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Abstract
The motivation for this paper comes from other papers treating the fractional derivatives. We introduce
a new definition of fractional derivative which obeys classical properties including linearity, product rule,
quotient rule, power rule, chain rule, Rolle’s theorem, mean value theorem and Taylor series. Usage of the
defined derivative is given in the example section which shows how our derivative can be used in solving
differential equations. Comparison of our derivative with the derivative defined by Abdejjawad and overall
conclusions are given in the conclusion section.
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Resumen
La motivación de este artı́culo proviene de otros artı́culos que tratan las derivadas fraccionarias. Intro-
ducimos una nueva definición de derivada fraccionaria que obedece a propiedades clásicas que incluyen
la linealidad, la regla del producto, la regla del cociente, la regla de la potencia, la regla de la cadena,
el teorema de Rolle, teorema del valor medio y series de Taylor. El uso de esta derivada definida se pro-
porciona en la sección de ejemplo donde se muestra cómo se puede usar nuestra derivada para resolver
ecuaciones diferenciales. La comparación de nuestra derivada con la derivada definida por Abdejjawad y
las conclusiones generales se dan en la sección de conclusiones.

Palabras clave. Derivadas fraccionarias, cálculo fraccionario.

1. Introduction. The idea of fractional calculus is as old as traditional calculus. The history of frac-
tional calculus dates back to now famous letter in which L’Hopital sent a letter to Leibniz. In his message
an important question about the order of the derivative emerged. What might be the derivative of 1

2? Leib-
niz said that it is nonsense, and therefore he does not anticipate the beginning of the area known today
as fractional calculus(FC). The first mathematician to suggest an integral representation was Fourier 1822
[19, 17] suggested an integral representation in order to define the derivative and his version can be consid-
ered the first definition of the arbitrary positive order. Abel in 1826 solved an integral equation associated
with tautochrone problem, which was the first application of FC(fractional calculus). After Abel, many
mathematicians proceeded to work in the field, some of the names are: Riemann, Grünwald and Letnikov
[7, 15], Hadamard, Weyl [29], Riesz [24, 25] and many more. In the late upper half of the 20th century,
Caputo [5] formulated a definition, more restrictive than the Riemann-Liouville but more appropriate to
discuss problems involving fractional differential equations with initial conditions. Fractional calculus was
found to be useful in physics as well, for example Whatcraft and Meerschaert (2008) described a frac-
tional conservation of mass, Fractional Schrödinger equation in quantum theory, and many others. Until
recently, research on FC was confised to mathematicians but, in the last two decades many applications
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of fractional calculus in various fields were found [6, 11, 9, 10, 13, 20, 16, 18]. As a result, fractional
calculus became an important field of study for various fields. Some recent work on FC can be found here
[27, 26, 28, 2, 3, 4, 21, 23, 12, 8].
Among the inconsistencies of the existing fractional derivatives Dα are:

1. Most of the fractional derivatives except Caputo-type, do not satisfy Dα(1) = 0, if α is not a
natural number.

2. All fractional derivatives do not satisfy the familiar Product Rule for two functions Dα(fg) =
gDα(f) + fDα(g).

3. All fractional derivatives do not satisfy the familiar Quotient rule for two functions Dα(fg) =
gDα(f)−fDα(g)

g2 with g 6= 0.

4. All fractional derivatives do not satisfy the Chain Rule for composite functions Dα(f ◦ g)(t) =
Dα(f(g))Dαg(t).

5. All fractional derivatives do not satisfy the Indices rule DαDβ(f) = Dα+β(f).
However, in [1] the authors define a new well-behaved simple fractional derivative called the con-

formable fractional derivative, depending just on the basic limit definition of the derivative (see also [22,
14]). Namely, for a function f : [0,+∞) → R the conformable fractional(if the conformable fractional
derivative of f of order α exists, then we simply say f is α-differentiable) derivative of order 0 < α 6 1 of
f at t > 0 was defined by

Tαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε

.

If f isα-differentiable in some (0, a), a > 0, and limt→0+ Tαf(t) exists, then define Tαf(0) = limt→0+ Tαf(t).
As a consequence of the above definition, the authors proved that many of the previous issues are

overcome. In the derivative definition above given by authors the angle derivative tends to the standard
derivative as α→ 1, that is Tαf(t)→ f ′(t) and therefore the angle of the tangent line is preserved. Which
is not the case with our derivative.

In the following section, we give our new definition of a non-conformable fractional derivative of
a function at a point t and obtain several results that are close resemblance of those found in classical
calculus. The purpose of this paper is to introduce a new definition of fractional non-conformable derivative
as a natural extension of the well-known definition of derivative of a function in a point, in particular show
that the inadequacies 1) to 4) are overcome. Thing to note is that our derivative gives a closer approximation
to the ordinary derivative than the one investigated by Miguel [23], which can be seen from the graph given
in the example section. In future works we will complete the study of this new non-conformable fractional
derivative and apply it to more physical problems as to show the validity of our results in a practical manner.

2. Main results.
We will define the non-conformable fractional derivative in the following way.

Definition 2.1. Given a function f : (0,+∞) → R. Then the D-derivative of f of order α is defined
by

(α)D 1
ln
f(t) = lim

ε→0

f(t+ ε
ln(e+t−α) )− f(t)

ε
,

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a) , and limt→0+
(α)D 1

ln
f(t) exists, then define

(α)D 1
ln
f(0) = lim

t→0+

(α)D 1
ln
f(t).

As a consequence, we obtain the following result similar to the one in the classical analysis.
Theorem 2.1. If a function f : (0,+∞) → R is D-differentiable at t0 > 0 ,α ∈ (0, 1) then f is

continuous at t0.
Proof: Let t0 be an arbitrary point greater than zero. Since

f

(
t0 +

ε

ln(e+ t−α0 )

)
− f(t0) =

f(t0 +
ε

ln(e+t−α0 )
)− f(t0)

ε
ε.

Then

lim
ε→0

(
f(t0 +

ε

ln(e+ t−α0 )
)− f(t0)

)
= lim
ε→0

f(t0 +
ε

ln(e+t−α0 )
)− f(t0)

ε
· lim
ε→0

ε.
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Let k = ε
ln(e+t−α0 )

, then k → 0 if ε→ 0, so we have

lim
ε→0

f(t0 +
ε

ln(e+t−α0 )
)− f(t0)

ε
· lim
ε→0

ε =
1

ln(e+ t−α0 )
lim
k→0

f(t0 + k)− f(t0)
k

· lim
ε→0

ε = 0.

�
Theorem 2.2. Let f and g be D-differentiable at a point t > 0 and α ∈ (0, 1]. Then

a) (α)D 1
ln
(af + bg)(t) = a (α)D 1

ln
(f)(t) + b (α)D 1

ln
(g)(t).

b) (α)D 1
ln
(tp) = 1

ln(e+t−α)pt
p−1, p ∈ R.

c) (α)D 1
ln
(λ) = 0, λ ∈ R.

d) (α)D 1
ln
(fg)(t) = f (α)D 1

ln
(g)(t) + g (α)D 1

ln
(f)(t).

e) (α)D 1
ln

(
f
g

)
(t) =

g (α)D 1
ln

(f)(t)−f (α)D 1
ln

(g)(t)

g2(t) .

h)If in addition f is differentiable then (α)D 1
ln
(f) = 1

ln(e+t−α)f
′(t).

Proof: Starting with a). Let H(t) = (af + bg)(t) then

(α)D 1
ln
H(t) = lim

ε→0

H(t+ ε
ln(e+t−α) )−H(t)

ε

and from this we have the desired result.

b)It is sufficient to expand (t + ε
ln(e+t−α) )

p in power series, in this way we have two cases. First case
is when p ∈ N. Then we have the following

(α)D 1
ln
(tp) = lim

ε→0

(
t+ ε

ln(e+t−α)

)n
− tn

ε
= lim
ε→0

∑n
k=0

(
n
k

)
tn−k

(
ε

ln(e+t−α)

)k
− tn

ε

= lim
ε→0

∑n
k=0

(
n
k

)
tn−k

(
ε

ln(e+t−α)

)k
− tn

ε

= lim
ε→0

tn + ntn−1 ε
ln(e+t−α) +

(
n
2

)
tn−2

(
ε

ln(e+t−α)

)2
+ ...− tn

ε

=
ntn−1

ln(e+ t−α)
.

Similar approach gives us the same result when p ∈ R.
c) Easily follows from the definition.
d)From the definition we have

(α)D 1
ln
(fg)(t) = lim

ε→0

f
(
t+ ε

ln(e+t−α)

)
g
(
t+ ε

ln(e+t−α)

)
− f(t)g(t)

ε

+ lim
ε→0

f(t)g
(
t+ ε

ln(e+t−α)

)
− f(t)g

(
t+ ε

ln(e+t−α)

)
ε

= lim
ε→0

(
f
(
t+ ε

ln(e+t−α)

)
− f(t)

)
g
(
t+ ε

ln(e+t−α)

)
ε

+ lim
ε→0

(
(g
(
t+ ε

ln(e+t−α)

)
− g(t)

)
f(t)

ε

= f (α)D 1
ln
(g)(t) + g (α)D 1

ln
(f)(t).

e)

(α)D 1
ln

(
f

g

)
(t) = lim

ε→0

f
(
t+ ε

ln(e+t−α)

)
g
(
t+ ε

ln(e+t−α)

) − f(t)
g(t)

ε
.

Let us focus on the numerator. Multiplying the second term with
g(t+ ε

ln(e+t−α)
)

g(t+ ε

ln(e+t−α)
) and then adding the two

terms, we get

f(t+ ε
ln(e+t−α) )g(t)− f(t)g(t+

ε
ln(e+t−α) )

g(t)g(t+ ε
ln(e+t−α) )

− f(t)g(t)

g(t)g(t+ ε
ln(e+t−α) )

+
f(t)g(t)

g(t)g(t+ ε
ln(e+t−α) )
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=

(
f(t+ ε

ln(e+t−α) )− f(t)
)
g(t)

g(t)g(t+ ε
ln(e+t−α) )

−

(
g(t+ ε

ln(e+t−α) )− g(t)
)
f(t)

g(t)g(t+ ε
ln(e+t−α) )

.

Which when put back into our expression with limits, we get the desired result, namely

(α)D 1
ln

(
f

g

)
(t) =

g (α)D 1
ln
(f)(t)− f (α)D 1

ln
(g)(t)

g2(t)
.

h) From the definition, we have

(α)D 1
ln
(f) = lim

ε→0

f(t+ ε
ln(e+t−α) )− f(t)

ε
.

Introducing a substitution k = ε
ln(e+t−α) we get

lim
ε→0

f(t+ ε
ln(e+t−α) )− f(t)

ε
=

1

ln(e+ t−α)
lim
k→0

f(t+ k)− f(t)
k

=
1

ln(e+ t−α)
f ′(t).

�
Corollary 2.1. If αD 1

ln
f(t) exists for t > 0 then f is differentiable at t and

f ′(t) = ln(e+ t−α) (α)D 1
ln
f(t).

Corollary 2.2. Let α, β be positive constants such that 0 < α, β 6 1 and f be a function (non-
constant) twice differentiable on an interval (0,+∞). Then

α+βD 1
ln
f(t) 6= (α)D 1

ln

(
βD 1

ln
f(t)

)
.

Proof: Follows easily from definition.
Theorem 2.3. We have the following according to the Theorem 2, part h.

i) (α)D 1
ln
(1) = 0.

ii) (α)D 1
ln
(ect) = cect

ln(e+t−α) .

iii) (α)D 1
ln
(sin(bt)) = b cos(bt)

ln(e+t−α) .

iv) (α)D 1
ln
(cos(bt)) = − b sin(bt)

ln(e+t−α) .

Now we will present the equivalent result for (α)D 1
ln

, of the well known chain rule of classical calculus,
and therefore we overcome the problem 4(which is the problem of fractional derivatives not satisfying the
Chain rule).

Theorem 2.4. Let α ∈ (0, 1], g (α)D 1
ln

at t > 0 and f differentiable at g(t) then (α)D 1
ln
(f ◦ g)(t) =

f ′(g(t)) αD 1
ln
g(t).

Proof: We prove the result following a standard limit-approach. First case, if the function g is constant
in a neighborhood of a > 0 then (α)D 1

ln
(f ◦ g)(t) = 0. If g is not constant in a neighbourhood of a > 0

we can find a t0 > 0 such that g(x1) 6= g(x2) for any x1, x2 ∈ (a− t0, a+ t0). Now since g is continuous
at a, for ε small, we have

(α)D 1
ln
(f ◦ g)(a) = lim

ε→0

f(g(t+ ε
ln(e+a−α) ))− f(g(a))

ε

= lim
ε→0

f(g(t+ ε
ln(e+a−α) ))− f(g(a))

g(a+ ε
ln(e+a−α) )− g(a)

g(a+ ε
ln(e+a−α) )− g(a)

ε
.

Introducing a substitution k = g(a+ ε
ln(e+a−α) )−g(a) in the first fraction and realizing that the second

part is part h of Theorem 2, we get that

(f ◦ g)(t) = f ′(g(t)) (α)D 1
ln
g(t).

�
Theorem 2.5. Let f, h : [0,+∞) → R be functions such that (α)D 1

ln
exists for t > 0, if f is

differentiable on (0,+∞) and αD 1
ln
f(t) = 1

ln(e+t−α)h(t). Then h(t) = f ′(t) for all t > 0. Following the
same procedure of the ordinary calculus, we can prove the following result.
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Theorem 2.6. Let a > 0 and f : [a, b]→ R be a given function that satisfies
i) f is continuous on [a, b],
ii) f is D differentiable for some α ∈ (0, 1).
Then, we have that if (α)D 1

ln
f(t) > 0 (6 0), then f is a nondecreasing (increasing) function.

Theorem 2.7. (Racetrack Type Principle). Let a > 0 and f, g : [a, b]→ R be given functions satisfying
i) f and g are continuous on [a, b]

ii) f and g are (α)D 1
ln

differentiable for some α ∈ (0, 1),

iii) (α)D 1
ln
f(t) > (α)D 1

ln
g(t) for all t ∈ (a, b).

Then we have the following:
I) If f(a) = g(a), then f(t) > g(t) for all t ∈ (a, b).
II) If f(b) = g(b), then f(t) 6 g(t) for all t ∈ (a, b).

Proof: Consider the auxiliary function h(t) = f(t)−g(t). Then h is continuous on [a, b] and (α)D 1
ln

-
differentiable for some α ∈ (0, 1). From here, we obtain that (α)D 1

ln
h(t) > 0 for all t ∈ (a, b), so by the

previous theorem, h is a nonincreasing function. Hence for any t ∈ (a, b) we have h(a) 6 h(t) which gives
us g(t) 6 f(t). Second part is similar. �

Now we will discuss the occurrence of local maxima and local minima of a function. In fact, these
points are crucial to many questions related to application problems.

Definition 2.2. A function f is said to have a local maximum at c iff there exists an interval I around c
such thatf(c) > f(x) for all x ∈ I. Analogously, f is said to have a local minimum at c iff there exists an
interval I around c such that f(c) 6 f(x) for all x ∈ I. A local extremum is a local maximum or a local
minimum.

Theorem 2.8. (Rolle’s Theorem). Let a > 0 and f : [a, b]→ R be a given function that satisfies
• f ∈ C[a, b]

• f is (α)D 1
ln

-differentiable on (a, b) for some α ∈ (0, 1),

• f(a) = f(b)
Then, there exists ζ ∈ (a, b) such that (α)D 1

ln
f(ζ) = 0.

Proof: Since f is continuous in [a, b] and f(a) = f(b), there is ζ ∈ (a, b), at least one, which is a
point of local extreme. Let us assume that point ζ is the point of local maximum. On the other hand, since
f is (α)D 1

ln
-differentiable in (a, b) for some α, we have

(α)D 1
ln
f(ζ) = (α)D 1

ln
f(ζ+) = lim

ε→0+

f(ζ + ε
ln(e+ζ−α) )− f(ζ)

ε
= (α)D 1

ln
f(ζ−)

= lim
ε→0−

f(ζ + ε
ln(e+ζ−α) )− f(ζ)

ε
,

but (α)D 1
ln
f(ζ+) and (α)D 1

ln
f(ζ−) have opposite signs, therefore (α)D 1

ln
f(ζ) = 0. If (α)D 1

ln
f(ζ+) and

(α)D 1
ln
f(ζ−) have the same sign then as f(a) = f(b), we have that f is constant and the result is trivially

followed. This concludes the proof. �
Theorem 2.9. (Mean Value Theorem). Let a > 0 and f : [a, b]→ R be a function that satisfies:
• f is continuous in [a, b],
• f is (α)D 1

ln
-differentiable on (a, b) for some α ∈ (0, 1].

Then there exists ζ ∈ (a, b) such that

(α)D 1
ln
[f(ζ)] =

f(b)− f(a)
b− a

1

ln(e+ ζ−α)
.

Proof: Consider the function

g(t) = f(t)− f(a)−
[
f(b)− f(a)

b− a

]
(t− a).

The function g satisfies all the conditions of the Rolle’s Theorem, and therefore there exists ζ ∈ (a, b) such
that (α)D 1

ln
g(ζ) = 0.

(α)D 1
ln
g(t) = (α)D 1

ln
(f(t)− f(a))− f(b)− f(a)

b− a
(α)D 1

ln
(t− a),
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and from here it follows that

(α)D 1
ln
g(ζ) = (α)D 1

ln
f(ζ)− f(b)− f(a)

b− a
1

ln(e+ ζ−α)
= 0,

from where

(α)D 1
ln
[f(ζ)] =

f(b)− f(a)
b− a

1

ln(e+ ζ−α)
.

This concludes the proof. �
Theorem 2.10. Let a > 0 and f : [a, b]→ R be a given function that satisfies

i)f is continuous on [a, b],
ii)f is (α)D 1

ln
differentiable for some α ∈ (0, 1).

If (α)D 1
ln
f(t) = 0 for all t ∈ (a, b), then f is constant on [a, b].

Proof: Let us consider any interval contained in (a, b). For example let us consider a < c < d <
b. Using Rolle’s Theorem on the interval (c, d) ⊂ (a, b), we get that there exists ζ ∈ (c, d) such that
f ′(ζ) = f(d)−f(c)

d−c
1

ln(e+t−α) but since the derivative is zero across the entire interval (a, b) it must follow
that f(d) = f(c). Applying the same procedure on any sub-interval of (a, b) we get that f(a) = f(b) = k
for some k, therefore f is constant. �

Theorem 2.11. Let f : [a, b]→ R be (α)D 1
ln

-differentiable for some α ∈ (0, 1). If
i) (α)D 1

ln
f(t) is bounded on [a, b] with a > 0, then f is uniformly continuous on [a, b], and hence f is

bounded.
ii) (α)D 1

ln
f(t) is bounded on [a, b] and continuous at a > 0, then f is continuous on [a, b], and hence f is

bounded.
Proof: Since (α)D 1

ln
f(t) is bounded on [a, b] for all x, y ∈ (a, b). We have from Lagrange’s Theorem

(α)D 1
ln
(f(ζ)) =

f(y)− f(x)
y − x

1

ln(e+ ζ−α)
.

A function is uniformly continuous if for all ε > 0 exists δ > 0 such that for all x, y ∈ [a, b] |x − y| < δ
yields |f(y)− f(x)| < ε. In our case we can see that f(y)− f(x) = (α)D 1

ln
f(ζ) ln(e+ ζ−α)(y−x), and

since it is bounded, using it in our case we get that |f(y)− f(x)| < M · |y − x| ln(e+ ζ−α) < M∗M ′
∗
δ.

Since ln(e + ζ−α) is a finite number, it can be bounded by some M ′. Choosing δ = ε
M ·M ′ we get that

|f(y)− f(x)| < M ·M · ε
M ·M ′ = ε and therefore f is uniformly continuous.

Second claim follows similarly. �

Theorem 2.12. (Extended Mean Value Theorem). Let α ∈ (0, 1] and a > 0. If f, g : [a, b] → R are
functions that satisfy
i)f, g are continuous in [a, b],
ii)f, g are (α)D 1

ln
differentiable on (a, b), for some α ∈ (0, 1],

iii) (α)D 1
ln
g(t) 6= 0 for all t ∈ (a, b). Then, there exists ζ ∈ (a, b) such that

(α)D 1
ln
f(ζ)

(α)D 1
ln
g(ζ)

=
f(b)− f(a)
g(b)− g(a)

.

Proof: Consider the function

h(t) = f(t)− f(a)−
[
f(b)− f(a)
g(b)− g(a)

]
(g(t)− g(a)).

Then the auxiliary function h satisfies the assumptions of Rolle’s Theorem. Thus, there exists ζ ∈ (a, b)
such that (α)D 1

ln
f(ζ) = 0 for some α ∈ (0, 1). From here, we have

(α)D 1
ln
h(ζ) = (α)D 1

ln
f(ζ)−

[
f(b)− f(a)
g(b)− g(a)

]
(α)D 1

ln
g(ζ) = 0.

From which we obtain the following

(α)D 1
ln
f(ζ)

(α)D 1
ln
g(ζ)

=
f(b)− f(a)
g(b)− g(a)

.
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�
Integral of the D type is defined as follows.
Definition 2.3. Let α ∈ (0, 1] and a > 0. Let f be defined on (a, t]. Then the fractional integral of f is

Iaα(f)(t) =

∫ t

a

ln(e+ s−α)f(s)ds.

Theorem 2.13. If f : [a,+∞)→ R is any continuous function on the domain Ia and 0 < α 6 1. Then
for t > a we have

(α)Da
1
ln
Iaαf(t) = f(t)

Proof:

(α)Da
1
ln
Iaαf(t) =

1

ln(e+ t−α)

d

dt
Iαa f(t) =

1

ln(e+ t−α)

d

dt

∫ t

a

ln(e+ s−α)f(s)ds

=
1

ln(e+ t−α)
ln(e+ t−α)f(t) = f(t),

since

d

dt

∫ t

a

ln(e+ s−α)f(s)ds = ln(e+ t−α)f(t).

�
Our last result is a generalization of one of the most important, and oldest, theorems of mathematical

analysis, the Taylor series, which establishes under what conditions a function f can be approximated in a
neighborhood of a point t = a, by a linear combination of polynomials.

Theorem 2.14. Let f : [a, b] → R be n times continuously (α)D 1
ln

-differentiable and n + 1 times
(α)D 1

ln
-differentiable in (a, b) and let c ∈ (a, b). Then, for each t ∈ (a, b) with t 6= c, there exists a point

ζ ∈ (c, t), respectively (t, c), such that

f(t) =

n∑
j=0

f j(c)

j!
(t− c)j +Rn+1(f)

with

fj+1(·) = (α)D 1
ln
f(·) ln(e+ (·)−α), f0(·) = f(·)

holds, and the remainder can be written as

Rn+1(f) =
fn+1(ζ)

(n+ 1)!
(t− a)n+1.

Proof: Define the following function

g(y) = f(t)− f(y)− f (1)(t− y)− ...− fn(y) (t− y)
n

n!
− M

(n+ 1)!
(t− y)n+1,

where M is chosen such that g(c) = 0.Using g(c) = g(t) = 0, Theorem 2.6 allows us to affirm that there
exist ζ ∈ (c, t), respectively (t, c), with (α)D 1

ln
g(ζ) = 0,

− (α)D 1
ln
fn(y)

(t− y)n

n!
− M

n!
(−1) (t− y)n

ln(e+ y−α)
= 0.

From which we get the following

M = fn+1(ζ).

Setting y = c in the function g, we obtain the original expression. �
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3. Application of the fractional derivative. Application of our fractional derivative can be seen in
the use of the MVTs as well as in solving differential equations. We begin with an application of the MVT.

Example 1
Let f be a continuous function on [a, b] and differentiable on (a, b), show that the solution of the following
differential equation exists

f ′(t)

ln2(e+ t−α)
+

αf(t)

ln3(e+ t−α)(etα+1 + t)
= 0.

such that f(a) = f(b) = 0 with 0 < a < b and 0 < α < 1.
Proof: Using the quotient rule (Theorem 2, h)) we recognize that the differential equation can be

written in the following form

(α)D 1
ln

[
f(t)

ln(e+ t−α)

]
= 0.

Taking h(t) = f(t)
ln(e+t−α) we can see that the function satisfies Rolle’s Theorem conditions, therefore there

exists ζ ∈ (a, b) such that (α)D 1
ln
h(ζ) = 0.

Example 2
Let us consider a linear first-order differential equation where t > 0

f ′(t)et

ln(e+ t−α)
+

f(t)et

ln(e+ t−α)
=

β · tβ−1

ln(e+ t−α)
.

Proof: Using the product rule (Theorem 2) we can rewrite the above equation as follows

(α)D 1
ln
[f(t)et] = (α)D 1

ln
[tβ ]

We know that (α)D 1
ln
(f)(t) = 1

ln(e+t−α)f
′(t). So we get that

f(t) · et = tβ + c

f(t) = (tβ + c)e−t.

Example 3
Let us consider a linear first-order differential equation where t > 0, β ∈ R

f ′(t)− αf(t)t−α−1

(t−α + e) ln(e+ t−α)
=

βtβ−1

ln(e+ t−α)
.

Proof: It is clear that this differential equation can be written in the following way

(α)D 1
ln
(f(t) ln(e+ t−α)) = (α)D 1

ln
(tβ).

Which gives us

f(t) =
tβ + c

ln(e+ t−α)
.

3.1. Applications to Physics..
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3.1.1. Falling bodies. This problem considers the fall of a body of mass m, starting from rest, under
the action of gravity. Suppose that the chosen reference system has as its origin the starting point (rest of the
body) at a height A from the floor at the moment the fall begins, that is, at t = 0. The downward movement
will be chosen as positive. At any point P on its trajectory, the distance traveled will be the function y
dependent on time t, consequently, using ordinary derivatives, the instantaneous velocity and acceleration
snapshot, respectively, are given by

v(t) =
dy(t)

dt
, a =

dv(t)

dt
=
d2y(t)

dt2
.

According to Newton’s Law, we have F = mg, dv(t)dt = g.
Then this problem is modeled by the following differential equation with initial condition as follows

dv(t)

dt
= g, v(0) = 0, y(0) = A.

Now consider the problem with the conformable fractional derivative defined in Definition 1. We will set
α = 1

2 , reason for this is because the integral of ln(e + t−α) for arbitrary α is a hypergeometric function.
In the fractional setting, we have the following conditions

1
2D 1

ln
v(t) = g, v(0) = 0, y(0) = A.

Using Theorem 2.2, part h) we get

v′(t)

ln(e+ t−
1
2 )

= g, v′(t) = g ln(e+ t−
1
2 ).

Integrating, we have

v(t) =
g
(
2e
√
t+ 2

(
e2t− 1

)
log
(

1√
t
+ e
)
− log(t)

)
2e2

+ c.

Using the initial condition, namely v(0) = 0 we find that the constant is zero. Similarly we obtain the
following

y′(t) = ln(e+ t−
1
2 )

g
(
2e
√
t+ 2

(
e2t− 1

)
log
(

1√
t
+ e
)
− log(t)

)
2e2

 .

From which we get

y(t) =
g
(
−2e
√
t+ log(t) +

(
2− 2e2t

)
log
(

1√
t
+ e
))2

8e4
+ L.

Using the initial conditions, we find that L = A. Therefore all together we have

y(t) =
g
(
−2e
√
t+ log(t) +

(
2− 2e2t

)
log
(

1√
t
+ e
))2

8e4
+A.

Finding the time when the body hits the ground, we set y(t) = 0 and deduce t. Comparing how our
derivative defined by Definition 1 behaves in comparison to the normal derivative and to the derivative
investigated by Miguel is given .

4. Conclusions. In this article, a brief introduction of the new conformable derivative is made, prov-
ing its basic properties as a differential operator and from these we apply the said fractional derivative in
solving differential equations and in a classic problem of physics, the problem of falling bodies. We find
original solutions to these problems and the comparison of our derivative with the derivative investigated
by Miguel and the standard derivative is given on a graph (Figure 3.1). Clearly from the graph we can see
that the derivative defined by Definition 1 is closer to the ordinary derivative. Thing to note here is that our
derivative is better in approximating when t > 1, when t ∈ (0, 1) the derivative of Miguel gives a better
result, as our derivative tends to +∞ as t → 0. It is natural to ask what relation has (α)D 1

ln
f(t) to the
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Figure 3.1: The picture shows the black line representing the Miguel’s derivative, the blue line representing
the ordinary derivative and an orange line which is the solution of the initial problem using derivative
defined by Definition 2.1.

derivative defined by Abdejjawad in [1]. In the case that f is a derivable function, when t = 0 we have
Tαf(0) = 0 while (α)D 1

ln
f(t) → +∞, on the other hand, if t → +∞ we obtain that Tαf(t) → +∞

while (α)D 1
ln
f(t) → f ′(t), i.e., our derivative behaves asymptotically like a classical derivative, which

ensures that if f is derivable, the asymptotic properties of f are inherited, which is of vital importance in
the Qualitative Theory of Differential Equations.
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