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Abstract
For entire numbers r and s satisfying 0 ≤ r ≤ s ≤ n − 2, we showed that the index of (r, s)-stability of a
(r, s)-linear Weingarten Clifford torus immersed into the (n + 1)-dimensional unit Euclidean sphere, that
has a linear combination of their higher order mean curvatures Hr+1 and Hs+1 being null, is exactly equal
to n+ 3 provided that a geometric condition involving Hr+2 and Hs+2 is satisfied.

Keywords . Unit Euclidean sphere, higher order mean curvatures, (r, s)-linear Weingarten Clifford torus, Jacobi
operator, index of (r, s)-stability.

1. Introduction and statement of the main results. As is well known in the literature, the notion of
index of stability for minimal compact hypersurfaces Σn ↬ Sn+1 immersed into the unit Euclidean sphere
Sn+1 has its origin in the variational problem of minimizing the area functional

A =

∫
Σn

dv

of a given compact oriented hypersurface Σn ↬ Sn+1 for all possible variations. We will denote this
index by Ind(Σn). In 1968, in a famous article due to J. Simons [22], it was shown that the index of
stability Ind(Σn) of a compact oriented minimal hypersurface Σn ↬ Sn+1 is such that Ind(Σn) ≥ 1, with
equality only for fully geodesic spheres. It is known that the index of stability Ind(T k,n) of a minimal
Clifford torus T k,n = Sk(k/n) × Sn−k(

√
(n− k)/n) ↬ Sn+1 immersed into Euclidean sphere Sn+1

is Ind(T k,n) = n + 3 (see, for instance, [19]) and they stand out for admitting the lower index. In
2009 A. Barros and P. Sousa proved in [8, Theorem 1] that non-totally geodesic compact oriented minimal
hypersurfaces Σn ↬ Sn+1 have index of stability Ind(Σn) ≥ n+3 with equality occurring at only Clifford
torus T k,n = Sk(k/n) × Sn−k(

√
(n− k)/n) ↬ Sn+1 provided their square of the norms of the second

fundamental forms |A|2 are bounded from below by n.
An extension of the variational problem described above is that of minimizing the r-area functional

Ar =

∫
Σn

Frdv

of a compact oriented hypersurface Σn ↬ Sn+1 for all possible variations, where Fr is a suitable function
that depends on the higher order mean curvatures Hr of Σn ↬ Sn+1, r ∈ {0, 1, . . . , n}. The concept of
higher order mean curvatures of a oriented hypersurface Σn ↬ Sn+1, studied initially by R. Reilly [20] in
1973, are such that H0 = 1, H1 is just the mean curvature H of Σn ↬ Sn+1 and H2 defines a geometric
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quantity which is related to the scalar curvature of Σn ↬ Sn+1. We have that r-minimal compact hypersur-
faces Σn ↬ Sn+1, namely those with Hr+1 = 0, are characterized as critical points of Ar and, therefore,
we naturally have the notion index of r-stability for r-minimal compact oriented hypersurfaces Σn ↬ Sn+1

immersed into Sn+1, which we will denote here by Ind r(Σ
n). In this setting, in 2010 A. Barros and

P. Sousa proved in [9, Theorem 2] that the index of r-stability Ind r(Tn1,n2
ρ1, ρ2

) of an r-minimal Clifford
torus Tn1,n2

ρ1, ρ2
= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 is exactly Ind r(Tn1,n2

ρ1, ρ2
) = n + 3 whenever its higher order

mean curvature Hr+2 is strictly negative. Here, n1, n2 ∈ N and ρ1, ρ2 ∈ (0,+∞) are chosen such that
n1 + n2 = n and ρ21 + ρ22 = 1. Furthermore, taking into account that the condition |A|2 ≥ n (equivalently,
−n(n − 1)H2 ≥ n) for the minimal case admits the natural extension Hr > 0 and −br+1Hr+2 ≥ brHr

for the r-minimal case, where bj = (n− j)
(
n
j

)
for all j ∈ {0, . . . , n− 2}, A. Barros and P. Sousa showed

in [9, Theorem 3] that compact oriented r-minimal hypersurfaces Σn ↬ Sn+1 have index of r-stability
Ind r(Σ

n) ≥ n + 3 with equality occurring at only Clifford torus Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 provided
their higher order mean curvatures Hr and Hr+2 satisfy the additional condition −br+1Hr+2 ≥ brHr > 0,
thus extending [8, Theorem 1].

On the other hand, a natural extension of the hypersurfaces Σn ↬ Sn+1 with constant mean curvature
H or constant second mean curvature H2 are those ones whose curvatures H and H2 obey a linear relation
of the type a0H + a1H2 = constant, for some real constants a0 and a1. These hypersurfaces are called in
the literature as linear Weingarten hypersurfaces (see, for instance, [3, 4, 5, 11, 16, 17, 18]). A class that
extends such hypersurfaces is given by the so-called generalized linear Weingarten hypersurfaces, namely,
those hypersurfaces whose higher order mean curvatures Hr+1 and Hs+1 (for entire numbers r and s such
that 0 ≤ r ≤ s ≤ n − 1) satisfy the linear condition arHr+1 + · · · + asHs+1 = constant, for some
real numbers ar, . . . , as. For simplicity, we have named these hypersurfaces as (r, s)-linear Weingarten.
It is not difficult to observe that geodesic spheres and Clifford torus of Sn+1 are examples of (r, s)-linear
Weingarten hypersurfaces in Sn+1. We also observe that (0, 1)-linear Weingarten hypersurfaces are simply
linear Weingarten hypersurfaces and (r, r)-linear Weingarten hypersurfaces with r ∈ {0 . . . , n−1} are just
the hypersurfaces having constant (r+1)-th mean curvature Hr+1. In recent years, several papers have been
published showing the interest in understanding the geometry of the (r, s)-linear Weingarten hypersurfaces
(see [1, 2, 13, 14, 15, 23]). For instance, we can highlight that the author jointly with H. de Lima and
A. de Sousa showed in [23, Section 3] that (r, s)-linear Weingarten compact hypersurfaces compact are
critical points of the variational problem of minimizing a suitable linear combination arAr + · · · + asAs

of the j-area functionals Aj of a given compact oriented hypersurface Σn ↬ Sn+1, j ∈ {r, . . . , s}, for
volume-preserving variations. Furthermore, they established that geodesic spheres of Sn+1 are the only
stable critical points of arAr + · · ·+ asAs for volume-preserving variations (cf. [23, Theorem 4.3]).

In this paper, motivated by the fact that Clifford tori are critical points that are not stable for the vari-
ational problem of minimizing the functional arAr + · · · + asAs for volume-preserving variations, we
establish a notion of index of (r, s)-stability Ind r,s(Tn1,n2

ρ1, ρ2
) for a (r, s)-linear Weingarten Clifford torus

Tn1,n2
ρ1, ρ2

= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 whose higher order mean curvatures Hr+1, . . . ,Hs+1 satisfying
the relation arbrHr+1 + · · ·+ asbsHs+1 = 0 (see Section 3), where ar, . . . , as are some nonnegative real
numbers (with at least one nonzero) and bj = (n− j)

(
n
j

)
for j ∈ {r, . . . , s}. All details about the meaning

of (r, s)-linear Weingarten Clifford tori, which we are formulating here, are given in Section 2. Hence,
arises a fundamental question for such type of hypersurfaces: what will be the value of Ind r,s(Tn1,n2

ρ1, ρ2
)?

An answer to our question is given in the following result.
Theorem 1.1. Let r and s be entire numbers satisfying the inequalities 0 ≤ r ≤ s ≤ n − 2, and let

Tn1,n2
ρ1, ρ2

= Sn1(ρ1)×Sn2(ρ2) ↬ Sn+1 be a (r, s)-linear Weingarten Clifford torus whose higher order mean
curvatures Hr+1, . . . ,Hs+1 satisfying the relation arbrHr+1+ · · ·+asbsHs+1 = 0, for some nonnegative
real numbers ar, . . . , as (with at least one nonzero), where n1, n2 ∈ N and ρ1, ρ2 ∈ (0,+∞) are such that
n1 + n2 = n and ρ21 + ρ22 = 1, respectively, and bj = (n− j)

(
n
j

)
for j ∈ {r, . . . , s}. If

s∑
j=r

(j + 1)ajbj+1Hj+2 < 0 (1.1)

on Tn1,n2
ρ1, ρ2

, then Ind r,s(Tn1,n2
ρ1, ρ2

) = n+ 3.
When r = s in Theorem 1.1, we observe that the condition (1.1) reduces to Hr+2 < 0, which is the

main constraint in [9, Theorem 2]. Thus, the statement of Theorem 1.1 is a kind of extension of the results
contained in [8, Theorem 1] and [9, Theorem 2].

For the case of linear Weingarten Clifford tori, we can establish the following result.
Theorem 1.2. Let a0 and a1 be nonnegative real numbers, with at least one of them being nonzero,

and let Tn1,n2
ρ1, ρ2

= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 be a linear Weingarten Clifford torus with mean and
normalized scalar curvatures H and R satisfying a0H + (n− 1)a1R = (n− 1)a1, where n1, n2 ∈ N and
ρ1, ρ2 ∈ (0,+∞) are such that n1 +n2 = n and ρ21 + ρ22 = 1, respectively. If the third mean curvature H3
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of Tn1,n2
ρ1, ρ2

↬ Sn+1 is such that a0R + (n− 2)a1H3 < a0 then the index of stability of Tn1,n2
ρ1, ρ2

↬ Sn+1 is
exactly equal to n+ 3.

The details of the proofs of Theorems 1.1 and 1.2 are recorded in Section 4. Finally, in Remark 4.1 we
register some final considerations about the next steps of this study.

2. (r, s)-linear Weingarten Clifford tori. Let

Sn+1(ρ) =
{
(x1, . . . , xn+2) ∈ Rn+2 : x2

1 + · · ·+ x2
n+2 = ρ2

}
be the (n + 1)-dimensional Euclidean sphere of radius ρ ∈ (0,+∞). As an abbreviation option, when
ρ = 1, we denote the unit Euclidean sphere simply by Sn+1. We denote by ⟨ , ⟩ the standard metric tensor
of Sn+1(ρ) (induced from Rn+2) and let ∇ the Levi-Civita connection of Sn+1(ρ) with respect to ⟨ , ⟩.
Throughout this work, C∞(Sn+1(ρ)) denotes the commutative ring of smooth real functions on Sn+1(ρ)
and X(Sn+1(ρ)) stands for the C∞(Sn+1(ρ))-module of vector fields of class C∞ on Sn+1(ρ).

In this setting, let Tn1,n2
ρ1, ρ2

= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 be a n-dimensional Clifford torus immersed
into Sn+1, with n1, n2 ∈ N satisfying n = n1 + n2 and ρ1, ρ2 ∈ (0,+∞) such that ρ21 + ρ22 = 1. We have
that the shape operator A : X

(
Tn1,n2
ρ1, ρ2

)
→ X

(
Tn1,n2
ρ1, ρ2

)
of Tn1,n2

ρ1, ρ2
↬ Sn+1 with respect to the Gauss map

N : Tn1,n2
ρ1, ρ2

→ Sn

(p, q) 7→ N(p, q)) =

(
−ρ2
ρ1

p ,
ρ1
ρ2

q

)
is given by

A =


ρ2
ρ1

In1
0

0 −ρ1
ρ2

In2

 , (2.1)

where In1
: X(Sn1(ρ1)) → X(Sn1(ρ1)) and In2

: X(Sn2(ρ2)) → X(Sn2(ρ2)) denote the identity operators.
Thus, the principal curvatures κ1, . . . , κn of Tn1,n2

ρ1, ρ2
↬ Sn+1 are such that

κ1 = · · · = κn1 =
ρ1
ρ2

, κn1+1 = · · · = κn = −ρ1
ρ2

. (2.2)

For j ∈ {0, . . . , n}, if σj ∈ R[X1, . . . , Xn] is the j-th elementary symmetric polynomial on the
indeterminates X1, . . . , Xn, from (2.2) and the fundamental counting principle we can get that the j-th
elementary symmetric function

Sj = σj(κ1, . . . , κn)

on the principal curvatures κ1, . . . , κn of Tn1,n2
ρ1, ρ2

↬ Sn+1 is given by

Sj =
∑

0≤k≤j

(−1)j−k

(
n1

k

)(
n2

j − k

)(
ρ2
ρ1

)k (
ρ1
ρ2

)j−k

, (2.3)

where S0 = 1 by definition. Furthermore, one defines the higher order mean curvature (or the j-th mean
curvature) Hj of Tn1,n2

ρ1, ρ2
↬ Sn+1 by(

n

j

)
Hj = Sj =

∑
0≤k≤j

(−1)j−k

(
n1

k

)(
n2

j − k

)(
ρ2
ρ1

)k (
ρ1
ρ2

)j−k

, (2.4)

j ∈ {0, . . . , n}.
In particular, H0 = 1, for j = 1 we have that

H1 =
1

n

n∑
i=1

κi =
n1 − nρ21
nρ1ρ2

= H

is the mean curvature of Tn1,n2
ρ1, ρ2

↬ Sn+1, which is the main extrinsic curvature of the hypersurface, and
for r = n,

Hn = Sn = κ1κ1 · · ·κn = (−1)n2

(
ρ2
ρ1

)n1
(
ρ1
ρ2

)n2



Lázaro Velasquez M.- Selecciones Matemáticas. 2023; Vol. 10(1): 102-113 105

is the Gauss-Kronecker curvature of Tn1,n2
ρ1, ρ2

↬ Sn+1. On the order hand, the second mean curvature

H2 =
2

n(n− 1)

∑
i<j

κiκj =
n2(n2 − 1)ρ41 − 2n1n2ρ

2
1ρ

2
2 + n1(n1 − 1)ρ42

n(n− 1)ρ21ρ
2
2

defines a geometric quantity which is related to the (intrinsic) normalized scalar curvature R of Tn1,n2
ρ1, ρ2

↬
Sn+1. More precisely, it follows from the Gauss equation of Tn1,n2

ρ1, ρ2
↬ Sn+1 that

R = 1 +H2. (2.5)

We also define, for j ∈ {0, . . . , n}, the j-th Newton transformation

Pj : X(Tn1,n2
ρ1, ρ2

) → X(Tn1,n2
ρ1, ρ2

)

associated to Tn1,n2
ρ1, ρ2

↬ Sn+1 by setting P0 = I (the identity operator) and, for j ∈ {1, . . . , n}, via the
recurrence relation

Pj = Sj I −APj−1.

A trivial induction shows that

Pj =
(
Sj I − Sj−1A+ Sj−2A

2 − · · ·+ jAj
)
, (2.6)

so that Cayley-Hamilton Theorem gives Pn = 0. Moreover, since Pj is a polynomial in A for every j, it
is also self-adjoint whose eigenvalues are ∂Sj+1

∂κi
(where the κi

′s are the eigenvalues of A) and commutes
with A. Therefore, all bases of of tangent space T(p,q)

(
Tn1,n2
ρ1, ρ2

)
diagonalizing A at (p, q) ∈ Tn1,n2

ρ1, ρ2
also

diagonalize all of the Pj at (p, q). Let {e1, . . . , en} be such a basis. Denoting by Ai the restriction of A to
⟨ei⟩⊥ ⊂ Tp.q

(
Tn1,n2
ρ1, ρ2

)
, it is easy to see that

det(tI −Ai) =

n−1∑
k=0

(−1)kSk(Ai)t
n−1−k,

where

Sk(Ai) =
∑

1≤j1<...<jm≤n

j1,...,jm ̸=i

λj1 · · ·λjm .

With the above notations, it is also immediate to check that Pj(ei) = Sj(Ai)ei, and hence (cf. [6, Lemma
2.1]) 

tr(Pj) = (n− j)Sj = bjHj ;

tr(A ◦ Pj) = (j + 1)Sj+1 = bjHj+1;

tr(A2 ◦ Pj) = S1Sj+1 − (j + 2)Sj+2 = n
bj

j + 1
HHj+1 − bj+1Hj+2,

(2.7)

where bj = (j + 1)
(

n
j+1

)
= (n− j)

(
n
j

)
.

Associated to each Newton Transformation Pj , j ∈ {0, . . . , n}, one has the second order linear differ-
ential operator

Lj : C∞(Tn1,n2
ρ1, ρ2

) → C∞(Tn1,n2
ρ1, ρ2

)

f 7→ Lj(f) = tr(Pj ◦Hess f).
(2.8)

We remark that L0 is the Laplacian operator ∆ and L1 is the Cheng-Yau’s square operator □ defined in [12].
According to [21], since Sn+1 has constant sectional curvatures, Pj is a divergence-free and; consequently,

Lj(f) = div(Pj(∇f)) (2.9)

for all f ∈ C∞(Σn).
From (2.4) we can observe that there is a considerable amount of Clifford tori Tn1,n2

ρ1, ρ2
↬ Sn+1 satisfy-

ing

a0H + a1R ∈ R, (2.10)



106 Lázaro Velasquez M.- Selecciones Matemáticas. 2023; Vol. 10(1): 102-113

for some real constants a0 and a1(at least one of them nonzero). On account of (2.5) we can understand the
linear condition (2.10) as

a0H + a1H2 = 0, (2.11)

for some real constants a0 and a1(at least one of them nonzero). The Clifford toi Tn1,n2
ρ1, ρ2

↬ Sn+1 that
satisfy (2.11) belongs to a class of hypersurfaces called the linear Weingarten, and there is a vast recent
literature treating the problem of characterizing these hypersurfaces (see, for instance, [3, 4, 5, 11, 16, 17,
18]). This class of Clifford tori contains those that are minimal (when a1 = 0 in (2.11)), as well as those
that are 1-minimal (when a0 = 0 in (2.11)). This will motivate us to establish the following notion.

Definition 2.1. Let r and s be any entire numbers satisfying the inequalities 0 ≤ r ≤ s ≤ n − 1 and
choose n1, n2 ∈ N and ρ1, ρ2 ∈ (0,+∞) such that n1 + n2 = n and ρ21 + ρ22 = 1, respectively. We say
that Tn1,n2

ρ1, ρ2
= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 is a (r, s)-linear Weingarten Clifford torus if there exist real

numbers ar, . . . , as (at least one of them nonzero) such that the following linear relation occurs on Tn1,n2
ρ1, ρ2

:

arHr+1 + · · ·+ asHs+1 = 0, (2.12)

where Hj is the j-th mean curvature of Tn1,n2
ρ1, ρ2

↬ Sn+1, with j ∈ {r, . . . , s}. In the case of (0, 1)-linear
Weingarten Clifford tori, we will simply call them linear Weingarten Clifford tori.

Observe that our Definition 2.1 is recorded in such a way that it contains those Clifford tori that are
r-minimal, namely, when r = s ∈ {0, . . . , n− 1} in (2.12), Tn1,n2

ρ1, ρ2
↬ Sn+1 must be r-minimal.

3. The notion of index of stability for a (r, s)-linear Weingarten Clifford torus. According to [7,
Lemma 2.2] and [23, Proposition 3.6], any real valued smooth function defined on a compact orientable
hypersurface Σn ↬ Sn+1 satisfying ∫

Σn

fdv = 0 (3.1)

induces a normal variation X : (−ϵ, ϵ) × Σn → Sn+1 with variational normal field ∂X
∂t |t=0 = fN , and

with first variation

δf Ãr,s =
d

dt
Ãr,s(t)

∣∣∣
t=0

of the functional

Ãr,s : (−ϵ, ϵ) → R

t 7→ Ãr,s(t) = arAr(t) + · · ·+ asAs(t)

given by

δf Ãr,s = −
∫
M

{ s∑
j=r

ajbjHj+1

}
fdv, (3.2)

where N is the Gauss map of Σn ↬ Sn+1, r and s are entire numbers satisfying the inequalities 0 ≤
r ≤ s ≤ n − 1, ar, . . . , as are nonnegative real numbers (with at least one nonzero), Aj is the j-th area
functional of Σn ↬ Sn+1, j ∈ {r, . . . , s}, Hj is the j-th mean curvature of Σn ↬ Sn+1 with respect to N
and bj = (j + 1)

(
n

j+1

)
, j ∈ {r, . . . , s}. Here, Aj is given by (cf. [6])

Aj : (−ϵ, ϵ) → R

t 7→ Aj(t) =

∫
Σn

Fj (S1(t), S2(t), . . . , Sj(t)) dvt,

where Sj(t) = Sj(t, ·) is the j-th elementary symmetric fuunction of Σn via the immersion

Xt : Σn → Sn+1

p 7→ Xt(p) = X(t, p)

and Fj is recursively defined by setting F0 = 1, F1 = S1(t) and, for 2 ≤ j ≤ n− 1,

Fj = Sj(t) +
(n− j + 1)

j − 1
Fj−2.
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As a consequence of (3.2), all compact orientable hypersurface Σn ↬ Sn+1 with higher order mean
curvatures Hr+1,. . .,Hs+1 verifying

arbrHr+1 + · · ·+ asbsHs+1 = c ∈ R

is a critical point of Ãr,s restricted to to smooth functions defined on Σn that obey the condition (3.1),
where bj = (n − j)

(
n
j

)
for j ∈ {r, . . . , s}. Geometrically, this request means that the variations under

consideration preserve a certain volume function (for more details, see [23, Section 3]). Here, we can
observe that geodesic spheres of Sn+1 and (r, s)-linear Weingarten Clifford tori Tn1,n2

ρ1, ρ2
= Sn1(ρ1) ×

Sn2(ρ2) ↬ Sn+1 (see Definition 2.1) satisfying the relation

arbrHr+1 + · · ·+ asbsHs+1 = 0

are critical points for this geometric variational problem.
For these critical points, [23, Proposition 3.9] asserts that the stability of the corresponding variational

problem of minimizing the functional Ãr,s for all variations that preserve the volume is given by the second
variation

δ 2
f Ãr,s =

d 2

dt2
Ãr,s(t)

∣∣∣
t=0

= −
∫
Σn

fJr,s(f)dv

of Ãr,s, where

Jr,s : C∞(Σn) → C∞(Σn)

f 7→ Jr,s(f) = Lr,s(f) +
s∑

j=r

(j + 1)aj{tr(Pj) + tr(A2 ◦ Pj)}f
(3.3)

is the Jacobi operator associated with Ãr,s. Here, Lr,s is the second order linear differential operator on
Σn given by

Lr,s(f) =

s∑
j=r

(j + 1)ajLj(f), (3.4)

A and Pj are the shape operator and the j-th Newton transformation of Σn ↬ Sn+1, respectively, and Lj

is the differential operator on Σn given in (2.8). On the notion of stability for the critical points described
above, let us remember that such a critical point is called stable when δ 2

f Ãr,s ≥ 0 for any function f that
satisfies (3.1) (cf. [23, Remark 3.8]). In this context, in [23, Theorem 4.3] it was established that geodesic
spheres of Sn+1 are the only stable critical points of the functional Ãr,s for volume-preserving variations.

Regarding the critical points associated with a geometric variational problem that are not stable, it is
interesting to develop a study to try to classify them through the so-called stability index. Thinking in this
way, here we focus our attention on studying the stability index associated with the variational problem
described at the beginning of this section of (r, s)-linear Weingarten Clifford tori Tn1,n2

ρ1, ρ2
= Sn1(ρ1) ×

Sn2(ρ2) immersed into Sn+1 satisfying

arbrHr+1 + · · ·+ asbsHs+1 = 0.

For that, from the compactness of Tn1,n2
ρ1, ρ2

↬ Sn+1, from (2.9) and Divergence Theorem we observe that
the Jacobi operator Jr,s satisfies∫

Tn1,n2
ρ1, ρ2

fJr,s(g) dv =

∫
Tn1,n2
ρ1, ρ2

gJr,s(f) dv

on Tn1,n2
ρ1, ρ2

, for any f, g ∈ C∞(Tn1,n2
ρ1, ρ2

).
Taking into account all that has been studied in this section, we are motivated to establish the following

notions.
Definition 3.1. Let r and s be any entire numbers satisfying the inequalities 0 ≤ r ≤ s ≤ n − 1 and

choose n1, n2 ∈ N and ρ1, ρ2 ∈ (0,+∞) such that n1 + n2 = n and ρ21 + ρ22 = 1, respectively. Let
Tn1,n2
ρ1, ρ2

= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 be a (r, s)-linear Weingarten Clifford torus whose higher order
mean curvatures Hr+1, . . . ,Hs+1 satisfying the relation

arbrHr+1 + · · ·+ asbsHs+1 = 0,

for some nonnegative real numbers ar, . . . , as (with at least one nonzero), where bj = (n − j)
(
n
j

)
for

j ∈ {r, . . . , s}.
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(a) The index form Qr,s : C∞(Tn1,n2
ρ1, ρ2

) → R of Tn1,n2
ρ1, ρ2

↬ Sn+1 is the quadratic form associated to
the symmetric bilinear form

Br,s : C∞(Tn1,n2
ρ1, ρ2

)× C∞(Tn1,n2
ρ1, ρ2

) → R

(f, g) 7→ Br,s(f, g) = −
∫
Tn1,n2
ρ1, ρ2

f Jr,s(g) dv,
(3.5)

where Jr,s is the Jacobi operator on Tn1,n2
ρ1, ρ2

defined in (3.3).
(b) The index of (r, s)-stability of Tn1,n2

ρ1, ρ2
↬ Sn+1, denoted by Ind r,s(Tn1,n2

ρ1, ρ2
), is given by the maxi-

mal dimension of the subspace { f ∈ C∞(Tn1,n2
ρ1, ρ2

) : Qr,s(f) < 0}.
(c) Regarding the index of (0, 1)-stability of a linear Weingarten Clifford torus Tn1,n2

ρ1, ρ2
↬ Sn+1 with

its first two mean curvatures H and H2 satisfying

na0H + n(n− 1)a1H2 = 0,

we simply call it the index of stability.
Remark 3.1. Let Tn1,n2

ρ1, ρ2
↬ Sn+1 be a (r, s)-linear Weingarten Clifford torus as described in Def-

inition 3.1. From (3.5), we have that Ind r,s(Tn1,n2
ρ1, ρ2

) is equivalent to the number of negative eigenvalues
(counted with multiplicity) of the Jacobi operator Jr,s of Tn1,n2

ρ1, ρ2
↬ Sn+1 given in (3.4). We remember

that, with our notations, a real number ϱ is an eigenvalue of Jr,s if and only if Jr,s(f) + ϱf = 0 for some
function f ∈ C∞(Σn). Throughout this work, a similar definition is assumed for the eigenvalues of any
differential operator.

4. Proof of main results. Let Tn1,n2
ρ1, ρ2

= Sn1(ρ1)× Sn2(ρ2) ↬ Sn+1 be a Clifford torus as described
at the beginning of Section 2. We have that its shape operator (2.1) admits the expression

A =

 λIn1
0

0 µIn2

 , (4.1)

where λ = ρ2/ρ1 and µ = −ρ1/ρ2. For j ∈ {0, . . . , n}, let Sj be the j-th elementary symmetric function
of Tn1,n2

ρ1, ρ2
↬ Sn+1 given in (2.3). From (2.6), we observe that the j-th Newton transformation Pj of

Tn1,n2
ρ1, ρ2

↬ Sn+1 can be written as Pj = φj(A), where

φj(t) =

j∑
k=0

(−1)kSj−kt
k = Sj − Sj−1t+ Sj−2t

2 − · · ·+ j tj , (4.2)

So, from (4.1),

Pj =

 φj(λ)In1
0

0 φj(µ)In2

 . (4.3)

This enable us to write the differential operator Lj : C
∞(Tn1,n2

ρ1, ρ2
) → C∞(Tn1,n2

ρ1, ρ2
) (see (2.8)) of Tn1,n2

ρ1, ρ2
↬

Sn+1 on the following way

Lj = φj(λ)∆Sn1 (ρ1) ⊕ φj(µ)∆Sn2 (ρ2). (4.4)

In particular, if we denote the eigenfunctions and the eigenvalues of Sn1(ρ1) and Sn2(ρ2) by {(fk, λk)}∞k=0

and {(gl, µl)}∞l=0, respectively, we have the eigenfunctions and eigenvalues of Lj are given by

Lj(fk,l) + (λkφj(λ) + µlφj(µ)) fk,l = 0 (4.5)

where fk,l = fk ⊗ gl is the product function on Sn1(ρ1)× Sn2(ρ2) defined by

fk,l(p, q) = fk ⊗ gl(p, q) = fk(p)gl(q) (4.6)

for all (p, q) ∈ Sn1(ρ1)× Sn2(ρ2).
Furthermore, (4.1) and (4.3) ensure that

A ◦ Pj =

 λφj(λ)In1
0

0 µφj(µ)In2


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and, consequently,

tr(A ◦ Pj) = λφj(λ)n1 + µφj(µ)n2. (4.7)

Before to establish the index of (r, s)-stability Ind r,s(Tn1,n2
ρ1, ρ2

) of a (r, s)-linear Weingarten Clifford
torus Tn1,n2

ρ1, ρ2
↬ Sn+1 we need the next result which gives an explicit expression for your Jacobi functional.

Proposition 4.1. Let r and s be any entire numbers satisfying the inequalities 0 ≤ r ≤ s ≤ n− 1 and
choose n1, n2 ∈ N and let Tn1,n2

ρ1, ρ2
= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 be a (r, s)-linear Weingarten Clifford

torus whose higher order mean curvatures Hr+1, . . . ,Hs+1 satisfying

arbrHr+1 + · · ·+ asbsHs+1 = 0, (4.8)

for some nonnegative real numbers ar, . . . , as (with at least one nonzero), where n1, n2 ∈ N and ρ1, ρ2 ∈
(0,+∞) are such that n1+n2 = n and ρ21+ ρ22 = 1, respectively, and bj = (n− j)

(
n
j

)
for j ∈ {r, . . . , s}.

(a) The Jacobi operator Jr,s : C
∞(Tn1,n2

ρ1, ρ2
) → C∞(Tn1,n2

ρ1, ρ2
) of Tn1,n2

ρ1, ρ2
↬ Sn+1 is given by

Jr,s =

s∑
j=r

(j + 1)aj
{
φj(λ)∆Sn1 (ρ1) ⊕ φj(µ)∆Sn2 (ρ2)

}
+ 2

s∑
j=r

(j + 1)ajbjHj ,

where λ = ρ2/ρ1, µ = −ρ1/ρ2 and φj is the real value function given in (4.2).
(b) The index of (r, s)-stability Ind r,s(Tn1,n2

ρ1, ρ2
) of a (r, s)-linear Weingarten Clifford torus Tn1,n2

ρ1, ρ2
↬

Sn+1 reduces to the number of eigenvalues of the differential operator

s∑
j=r

(j + 1)aj
{
φj(λ)∆Sn1 (ρ1) ⊕ φj(µ)∆Sn2 (ρ2)

}
(counted with multiplicity) which are strictly less than

2

s∑
j=r

(j + 1)ajbjHj .

Proof: First, from (2.4) and (4.8) we observe that the elementary symmetric function Sr+1, . . . , Ss+1

of Tn1,n2
ρ1, ρ2

↬ Sn+1 satisfy

ar(r + 1)Sr+1 + · · ·+ as(s+ 1)Ss+1 = 0,

Next, from (2.7) and (4.7) we get

0 =

s∑
j=r

aj(j + 1)Sj+1 =

s∑
j=r

aj(j + 1)tr(A ◦ Pj)

= n1λ

s∑
j=r

aj(j + 1)φj(λ)− n2µ

s∑
j=r

aj(j + 1)φj(µ),

or equivalently,

n1

ρ21

s∑
j=r

aj(j + 1)φj(λ) =
n2

ρ22

s∑
j=r

aj(j + 1)φj(µ),

Taking into account that (see (4.3))

s∑
j=r

aj(j + 1)tr(Pj) = n1

s∑
j=r

aj(j + 1)φj(λ) + n2

s∑
j=r

aj(j + 1)φj(µ)

we may write this in two ways:

s∑
j=r

aj(j + 1)tr(Pj) =

(
ρ21
ρ22

+ 1

)
n2

s∑
j=r

aj(j + 1)φj(µ) =
n2

ρ22

s∑
j=r

aj(j + 1)φj(µ) (4.9)

and
s∑

j=r

aj(j + 1)tr(Pj) =

(
ρ22
ρ21

+ 1

)
n1

s∑
j=r

aj(j + 1)φj(λ) =
n1

ρ21

s∑
j=r

aj(j + 1)φj(λ) (4.10)
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Now from equations (4.9) and (4.10) we deduce

s∑
j=r

aj(j + 1)tr(Pj) =
1

2

n1

ρ21

s∑
j=r

aj(j + 1)φj(λ) +
n2

ρ22

s∑
j=r

aj(j + 1)φj(µ)

 (4.11)

On the order hand, since

A2 ◦ Pj =

 λ2φj(λ)In1
0

0 µ2φj(µ)In2

 ,

from (2.7) and (4) we have

s∑
j=r

aj(j + 1)
(
λ2φj(λ)n1 + µ2φj(µ)n2

)
=

s∑
j=r

aj(j + 1)tr(A2 ◦ Pj) =

=

s∑
j=r

aj(j + 1) (S1Sj+1 − (j + 2)Sj+2)

= S1

( s∑
j=r

aj(j + 1)Sj+1︸ ︷︷ ︸
0

)
−

s∑
j=r

aj(j + 1)(j + 2)Sj+2,

which is equivalent to

n1
ρ22
ρ21

s∑
j=r

aj(j + 1)φj(λ) + n2
ρ21
ρ22

s∑
j=r

aj(j + 1)φj(µ) = (4.12)

= −
s∑

j=r

aj(j + 1)(j + 2)Sj+2

s∑
j=r

aj(j + 1)tr(A2 ◦ Pj).

Next, we combine equations (4.9), (4.10) and (4.12) to deduce

s∑
j=r

aj(j + 1) {(n− j)Sj + (j + 2)Sj+2} = (4.13)

=

s∑
j=r

aj(j + 1)
{
tr(Pj)− tr(A2 ◦ Pj)

}
=

n2

ρ22

s∑
j=r

aj(j + 1)φj(µ)− n1
ρ22
ρ21

s∑
j=r

aj(j + 1)φj(λ)

−n2
ρ21
ρ22

s∑
j=r

aj(j + 1)φj(µ)

= n2

s∑
j=r

aj(j + 1)φj(µ)− ρ22

s∑
j=r

aj(j + 1)tr(Pj)

= n2

s∑
j=r

aj(j + 1)φj(µ)− ρ22
n2

ρ22

s∑
j=r

aj(j + 1)φj(µ) = 0.

Therefore, from (2.4), (3.3), (3.4), (4.4) and (4.13) we get item (a). For item (b), just take into account
the comments in Remark 3.1 and the result of item (a). □

From (2.5), Definition 2.1 and Proposition 4.1 we get the following result that we provide a criterion
to calculate the index of stability of a linear Weingarten Clifford torus.

Proposition 4.2. Let a0 and a1 be nonnegative real numbers, with at least one of them being nonzero,
and let Tn1,n2

ρ1, ρ2
= Sn1(ρ1)× Sn2(ρ2) ↬ Sn+1 be a linear Weingarten Clifford torus with mean and scalar

curvatures H and R satisfying

a0H + (n+ 1)a1R = (n+ 1)a1,



Lázaro Velasquez M.- Selecciones Matemáticas. 2023; Vol. 10(1): 102-113 111

where n1, n2 ∈ N and ρ1, ρ2 ∈ (0,+∞) are such that n1 + n2 = n and ρ21 + ρ22 = 1, respectively. Then,
the Jacobi operator J0,1 : C∞(Tn1,n2

ρ1, ρ2
) → C∞(Tn1,n2

ρ1, ρ2
) of Tn1,n2

ρ1, ρ2
↬ Sn+1 is given by

J0,1 =

{
a0 +

2a1
(
2nρ1ρ2H + ρ21 − ρ22

)
ρ1ρ2

}{
∆Sn1 (ρ0) ⊕∆Sn2 (ρ2)

}
+ 2na0 + 4n(n− 1)a1H.

Furthermore, the index of stability of a linear Weingarten Clifford torus Tn1,n2
ρ1, ρ2

↬ Sn+1 reduces to the
number of eigenvalues of the differential operator{

a0 +
2a1

(
2nρ1ρ2H + ρ21 − ρ22

)
ρ1ρ2

}{
∆Sn1 (ρ0) ⊕∆Sn2 (ρ2)

}
(counted with multiplicity) which are strictly less than 2na0 + 4n(n− 1)a1H .

Proof of Theorem 1.1.
We are now in a position to provide the proof of our main result concerning the index of (r, s)-stability

of a (r, s)-linear Weingarten Clifford torus Tn1,n2
ρ1, ρ2

= Sn1(ρ1) × Sn2(ρ2) ↬ Sn+1 that admit a null linear
combination of their higher order mean curvatures Hr+1 and Hs+1, with 0 ≤ r ≤ s ≤ n− 1.

Proof:
In order to compute the index of a (r, s)-linear Weingarten Clifford torus Tn1,n2

ρ1, ρ2
↬ Sn+1 it is important

to have the spectrum of each sphere Sn1(ρ1) and Sn2(ρ2). In that regard, from [10, Section 2.4], we have
that the eigenvalues of Sn1(ρ1) are

λk =
k

ρ21
(n1 + k − 1), k ∈ {0, 1, 2, . . .}, (4.14)

with multiplicities

m(λk) =
(n1 + k − 2)(n1 + k − 3) . . . (n1 + 1)n1

k!
(n1 + 2k − 1), (4.15)

while for Sn2(ρ2) the eigenvalues are

µl =
l

ρ22
(n2 + l − 1), l ∈ {0, 1, 2, . . .}, (4.16)

with multiplicities

m(µl) =
(n2 + l − 2)(n2 + l − 3) . . . (n2 + 1)n2

l!
(n2 + 2l − 1). (4.17)

On the other hand, from equation (4.11) and the fact that λ1 = n1/ρ
2
1 and µ1 = n2/ρ

2
2 to obtain

s∑
j=r

(j + 1)ajbjHj =

s∑
j=r

aj(j + 1)tr(Pj)

=
1

2

λ1

s∑
j=r

aj(j + 1)φj(λ) + µ1

s∑
j=r

aj(j + 1)φj(µ)


Using last equation, as well (4.5) and Proposition 4.1 we infer that the Jacobi operator Jr,s : C

∞(Tn1,n2
ρ1, ρ2

) →
C∞(Tn1,n2

ρ1, ρ2
) of Tn1,n2

ρ1, ρ2
↬ Sn+1 verifies

Jr,s(fk,l) =

(λ1 − λk)

s∑
j=r

(j + 1)ajφj(λ) + (µ1 − µl)

s∑
j=r

(j + 1)ajφj(µ)

 fk,l = 0,

where fk,l is the product function on Sn1(ρ1) × Sn2(ρ2) defined in (4.6), and, hence, the eigenvalues
{ϱk,l}∞k,l=0 of Jr,s are given by

ϱk,l = (λk − λ1)

s∑
j=r

(j + 1)ajφj(λ) + (µl − µ1)

s∑
j=r

(j + 1)ajφj(µ), (4.18)

with k, l ∈ {0, 1, 2, . . .}.
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Using equations (4.9) and (4.10) we have
s∑

j=r

aj(j + 1)(n− j)Sj =

s∑
j=r

aj(j + 1)tr(Pj)

= λ1

s∑
j=r

aj(j + 1)φj(λ) = µ1

s∑
j=r

aj(j + 1)φj(µ).

Then, (4.13) yield
s∑

j=r

aj(j + 1)φj(λ) > 0
(
and, in turn,

s∑
j=r

aj(j + 1)φj(µ) > 0
)

if and only if
s∑

j=r

aj(j + 1)(j + 2)Sj+2 < 0, (4.19)

which is the hypothesis (1.1) in Theorem 1.1.
According to Remark 3.1, the only eigenvalues ϱ k,l of Jr,s that contribute to the calculation of the

index Ind r,s(Tn1,n2
ρ1, ρ2

) are those that are negative (counted with their multiplicity). In this sense, from (4.18)
we immediately have that ϱ 1,1 = 0 does not contribute to computing Ind r,s(Tn1,n2

ρ1, ρ2
). Furthermore,

from (4.14) and (4.16) we observe that

λ2 − λ1 =
n1 + 2

ρ21
> 0, µ2 − µ1 =

n2 + 2

ρ22
> 0,

and, more generally, λk − λ1 > 0 and µ2 − µ1 > 0 for all k, l ≥ 2. This added to the fact that ar, . . . , as
are nonnegative real numbers (with at least one nonzero) guarantees us, from (4.18), that the eigenvalues
ϱ k,l with k, l ≥ 2 do not contribute to the calculation of Ind r,s(Tn1,n2

ρ1, ρ2
) provided that (4.19) is true on

Tn1,n2
ρ1, ρ2

. So, assuming this same condition and taking into account that the sequences {λk}∞k=0 and {µl}∞l=0

are increasing we have that the unique functions which contribute to the index Ind r,s(Tn1,n2
ρ1, ρ2

) are

ϱ 0,0 = −λ1

s∑
j=r

(j + 1)ajφj(λ)− µ1

s∑
j=r

(j + 1)ajφj(µ),

ϱ 1,0 = −µ1

s∑
j=r

(j + 1)ajφj(µ),

ϱ 0,1 = −λ1

s∑
j=r

(j + 1)ajφj(λ),

whose multiplicities are respectively, 1, n1 + 1 and n2 + 1 (see (4.15) and (4.17)). Therefore, we can
conclude that Ind r,s(Tn1,n2

ρ1, ρ2
) = n+ 3 provided that (4.19) is true on Tn1,n2

ρ1, ρ2
. □

Proof of Theorem 1.2.
To end this section, we provide the proof of our last result, which summarizes our entire study on the

index of stability for the case of linear Weingarten Clifford tori immersed into Sn+1.
Proof: Taking into account Definition 2.1, item (c) of Definition 3.1, Proposition 4.2, the definition of

the higher order mean curvatures Hr given in (2.4) and the relation (2.5) between the second mean curvature
H2 and the normalized scalar curvature R of a linear Weingarten Clifford torus Tn1,n2

ρ1, ρ2
= Sn1(ρ1) ×

Sn2(ρ2) ↬ Sn+1, the result follows from Theorem 1.1 making r = 0 and s = 1. □
Remark 4.1. We observe, initially, that the notion of index of (r, s)-stability recorded in Definition 3.1

could be extended to a (r, s)-linear Weingarten compact oriented hypersurface Σn ↬ Sn+1, but in this new
situation it is not known so far some appropriate ellipticity criterion for the Jacobi operator Jr,s defined
in (3.3) and, as a consequence, it is not known whether the eigenvalues ϱj

′s of Jr,s on Σn admit the
behavior

(−∞ < ) ϱ1 < ϱ2 ≤ · · · ≤ ϱj · · · → +∞,

repeated according to their multiplicity, behavior that is required in the approach of our study. We believe
that this difficulty can be resolved in the near future and, thus, to be able to carry out a study of index
of (r, s)-stability of any (r, s)-linear Weingarten compact hypersurface Σn ↬ Sn+1 whose higher order
mean curvatures Hr+1, . . . ,Hs+1 satisfying arbrHr+1 + · · · + asbsHs+1 = 0 for some nonnegative real
numbers ar, . . . , as (with at least one nonzero), where bj = (n− j)

(
n
j

)
for j ∈ {r, . . . , s}.
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