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Abstract
A basic mathematical model in epidemiology is the SIR (Susceptible–Infected–Removed) model, which
is commonly used to characterize and study the dynamics of the spread of some infectious diseases. In
humans, the time scale of a disease can be short and not necessarily fatal, but in some animals (for example,
insects) this same short time scale can make the disease fatal if we take into account their life expectancy.
In this work, we will see how a positive feedback effect (decrease of the susceptible population at small
densities) in a SIR model can cause a qualitative characterization of the dynamics defined by the original
SIR model. Finally, we will also show with numerical simulations how a delay in the feedback effect causes
very interesting qualitative changes of the system with epidemiological significance.

Keywords . Ordinary differential equation, feedback effect, Stability, Simulation.

Resumen
Un modelo matemático básico en epidemiologı́a es el modelo SIR (Susceptible-Infectado-Removido), que
se utiliza habitualmente para caracterizar y estudiar la dinámica de propagación de algunas enfermedades
infecciosas. En los seres humanos, la escala temporal de una enfermedad puede ser corta y no necesa-
riamente mortal, pero en algunos animales (por ejemplo, los insectos) esta misma escala temporal corta
puede hacer que la enfermedad sea mortal si tenemos en cuenta su esperanza de vida. En este trabajo
veremos cómo un efecto de retroalimentación positiva (disminución de la población susceptible a pequeñas
densidades) en un modelo SIR puede provocar una caracterización cualitativa de la dinámica definida por
el modelo SIR original. Por último, también mostraremos con simulaciones numéricas cómo un retraso en
el efecto de retroalimentación provoca cambios cualitativos muy interesantes del sistema con trascendencia
epidemiológica.

Palabras clave. Ecuación diferencial ordinaria, efecto de retroalimentación, estabilidad, simulación.

1. Introduction. The construction of mathematical models is one of the tools used today for the study
of problems in a wide variety of areas of knowledge; their primary objectives are to describe, explain and
predict phenomena and processes in these areas. However, their application is often limited by the lack of
knowledge and information about the basic principles of mathematical modeling in these areas.

When we have an epidemiological system under study, we must ask ourselves in which context we
must build it and under what conditions: temporal dynamics, spatial or other structures.

As for the parts, we must take into account the population variables and their parameters with which we
must count, not in their totality (otherwise it would cease to be a model), but the most relevant ones. Finally,
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those that define the dynamics will be the interactions between the variables and the epidemiological effects
they influence.

The mathematical modeling of epidemics becomes more complex depending on how more factors that
characterize each disease are considered. However, there are external factors that influence its incidence or
reproduction, and they are generated, for example, by prejudices about vaccination campaigns with prior
information (negative feedback), as in the case of the negative concept in the population regarding the
vaccine against the human papillomavirus (HPV) or the SARS-CoV-2 vaccine [1], [2], sometimes caused
by misinformation. Feedback effects in epidemiological systems are classified into two types: Negative
feedback effect and Positive feedback effect. Positive feedback is a type of regulation in biological systems
in which the end product of a process in turn increases the stimulus of that same process. Such phenomena
affect small populations by reducing the average individual fitness and, hence, the positive feedback effect
is an important phenomenon to include in epidemic models, where epidemics tend to decrease population
densities [3], [4], [5], [2], [6], [7].

There are some publications that analyze how feedback affects the diseases [6], [8], analyzed SIR-type
models with negative feedback effects , and [3], [7] analyze Allee effect in populations in epidemiological
systems. Both analyze their models with ordinary differential equations with a linear incidence rate with
respect to the positive feedback effect. Delayed SIR models have been studied without feedback effects [9],
[10].

In this work, first we study a modified SIR model including a positive feedback effect and then the same
model but taking in account a delay in the reproduction growth. In section 2, we use a type of feedback
effect that gives rise to an SIR epidemic model considering Allee effect (positive feedback) in the growth
rate. In section 3, we analyze the population dynamics of the modified SIR model when the time delay
in the positive feedback effect is considered. Finally, in section 4, computer simulations confirm stability
results obtained in sections 2 and 3, and a sensitivity analysis of the threshold parameters is presented.

2. Modified SIR Model with a positive feedback effect. In this section, we modify the classical
SIR model with a feedback effect in the reproduction rate and detail a discussion on the basic properties,
existence of steady states and local stability, moreover.

Positive feedback effects (Allee type) into population growth rates are defined by:
Logistic Positive Feedback Effect

r(x) = x(x− 1).

Strong Positive Feedback Effect

r(x) = x(x− 1)(x− a), o < a < 1.

Weak Positive Feedback Effect

r(x) = x(x− 1)(x+ b), b > 0.

Figure 2.1: Strong Positive Feedback effect.

For the construction of this model, we consider three subpopulations of the total population, suceptible
individuals S(t), infected individuals I(t) and removed individuals R(t). The parameters are defined in the
table (2.1) Let’s also consider some assumptions:

• incidence rate is linear
• there is no disease related mortality
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Parameters Meaning

r birth rate per capita

K carrying capacity

M minimum viable population size (positive feedback threshold)

β incidence rate

α removing rate

Table 2.1: System Parameter Meanings.

• the infected I is removed by recovery or death at rate α
• the equation for S considers a strong positive feedback effect (Fig. 2.1), where we distinguished

two different thresholds in the susceptible population: the per capita susceptible population growth
is negative below M and when 0 < M < S < K, the per capita growth rate is positive.

The transitions between these three subpopulations occur as follows in the flow diagram (2.2), with all these
considerations.

Figure 2.2: Compartamental flow diagram, where the population growth rate is φ(S) =

r

(
1− S (t)

K

)
(S −M) and the incidence rate is β(S, I) = βI .

The modified SIR model with positive feedback effect is given by the system (2.1)

dS

dT
=

(
r

(
1− S

K

)
(S −M) − βI

)
S,

dI

dT
= βIS − αI,

dR

dT
= αI.

(2.1)

where 0 < M < K and initial conditions S (0) ≥ 0, I (0) ≥ 0, and R (0) ≥ 0.

2.1. System Reduction. From the above system (2.1) we can infer that S and I are free from the
effect of R, in consequence we reduce the model to

dS

dT
=

(
r

(
1− S

K

)
(S −M) − βI

)
S,

dI

dT
= βIS − αI.

(2.2)

with initial conditions S (0) ≥ 0, and I (0) ≥ 0. Now, to reduce the number of parameters and to determine
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which parameter combinations control the behavior of the system, we choose the following transformation

(S, I, T ) =

(
Ks,

rK

β
i,

1

rK
t

)
. (2.3)

and change of parameters

(m, b, a) =

(
M

K
,
β

r
,
α

βK

)
, (2.4)

where m < 1. Consequently, the system (2.1) is reduced to the new system
ds

dt
= ((1− s) (s−m) − i) s,

di

dt
= b (s− a) i,

(2.5)

with the initial conditions s (0) ≥ 0, and i (0) ≥ 0.
The change of coordinates (2.3) and reparametrization (2.4) define a biunique orientation-preserving dif-
feomorphism between trajectories of system (2.2) and trajectories of system (2.5), it means both systems
are topological equivalent (solutions have same qualitative structure).

2.2. Stability Analysis.

Steady states. The steady states of the system 2.5 are given by the following Lemma.
Lemma 2.1. The reduced model has a minimum of three equilibrium points and a maximum of four.
a) Without conditions on the parameters, there exists three equilibrium points

– P1 (0, 0), total extinction equilibrium point.
– P2 (1, 0), disease free equilibrium point (eradication boundary equilibrium).
– P3 (m, 0), disease free equilibrium point (saturation boundary equilibrium)

b) If m < a < 1 in equation (2.2), then it has one singularity in the interior of the first quadrant
given by

– P4 (a, (1− a)(a−m)), endemic equilibrium point.

The system (2.5) evaluated at the bifurcation parameter a = 1 have a simple zero eigenvalue, and other
eigenvalue is real and negative λ2 = m− 1 < 0.

Basic reproduction number. The basic reproduction number is defined by

R0 =
b

ba
=

1

a
,

it means, the expected number of secondary cases produced in a completely susceptible population, by a
typical infective individual.

Local stability. If R0 > 1, the infectives grows and if R0 ≤ 1 the infectives decreases to zero.
Theorem 2.1. For the system (2.5), we have
a) if R0 > 1, P2(1, 0) is locally unstable,
b) if R0 < 1, P2(1, 0) is locally stable,
c) if R0 = 1, P2(1, 0) is linearly neutrally stable.

Proof: The characteristic equation of the system (2.5) evaluated at P1 (1, 0) is

(λ− b(1− a))(λ− (m− 1)) = 0.

It has one negative real root λ1 = m− 1 < 0 and the other root is λ2 = b(1− a). In consequence,
a) if R0 > 1, λ2 = b(1− a) > 0, then P2(1, 0) is locally unstable,
b) if R0 < 1, λ2 = b(1− a) < 0, then P2(1, 0) is locally stable,
c) if R0 = 1, the system (2.5), has a simple zero eigenvalue, then P2(1, 0) is linearly neutrally stable.

Hence, to investigate the stability of P2, have to be study with the application of the bifurcation
theory (center manifold theory).

□

Theorem 2.2. For the system (2.5), the disease free steady state P3(m, 0) is unstable.
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a) If R0 <
1

m
, P3 is a saddle point.

b) If R0 >
1

m
, P3 is a source node.

Proof: The characteristic equation of the system (2.5) evaluated at P3 (m, 0) is as follows:

λ2 − [m(1−m) + b(m− a)]λ+ bm(1−m)(m− a) = 0

or

(λ− (1−m)m)(λ− b(m− a)) = 0

As 0 < m < 1, we have λ1 = (1−m)m > 0, in consequence, P3(m, 0) is unstable. Moreover, the second
eigenvalue is λ2 = b(m− a), then

a) If R0 <
1

m
⇒ m < a, the eigenvalue λ2 = b(m− a) < 0, implies P3 is a saddle point.

b) If R0 >
1

m
⇒ m > a, the eigenvalue λ2 = b(m− a) > 0, implies P3 is a source node.

□

Theorem 2.3. For the system (2.5), the endemic steady state P4(a, (1− a)(a−m)) is
a) locally asymptotically stable, if (2a−m− 1) > 0,
b) unstable if (2a−m− 1) < 0.

Proof: The characteristic equation of the system (2.5) evaluated at P4 = (a, (1− a)(a−m)) is as
follows:

P(λ) = λ2 + a(2a−m− 1)λ+ ab(1− a)(a−m) = 0.

As (1− a)(a−m) > 0, using Routh-Hurwitz method
• if (2a − m − 1) > 0, P(λ) has both roots with negative real part, in consecuence P4 is locally

asymptotically stable and
• if (2a−m− 1) < 0, P(λ) has one root with positive real part, it means P4 is unstable.

□

3. Modified SIR Model with delay. The SIR model modified by the positive feedback effect and a
lag in the growth rate where τ represents the age of maximum reproductive capacity of an individual in the
population, is given by the following system of three-dimensional differential equations:

dS

dT
=

(
r

(
1− S (T − T )

K

)
(S −M) − βI

)
S,

dI

dT
= βIS − αI,

dR

dT
= αI,

(3.1)

where M < K and initial conditions: S (θ) = Φ (θ) ≥ 0, I (θ) = Ψ (θ), R (θ) = Υ (θ), θ ∈ [−T , 0],
Φ,Ψ,Υ ∈ C ([−T , 0] ,R+), S (0) > 0, I (0) > 0 and R (0) > 0. Here C denotes the Banach space of
continuous functions mapping the interval [−T , 0] into R+.
From the above system (3.1) we can infer that S and I are free from the effect of R.

dS

dT
=

(
r

(
1− S (T − T )

K

)
(S −M) − βI

)
S,

dI

dT
= βIS − αI,

(3.2)

with initial conditions: S (θ) = Φ (θ) ≥ 0, I (θ) = Ψ (θ), θ ∈ [−T , 0], Φ,Ψ ∈ C ([−T , 0] ,R+),
S (0) > 0, I (0) > 0 andR (0) > 0. HereC denotes the Banach space of continuous functions mapping the
interval [−T , 0] into R+. To reduce the number of parameters and determine which parameter combinations
control the behavior of the system, we will dimension the system. For this, we choose the following chamge
of variables and rescaling of time. Let be

(S, I, T, T ) =

(
Ks,

rK

β
i,

1

rK
t,

1

rK
τ

)
, (3.3)
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and the change of parameters (all positive)

(m, b, a) =

(
M

K
,
β

r
,
α

βK

)
, (3.4)

where m < 1.
The new system is 

ds

dt
= ((1− s (t− τ)) (s−m) − i) s

di

dt
= b (s− a) i

, (3.5)

with the initial conditions s (θ) = ϕ (θ) ≥ 0, i (θ) = ψ (θ), θ ∈ [−τ, 0], ϕ, ψ ∈ C ([−τ, 0]). Where C is
the Banach space of continuous functions maping the interval [−τ, 0] into R2

+.
The change of coordinates (3.3) and reparametrization (3.4) define a biunique orientation-preserving dif-
feomorphism between trajectories of system (3.2) and trajectories of system (3.5), it means both systems
are topological equivalent (solutions have same qualitative structure).

3.1. Stability Analysis. The stability of neutral delay-differential systems with a single delay via
Routh–Hurwitz criteria is investigated [11], [12], and [13]. The reduced delayed model has the same steady
states of the model without delay (2.5). it means, a minimum of three equilibrium points and a maximum
of four.
Define the matrices

J =

(1− sτ )(2s−m)− i −s

bi b(s− a)

 , JD =

−(s−m)s 0

0 0

 ,

with sτ = s(t− τ). The characteristic equation of the system (3.5) is

λ2 + pλ+ r + (sλ+ q)e−λτ = 0,

where

p = −Tr(J) = −(1− sτ )(2s−m)− i− b(s− a)

r = Det(J) = [(1− sτ )(2s−m)− i]b(s− a) + bis

s = −Tr(JD) = −s(s−m)

q = Det(J + JD)−Det(J)−Det(JD) = 0.

Theorem 3.1. The disease free steady state (eradication) P2(1, 0) of system (3.5) is
a) unstable if R0 > 1,
b) locally asymptotically stable (LAS) if R0 < 1, and
c) linearly neutrally stable if R0 = 1.

for time lag τ > 0.
Proof: The characteristic equation of the system (3.5) evaluated at P2 (1, 0) is as follows:

λ2 − b(1− a)λ+ [(1−m)λ− b(1− a)(1−m)]e−λτ = 0,

equivalent to

[λ− ba(R0 − 1)][λ+ (1−m)e−λτ ] = 0

a) If R0 > 1
The characteristic equation has one positive real root λ1 = ba(R0 − 1) > 0 , then the DFE
(eradication) P2(1, 0) is unstable.

b) If R0 < 1
The characteristic equation has one negative real root λ1 = ba(R0 − 1) < 0, and the other roots
can be obtained from

λ+ (1−m)e−λτ = 0
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Assume that Re(λ) ≥ 0 replacing λ = A+ iB, A,B ≥ 0 in the last equation, we get

A+ iB = (m− 1)[e−Aτ cos(Bτ) + i sin(Bτ)]

A = (m− 1)e−Aτ cos(Bτ) < m− 1 < 0,

a contradiction. Hence, if R0 < 1, the eigenvalues λ2, λ3 has negative real part. In consequence,
the DFE P2(1, 0) is locally asymptoticalle stable.

c) If R0 = 1, P2(1, 0) has a simple zero eigenvalue, then P2 is linearly neutrally stable. □
□

Theorem 3.2. The disease free steady state P3(m, 0) of system (3.5) is unstable.

• If R0 <
1

m
, P3 is a saddle point.

• If R0 >
1

m
, P3 is a source node.

Proof: The characteristic equation of the system (3.5) evaluated at P3 (m, 0) is as follows:

λ2 − [m(1−m) + b(m− a)]λ+ bm(1−m)(m− a) = 0

(λ− (1−m)m)(λ− b(m− a)) = 0

the eigenvalues are

λ1 = (1−m)m > 0, λ2 = b(m− a)

In consequence, P3 is a saddle point if R0 <
1

m
(⇒ λ2 < 0) andP3 is a source node if R0 >

1

m
(⇒ λ2 > 0).

. □
Define the basic replacement ratio

R1 =
a(m− 1)(2a−m− 1)

2b(a− 1)(m− a)

Theorem 3.3. For τ > 0, the endemic equilibrium point P4 (a, (1− a)(a−m)) of system (3.5) is
locally asymptotically stable if R1 > 1 and 2a−m− 1 > 0.

Proof: The characteristic equation of the system (3.5) evaluated at P4 (a, (1− a)(a−m)) is as fol-
lows:

λ2 − a(1− a)λ+ ab(1− a)(a−m) + [a(a−m)]λe−λτ = 0 (3.6)

If instability occurs for some value of R1, then the characteristic root of the equation (3.6) cross the imagi-
nary axis.
Assume the λ = ξi, ξ > 0 is a root of the characteristic equation, replacing, we get the equation

−ξ2 + a(a− 1)ξi+ ab(a− 1)(m− a) + a(a−m)(ξi)e−(ξi)τ = 0

−ξ2 + a(a− 1)ξi+ ab(a− 1)(m− a) + a(a−m)(ξi)[cos(ξτ)− i sin(ξτ)] = 0

separating real and imaginary parts, we get a(a−m)ξ sin(ξτ) = ξ2 − ab(a− 1)(m− a),

a(a−m)ξ cos(ξτ) = −a(a− 1)ξ.

squaring and adding both equations, we get

ξ4 + [−a2(m− a)2 − 2ab(a− 1)(m− a) + a2(a− 1)2]ξ2 + a2b2(a− 1)2(m− a)2 = 0.

If x = ξ2, the last equation becomes

x2 +Ax+B = 0,

where B = a2b2(a − 1)2(m − a)2 > 0 and with the conditions R1 > 1 and 2a −m − 1 > 0, we have
A = a2(m− 1)(2a−m− 1)− 2ab(a− 1)(m− a) > 0 .

Using the Routh Hurwitz criterion, the quadratic equation has two roots with negative real parts, if
A > 0 and B > 0, but this is a contradiction with λ = iξ.

Hence the endemic equilibrium P4 is locally aymptotically stable for τ > 0 if R1 ≤ 1. □
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4. Sensitivity Analysis.

(a) LHS/PRCC Sensitivity analysis of R0. (b) LHS/PRCC Sensitivity analysis of R1.

Figure 4.1: LHS/PRCC Sensitivity analysis of threshold parameters.

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) sensitivity analysis is
an efficient tool often employed in uncertainty analysis to explore the entire parameter space of a model
with a minimum number of computer simulations [14], [15]. It involves the combination of two statistical
techniques, Latin Hypercube Sampling (LHS), which was first introduced by [16] and further developed by
[17], and Partial Rank Correlation Coefficient.

We checked that R0 is highly sensitive and positively correlated to the infection rate β (PRCC index:
0.89971), implying that an increase in the input flux will have a greater effect on R1 and the severity of
an outbreak. The recovery rate α is also highly (PRCC index absolute value: 0.88390) and negatively
correlated with R1, implying that decreasing the average infection time (i.e. increasing the recovery rate)
will reduce both R1 and the spread of the outbreak (Fig, 2.2a)

The threshold number R1 is poorly sensitive and positively correlated to the parameter rate b (PRCC in-
dex: 0.02047), implying that an increase in the input flux will have a greater effect on R1 and the severity of
an outbreak. The parameters a and m are also poorly (PRCC index absolute value: 0.0.16487 and 0.07253
respectively) and negatively correlated with R1, implying that decreasing the a = 1/R0 (increasing of R0)
and m parameters will reduce R1 and the spread of the outbreak (Fig. 2.2b).

5. Simulations.

In order to corroborate the analytical results obtained in this work, we consider the most important
equilibrium point, the endemic equilibrium point. Here, we provide some numerical simulations.

First, from the results in sections 2 and 3, about the basic reproduction number R0 and the basic number
R1, determines that they are bifurcation parameters, keeping all other parameters and initial conditions
constant (Fig. 5.1). The R0 = 1 plane determines the stability region of P2 when cross to the instability.
The R1 = 1 plane determines the stability region of P4 when cross to the instability without consider the
aditional condition of the sign of the expression 2a−m− 1.

Second, suppose a non constant population, the rate a as a bifurcation parameter which determines
changes in nature of local stability of the positive equilibrium point (endemic). The other parameter values
are chosen in such a way that they show different scenarios. For the following simulations, the values are
b = 1.5, m = 0.2.
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(a) Sensitivity analysis of R0 dependent on pa-
rameters α and β.

(b) Sensitivity analysis of R1 dependent on pa-
rameters m and a.

Figure 5.1: Sensitivity analysis of threshold parameters dependent on two parameters.

We have the following results:
• For a = 0.7 (lower basic reproduction number R0 = 1.4285 > 1) and 2a−m− 1 = 0.2 > 0, the

simulations in Fig. 5.2a, 5.2b correspond to the stable dynamics of the positive equilibrium point
P4(0.7, 0.15).

• For a = 0.3 (higher basic reproduction number R0 = 3.327) and 2a − m − 1 < 0, the sim-
ulations in Fig. 5.2c, 5.2d correspond to an unstable dynamics of the positive equilibrium point
P4(0.3, 0.07).

(a) Stable Endemic point with a = 0.7 (b) Stable endemic point with a = 0.7

(c) Unstable endemic point with
a = 0.3

(d) Unstable Endemic point with
a = 0.3

Figure 5.2: Non delayed SIR model with Positive Feedback effect. For different values of parameter a and
constant parameter values: b = 1.5 and m = 0.2, τ = 0 and initial conditions s(0) = 0.7, i(0) = 0.2.
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All the results are according to the non delayed SIR model with positive feedback effect (Allee effect
type) results in Theorem 2.3. We can check that the susceptible and infected population oscillate over time
and finally tends to the steady state (endemic) P4(0.3, 0.07) when the parameter a = 0.7 and tends to the
extinction steady state P1(0, 0) when a = 0.3. (Fig. 5.2).

Third, in (Fig. 5.3), according to the delayed SIR model with positive feedback effect (Allee effect
type): we check that the solution trajectory tends towards a positive state when a = 0.7 and towards the
total extinction state when a = 0.3 with and additional condition.

• For a = 0.7 (lower basic reproduction number R0 = 1.4285 > 1), it is satisfied R1 = −2.488 <
1 and 2a−m− 1 = 0, 2 > 0, in consequence the simulations in Fig. 5.2a, 5.2b correspond to the
stable dynamics of the positive steady state P4(0.7, 0.15).

• For a = 0.3 (higher basic reproduction number R0 = 3.333 > 1), it is satisfied R1 = 0.685 < 1
but 2a−m− 1 = −0.6 < 0, in consequence, the simulations in Fig. 5.2c, 5.2d correspond to an
unstable dynamics of the positive steady state P4(0.3, 0.07) and tends to the total extinction state
P1(0, 0).

We can check that the susceptible and infected population oscillate over time and tends to a positive
equilibrium P4(0.7, 0.15), when the parameter a = 0.7, 2a−m− 1 > 0 and R1 < 1, and tends to the to-
tal extinction steady state P0(0, 0) for 2a−m−1 > 0 and R1 > 1 as theoretically predicted in Theorem 3.3.

(a) Stable Endemic point with a = 0.7 (b) Stable endemic point with a = 0.7

(c) Unstable endemic point with
a = 0.3

(d) Unstable Endemic point with
a = 0.3

Figure 5.3: Delayed SIR model with Positive Feedback effect. For different values of parameter a and
constant parameter values: b = 1.5 and m = 0.2, τ = 1.3 and initial conditions s(0) = 0.7, i(0) = 0.2.

Finally, for a = 0.5995 (medium basic reproduction number R0 = 1.668 > 1), the simulation in
Fig. 5.4 show that solution trajectory tends to have a periodic dynamics around the positive steady state
P4(0.5995, 0.1599).

Both models exhibit periodically behavior but in the delayed model SIR, the periodic dynamics is
observed to accelerate.
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(a) Without delay τ = 0 (b) Without delay τ = 0

(c) With delay τ = 1.3 (d) With delay τ = 1.3

Figure 5.4: The solution trajectory exhibits periodic behavior as theoretically predicted for τ = 0 and
τ > 0. Constant parameter values: a = 0.5995, b = 1.5 and m = 0.2 and initial conditions s(0) = 0.7,
i(0) = 0.2.

6. Conclusions. In this work, a system of nonlinear delay differential equations is utilized to investi-
gate the dynamic behaviors of a SIR epidemic model with positive feedback effect with a delay. The system
is analyzed by using bifurcation theory for local stability of the steady states. The conditions on the system
parameters that ensure the existence of a periodic behavior are obtained. Our analysis find that the positive
steady state of our system is asymptotically stable when the parameter a is part of a threshold parameter
which is less than a critical value. By simulation, we check the existence of solutions with periodic be-
havior due to the threshold parameter and the positive feedback effect. It would be good to analyze the
continuation of this existence for larger values of the delay parameter.

By analysis, we proved what happen with the stability of the SIR epidemic model with positive feed-
back effect without delay (previously studied) and then we appreciate numerically the switch going from
stability to instability of the disease-free equilibrium of the system with delay.
The feedback (Density-dependent) effects which may either be positive or negative can play a key role in
the population dynamics of species by modifying their population per capita growth rates.
The time delay on the reproduction of susceptible population affected by a positive feedback plays a signif-
icant role in controlling the infected population. We can see that when the threshold parameter R1 is less
than the critical value, the reproduction of susceptibles is fast enough to control the infected population to
some certain levels. This work let us to check the implications of the delayed positive feedback effect in a
SIR model.
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