
Maxwell equations. Computers & Mathematics with Applications. 2016;72(3):494-522. Available from: https://
www.sciencedirect.com/science/article/pii/S0898122116302620.

[11] Nicaise S, Tomezyk J. In: Langer U, Pauly D, Repin S, editors. 9. The time-harmonic Maxwell equations with impedance
boundary conditions in polyhedral domains. Berlin, Boston: De Gruyter; 2019. p. 285-340. Available from: https:
//doi.org/10.1515/9783110543612-009 [cited 2023-01-18].

[12] Hiptmair R. Multigrid method for Maxwell’s equations. SIAM Journal on Numerical Analysis. 1998;36(1):204-25.
[13] Henneking S, Demkowicz L. A numerical study of the pollution error and DPG adaptivity for long waveguide simulations.

Computers & Mathematics with Applications. 2021;95:85-100.
[14] Faustmann M, Melenk JM, Parvizi M. H-matrix approximability of inverses of FEM matrices for the time-harmonic Maxwell

equations. Advances in Computational Mathematics. 2022;48(5).
[15] Dolean V, Gander Mj, Gerardo-Giorda L. Optimized Schwarz Methods for Maxwell’s Equations. SIAM Journal on Sci-

entific Computing. 2009;31(3):2193-213. Available from: https://epubs.siam.org/doi/abs/10.1137/
080728536.

[16] Schöberl J. A Posteriori Error Estimates for Maxwell Equations. Mathematics of Computation. 2008;77(262):633-49. Available
from: https://www.jstor.org/stable/40234527.

[17] Bürg M. A residual-based a posteriori error estimator for the hp-finite element method for Maxwell’s equations. Applied
Numerical Mathematics. 2012;62:922–940.

[18] Beuchler S, Kinnewig S, Wick T. In: Brenner SC, Chung ETS, Klawonn A, Kwok F, Xu J, Zou J, editors. Parallel domain
decomposition solvers for the time harmonic Maxwell equations. vol. 145 of Lecture Notes in Computational Science and
Engineering. Springer; 2023. p. 615-22.

[19] Toselli A, Widlund O. Domain decomposition methods - algorithms and theory. Volume 34 of Springer Series in Computational
Mathematics. Berlin, Heidelberg: Springer; 2005.

[20] El Bouajaji M, Thierry B, Antoine X, Geuzaine C. A quasi-optimal domain decomposition algorithm for the time-
harmonic Maxwell’s equations. Journal of Computational Physics. 2015;294:28-57. Available from: https://www.
sciencedirect.com/science/article/pii/S0021999115001965.

[21] Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, et al. The deal.II finite element library: Design, features,
and insights. Computers & Mathematics with Applications. 2020. Available from: http://www.sciencedirect.
com/science/article/pii/S0898122120300894.

[22] Arndt D, Bangerth W, Feder M, Fehling M, Gassmöller R, Heister T, et al. The deal.II library, Version 9.4. Journal of
Numerical Mathematics. 2022;30(3):231-46. Available from: https://dealii.org/deal94-preprint.pdf.

[23] Bishop CM. Pattern recognition and machine learning. Springer; 2006.
[24] Higham CF, Higham DJ. Deep Learning: An introduction for applied mathematicians. SIAM review. 2019;61(4):860-91.
[25] Kinnewig S, Kolditz L, Roth J, Wick T. Numerical methods for algorithmic systems and neural networks. Hannover : Insti-

tutionelles Repositorium der Leibniz Universität Hannover, Lecture Notes. Institut für Angewandte Mathematik, Leibniz
Universität Hannover; 2022.

[26] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An imperative style,
high-performance deep learning library. In: Advances in Neural Information Processing Systems 32.

https://orcid.org/0000-0003-2987-5110
https://orcid.org/0000-0002-0923-7413
https://orcid.org/0000-0001-9411-8701
https://orcid.org/0000-0002-0015-2077
https://orcid.org/0000-0001-5103-9632
https://orcid.org/0000-0002-1102-6332
https://creativecommons.org/licenses/by/4.0/
arXiv:2211.00492
https://www.degruyter.com/document/doi/10.1515/9783110543612/html
https://doi.org/10.1515/9783110543612-001
https://doi.org/10.1515/9783110543612-001
https://doi.org/10.1007/BF01396415
https://doi.org/10.1007/BF01396415
https://doi.org/10.1007/BF01389668
https://www.sciencedirect.com/science/article/pii/S0898122116302620
https://www.sciencedirect.com/science/article/pii/S0898122116302620
https://doi.org/10.1515/9783110543612-009
https://doi.org/10.1515/9783110543612-009
https://epubs.siam.org/doi/abs/10.1137/080728536
https://epubs.siam.org/doi/abs/10.1137/080728536
https://www.jstor.org/stable/40234527
https://www.sciencedirect.com/science/article/pii/S0021999115001965
https://www.sciencedirect.com/science/article/pii/S0021999115001965
http://www.sciencedirect.com/science/article/pii/S0898122120300894
http://www.sciencedirect.com/science/article/pii/S0898122120300894
https://dealii.org/deal94-preprint.pdf

Knoke T. et al.- Selecciones Matemáticas. 2023; Vol. 10(1): 1-15 15

Curran Associates, Inc.; 2019. p. 8024-35. Available from: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[27] Knoke T, Kinnewig S, Wick T, Beuchler S. Neural network interface condition approximation in a domain decomposition
method applied to Maxwell’s equations; 2022. In review.

[28] Girault V, Raviart PA. Finite element methods for Navier-Stokes equations. vol. 5 of Springer Series in Computational Math-
ematics. Springer-Verlag, Berlin; 1986. Theory and algorithms. Available from: https://doi.org/10.1007/
978-3-642-61623-5.

[29] Zaglmayr S. High order finite element methods for electromagnetic field computation. Johannes Kepler University Linz; 2006.
[30] Copony S. Dynamisches Verhalten in neuronalen Netzen. Universität Hamburg; 2007. Available from:

https://www.math.uni-hamburg.de/home/gunesch/Vorlesung/SoSe2007/Sem_DS_ODE/
Vortrag/Copony_Vortrag.pdf.

[31] Kriesel D. A Brief Introduction to Neural Networks. http://www.dkriesel.com/en/science/neural networks; 2005.
[32] Ben-David S, Shalev-Shwartz S. Understanding machine learning : from theory to algorithms. Cambridge: Cambridge Uni-

versity Press; 2014.
[33] Nielson A. Neural networks and Deep Learning. Determination Press; 2015.
[34] Knoke T, Wick T. Solving differential equations via artificial neural networks: Findings and failures in a model problem. Ex-

amples and Counterexamples. 2021;1:100035. Available from: https://www.sciencedirect.com/science/
article/pii/S2666657X21000197.

[35] Ellacott SW. Aspects of the numerical analysis of neural networks. Acta Numerica. 1994;3:145–202.
[36] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Bengio Y, LeCun Y, editors. 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings;. Available
from: http://arxiv.org/abs/1412.6980.

[37] Ernst OG, Gander MJ. In: Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods. Lecture Notes in
Computational Science and Engineering. Springer; 2012. p. 325-63. Available from: https://doi.org/10.1007/
978-3-642-22061-6_10.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-642-61623-5
https://doi.org/10.1007/978-3-642-61623-5
https://www.math.uni-hamburg.de/home/gunesch/Vorlesung/SoSe2007/Sem_DS_ODE/Vortrag/Copony_Vortrag.pdf
https://www.math.uni-hamburg.de/home/gunesch/Vorlesung/SoSe2007/Sem_DS_ODE/Vortrag/Copony_Vortrag.pdf
https://www.sciencedirect.com/science/article/pii/S2666657X21000197
https://www.sciencedirect.com/science/article/pii/S2666657X21000197
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-22061-6_10
https://doi.org/10.1007/978-3-642-22061-6_10

