SELECCIONES MATEMÁTICAS
Universidad Nacional de Trujillo
ISSN: 2411-1783 (Online)
2022; Vol. 9(2): 227-233.

The Hausdorff-Young Inequality for n-dimensional Hermite Expansions

La desigualdad de Hausdorff-Young para las expansiones de Hermite n-dimensionales

Calixto P. Calderón and Alberto Torchinsky ©
En reconocimiento a Alejandro Ortiz Fernández, por su amistad y sus contribuciones al análisis armónico.

Received, May. 08, 2022
Accepted, Set. 26, 2022

How to cite this article:
Calderón C, Torchinsky A. The Hausdorff-Young Inequality for n-dimensional Hermite Expansions. Selecciones Matemáticas. 2022;9(2):227-233. http://dx.doi.org/10.17268/sel.mat.2022.02.01

Abstract

We discuss a sharpened Hausdorff-Young inequality for n-dimensional Hermite expansions. Keywords. Hausdorff-Young inequality, n-dimensional Hermite expansions.

\section*{Resumen}

Consideramos una desigualdad de Hausdorff-Young refinada para expansiones de Hermite n-dimensionales.

Palabras clave. Desigualdad de Hausdorff-Young, expansiones de Hermite n-dimensionales.

1. Introduction. This note concerns the sharpened Hausdorff-Young inequality in the context of $n-$ dimensional Hermite expansions. The corresponding 1-dimensional result was considered in [4].

The Hermite functions constitute an ONS in \mathbb{R} with respect to the Lebesgue measure there, and are defined as follows [5, 12, 14]. Szegö introduced the Hermite polynomials, $H_{m}(x)$, in Chapter V of [12]. Earlier, Hille had also considered the Hermite polynomials, and proved some remarkable formulas and estimates [5, 14]. In particular, Hille considered the generating formula

$$
\sum_{m=0}^{\infty} H_{m}(x) \frac{u^{m}}{m!}=e^{2 x u-u^{2}}
$$

and defined the Hermite functions $\mathcal{H}_{m}(x), m \geq 0$, by

$$
\mathcal{H}_{m}(x)=\frac{1}{(m!)^{1 / 2}} \frac{1}{2^{m / 2}} H_{m}(x) e^{-x^{2} / 2}, \quad x \in \mathbb{R} .
$$

The n-dimensional Hermite functions are obtained as products of the 1-dimensional Hermite functions $[10,14]$, and constitute an ONS in \mathbb{R}^{n} with respect to the Lebesgue measure there. To the point, given $x=\left(x_{1}, \cdots, x_{n}\right)$ in \mathbb{R}^{n} and an n-tuple of nonnegative integers $m=\left(m_{1}, \ldots, m_{n}\right)$, let the Hermite functions $\mathcal{H}_{m}(x)$ be given by

$$
\mathcal{H}_{m}(x)=\mathcal{H}_{m_{1}}\left(x_{1}\right) \cdots \mathcal{H}_{m_{n}}\left(x_{n}\right)
$$

[^0]Now, for a function $f(x)$ defined on \mathbb{R}^{n}, the Hermite expansion of f is given by

$$
f(x) \sim \sum_{m} C_{m} \mathcal{H}_{m}(x), \quad x \in \mathbb{R}^{n}
$$

where the Hermite coefficients of $f(x), C_{m}$, are defined by

$$
\begin{equation*}
C_{m}=\int_{\mathbb{R}^{n}} f(x) \mathcal{H}_{m}(x) d x \tag{1.1}
\end{equation*}
$$

In order to verify that the n-dimensional Hermite functions are an ONS, it suffices to show that if all the Hermite coefficients of an $L^{2}\left(\mathbb{R}^{n}\right)$ function $f(x) \sim \sum_{m} C_{m} \mathcal{H}_{m}(x)$ vanish, then $f(x)=0$ a.e. with respect to the Lebesgue measure on \mathbb{R}^{n}. For simplicity we assume that $n=2$, and let $f\left(x_{1}, x_{2}\right)$ be such that $C_{m}=0$ for all $m=\left(m_{1}, m_{2}\right)$ with $m_{1}, m_{2}=0,1,2, \ldots$

Let then

$$
\varphi_{m_{2}}\left(x_{1}\right)=\int_{\mathbb{R}} f\left(x_{1}, x_{2}\right) \mathcal{H}_{m_{2}}\left(x_{2}\right) d x_{2}, \quad x_{1} \in \mathbb{R}, m_{2}=0,1,2, \ldots
$$

and observe that all the Hermite coefficients $C_{m_{1}}^{\prime}$ of $\varphi_{m_{2}}$ vanish. Indeed, with $m=\left(m_{1}, m_{2}\right)$,

$$
\begin{aligned}
C_{m_{1}}^{\prime} & =\int_{\mathbb{R}} \varphi_{m_{2}}\left(x_{1}\right) \mathcal{H}_{m_{1}}\left(x_{1}\right) d x_{1} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(x_{1}, x_{2}\right) \mathcal{H}_{m_{2}}\left(x_{2}\right) d x_{2} \mathcal{H}_{m_{1}}\left(x_{1}\right) d x_{1}=C_{m}=0 .
\end{aligned}
$$

Hence, by the completeness of the Hermite functions in $\mathbb{R}, \varphi_{m_{2}}\left(x_{1}\right)$ vanishes a.e. with respect to the Lebesgue measure on the line for each $m_{2}=0,1,2, \ldots$ Let $E_{m_{2}}$ be the set of Lebesgue measure 0 in the line outside of which $\varphi_{m_{2}}$ vanishes, and let $E=\bigcup_{m_{2}=0}^{\infty} E_{m_{2}} ; E$ is a set of Lebesgue measure 0 in \mathbb{R}.

Now, for each $x_{1} \in \mathbb{R} \backslash E$, we have

$$
\int_{\mathbb{R}} f\left(x_{1}, x_{2}\right) \mathcal{H}_{m_{2}}\left(x_{2}\right) d x_{2}=0, \quad m_{2}=0,1,2, \ldots
$$

and by the completeness of the Hermite expansion in $\mathbb{R}, f\left(x_{1}, x_{2}\right)=0$ a.e. x_{2} in \mathbb{R} whenever $x_{1} \in \mathbb{R} \backslash E$.
Then, by Tonelli's theorem, on account of the above observations it follows that

$$
\int_{\mathbb{R}^{2}}|f(x)|^{2} d x=\int_{\mathbb{R}} \int_{E}\left|f\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2}+\int_{\mathbb{R} \backslash E} \int_{\mathbb{R}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} d x_{2} d x_{1}=0
$$

and so, $f\left(x_{1}, x_{2}\right)=0$ a.e. on \mathbb{R}^{2}.
Thus, in particular, the n-dimensional Hermite expansions satisfy the Parseval-Plancherel formula in \mathbb{R}^{n},

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d x=\sum_{m}\left|C_{m}\right|^{2},
$$

and, in order to discuss the Hausdorff-Young inequality, we introduce some preliminary material concerning Lebesgue, Lorentz and Orlicz spaces.
2. Preliminaries. Given a function f defined on \mathbb{R}^{n}, with ν the Lebesgue measure on R^{n}, let $m(f, \lambda)$ denote the distribution function of f,

$$
m(f, \lambda)=\nu\left(\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}\right), \quad \lambda>0 .
$$

$m(f, \lambda)$ is nonincreasing and right continuous, and the nonincreasing rearrangement f^{*} of f defined for $t>0$ by

$$
f^{*}(t)=\inf \{\lambda: m(f, \lambda) \leq t\}, \quad \inf \emptyset=0,
$$

is informally its inverse (this statement is made precise in [9, p. 43]). f^{*} is nonincreasing and right continuous and, at its points of continuity $t, f^{*}(t)=\lambda$ is equivalent to $m(f, \lambda)=t$.

The Lorentz space $L^{p, q}\left(\mathbb{R}^{n}\right)=L(p, q), 0<p<\infty, 0<q \leq \infty$, consists of those measurable functions f with finite quasinorm $\|f\|_{p, q}$ given by

$$
\|f\|_{p, q}=\left(\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{1 / q}, \quad 0<q<\infty
$$

and,

$$
\|f\|_{p, \infty}=\sup _{t>0}\left(t^{1 / p} f^{*}(t)\right)=\sup _{\lambda>0} \lambda m(f, \lambda)^{1 / p}, \quad q=\infty .
$$

The Lorentz spaces are monotone with respect to the second index, that is, if $0<q<q_{1} \leq \infty$, then $L(p, q) \subset L\left(p, q_{1}\right)$, and

$$
\begin{equation*}
\|f\|_{p, q_{1}} \lesssim\|f\|_{p, q}, \tag{2.1}
\end{equation*}
$$

with $L(p, p)$ the Lebesgue space $L^{p}\left(\mathbb{R}^{n}\right)$, and $L(p, \infty)$ the space weak- $L^{p}\left(\mathbb{R}^{n}\right)$.
As for the Lorentz sequence spaces, given n-tuples of non-negative integers m, and a sequence $c=$ $\left\{c_{m}\right\}$, let $\left\{c_{k}^{*}\right\}$ denote the sequence obtained by ordering $\left\{\left|c_{m}\right|\right\}$ in a nonincreasing fashion. The Lorentz sequence space $\ell(p, q), 1 \leq p<\infty, 1 \leq q \leq \infty$, consists of those sequences $c=\left\{c_{m}\right\}$ with finite quasinorm $\|c\|_{\ell^{p, q}}$ given by

$$
\|c\|_{\ell^{p}, q}=\left(\sum_{k=1}^{\infty}\left(k^{1 / p} c_{k}^{*}\right)^{q} \frac{1}{k}\right)^{1 / q}, \quad 1 \leq q<\infty
$$

and, with μ the atomic measure concentrated on the lattice of n-tuples of nonnegative integer atoms m taking the value $\mu(m)=1$ on each such atom,

$$
\begin{equation*}
\|c\|_{\ell^{p, \infty}}=\sup _{k \geq 1} k^{1 / p} c_{k}^{*}=\sup _{\lambda>0} \lambda \mu\left(\left\{m:\left|c_{m}\right|>\lambda\right\}\right)^{1 / p}, \quad q=\infty . \tag{2.2}
\end{equation*}
$$

As for the Orlicz spaces, the letters A, B are reserved for Young's functions, i.e., for functions $A(t)$ defined for $t \geq 0$ that are zero at zero, increasing, and convex, or, more generally, $A(t) / t$ increasing to ∞ as $t \rightarrow \infty$. The Orlicz space $L^{A}\left(\mathbb{R}^{n}\right)$ consists of those measurable functions f (modulo equality a.e.) such that $\int_{\mathbb{R}^{n}} A(|f(x)| / M) d x<\infty$ for some M, normed by

$$
\|f\|_{A}=\inf \left\{\lambda>0: \int_{\mathbb{R}^{n}} A\left(\frac{|f(x)|}{\lambda}\right) d x \leq 1\right\}
$$

The Orlicz sequence space ℓ^{A} consists of those sequence $c=\left\{c_{m}\right\}$ such that for some M,

$$
\sum_{m} A\left(\left|c_{m}\right| / M\right)<\infty
$$

normed by

$$
\|c\|_{\ell^{A}}=\inf \left\{\lambda>0: \sum_{m} A\left(\frac{\left|c_{m}\right|}{\lambda}\right) \leq 1\right\}
$$

Finally, an operator T of a class of functions f on \mathbb{R}^{n} into a linear class of functions is said to be linear provided that, if T is defined for f_{0}, f_{1}, and $\lambda \in \mathbb{R}$, then T is defined for $f_{0}+\lambda f_{1}$, and $T\left(f_{0}+\lambda f_{1}\right)(x)=$ $T\left(f_{0}\right)(x)+\lambda T\left(f_{1}\right)(x)$.

A linear operator T defined for $f \in L^{A}\left(\mathbb{R}^{n}\right)$ and taking values $T(f)=\left\{c_{m}\right\}$ in ℓ^{B} is said to be bounded if there is a constant $K>0$ such that

$$
\sum_{m} B\left(\frac{\left|c_{m}\right|}{K}\right) \leq 1
$$

, whenever

$$
\int_{\mathbb{R}^{n}} A(|f(x)|) d x \leq 1
$$

A bounded operator T from ℓ^{A} to $L^{B}\left(\mathbb{R}^{n}\right)$ is defined similarly. In either case, the smallest K above is called the norm of T, is denoted by $\|T\|$, and the operator is said to be of type (A, B). These operators satisfy $\|T(f)\|_{\ell^{B}} \lesssim\|f\|_{A}$, and $\left\|T\left(\left\{c_{m}\right\}\right)\right\|_{B} \lesssim\left\|\left\{c_{m}\right\}\right\|_{\ell^{A}}$, respectively. When $A(t)=t^{p}$ and $B(t)=t^{q}$, we say that T is of type (p, q). If the mapping T is from an $L^{p}\left(\mathbb{R}^{n}\right)$ space into an $L^{q}\left(\mathbb{R}^{n}\right)$, or a sequence space $\ell(q, \infty)$, the mapping is said to be of weak-type (p, q). Similarly for mappings from ℓ^{p} into weak$L^{q}\left(\mathbb{R}^{n}\right)$ spaces.

For further consideration of the Lorentz and Orlicz spaces the reader may consult $[1,6,8,9]$.
3. The Hausdorff-Young Inequality. The sharpened Hausdorff-Young inequality for $n=1$ proved in [4, Theorem 4.1] rests on a remarkable estimate for the Hermite functions established by Hille [5, p. 436], [12, p. 240], to wit,

$$
\begin{equation*}
\left|\mathcal{H}_{m}(x)\right| \lesssim m^{-1 / 12} \tag{3.1}
\end{equation*}
$$

Hille notes that (3.1) is the best possible estimate, but that in applications he will only use the weaker formula $\left|\mathcal{H}_{m}(x)\right| \lesssim 1$. On the other hand, as in [4], we will use (3.1) to obtain a sharperned HausdorffYoung inequality for Hermite expansions on \mathbb{R}^{n}. We refer to these estimates as sharpened because they are of type (p, q) with $q<p^{\prime}$.

We then have,
Theorem 3.1. Let $f(x) \sim \sum_{m} C_{m} \mathcal{H}_{m}(x)$ denote the expansion of a function f defined on \mathbb{R}^{n} in a Hermite series, and let T be the mapping that assigns to f its sequence of Hermite coefficients $\left\{C_{m}\right\}$. Then, T maps the Lorentz space $L(p, s)$ continuously into the Lorentz sequence space $\ell(q, s), 1 \leq s \leq \infty$, provided that p, q verify

$$
\begin{equation*}
1<p<2, \quad \text { and, } \quad\left(1-\frac{1}{6 n}\right) \frac{1}{p}+\frac{1}{q}=1-\frac{1}{12 n} . \tag{3.2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\|T(f)\|_{\ell^{q}}=\left\|\left\{C_{m}\right\}\right\|_{\ell^{q}} \lesssim_{p}\|f\|_{p} \tag{3.3}
\end{equation*}
$$

and T is of type (p, q) whenever (3.2) holds.
Moreover, if A, B are Young's functions such that $\int_{0}^{t} B(s) / s^{12 n} d s / s \lesssim B(t) / t^{12 n}$ and $B(t) / t^{2}$ increases, T is of type (A, B), provided that A, B verify

$$
\begin{equation*}
B^{-1}(t)=t^{((12 n-1) / 12 n)} A^{-1}\left(t^{((1-6 n) / 6 n)}\right), \quad t>0 . \tag{3.4}
\end{equation*}
$$

Proof: For simplicity, since no new ideas are required for general n, we will carry out the proof for $n=2$. Let $f(x) \sim \sum_{m} C_{m} \mathcal{H}_{m}(x)$ denote the Hermite expansion of f in a Hermite series, where the $\left\{C_{m}\right\}$ are defined as in (1.1) above.

Note that since $\mathcal{H}_{0}(t)=1$, it follows that if $m_{0}=(0,0)$, then $\left|C_{m_{0}}\right| \leq\|f\|_{1}$, and also that

$$
\begin{equation*}
\left|C_{m}\right| \lesssim\|f\|_{1} m_{1}^{-1 / 12}, \quad m=\left(m_{1}, 0\right), m_{1} \geq 1 \tag{3.5}
\end{equation*}
$$

and,

$$
\begin{equation*}
\left|C_{m}\right| \lesssim\|f\|_{1} m_{2}^{-1 / 12}, \quad m=\left(0, m_{2}\right), m_{2} \geq 1 \tag{3.6}
\end{equation*}
$$

Also, for $m=\left(m_{1}, m_{2}\right)$ with $m_{1} \cdot m_{2} \neq 0$, we have

$$
\begin{equation*}
\left|C_{m}\right| \lesssim\|f\|_{1}\left(m_{1} m_{2}\right)^{-1 / 12}, \quad m=\left(m_{1}, m_{2}\right), m_{1} \cdot m_{2} \neq 0 . \tag{3.7}
\end{equation*}
$$

Let μ denote the atomic measure concentrated on the lattice of 2-tuples of integer atoms $m=\left(m_{1}, m_{2}\right)$ with $m_{1}, m_{2}=0,1,2, \ldots$, taking the value $\mu(m)=1$ on each such atom.

Given $\lambda>0$, let $\mathcal{I}_{\lambda}=\left\{m:\left|C_{m}\right|>\lambda\right\}$. Now, if $m=\left(m_{1}, m_{2}\right)$ is in \mathcal{I}_{λ} and $m_{1} \cdot m_{2} \neq 0$, by (3.7) we have

$$
\lambda<\left|C_{m}\right| \lesssim\|f\|_{1}\left(m_{1} m_{2}\right)^{-\frac{1}{12}}
$$

and, consequently,

$$
m_{1} m_{2} \leq\left(\|f\|_{1} / \lambda\right)^{12}
$$

which, since $m_{1}, m_{2} \geq 1$ implies that

$$
m_{1} \lesssim\left(\|f\|_{1} / \lambda\right)^{12}, \quad m_{2} \lesssim\left(\|f\|_{1} / \lambda\right)^{12}
$$

Hence,

$$
\begin{align*}
\mu\left(\left\{m=\left(m_{1}, m_{2}\right) \in \mathcal{I}_{\lambda}\right.\right. & \left.\left.: m_{1} \cdot m_{2} \neq 0\right\}\right) \\
& \lesssim\left(\|f\|_{1} / \lambda\right)^{12}\left(\|f\|_{1} / \lambda\right)^{12}=\left(\|f\|_{1} / \lambda\right)^{24} \tag{3.8}
\end{align*}
$$

Also, since from (3.5) and (3.6) above

$$
\left|C_{m}\right| \lesssim\|f\|_{1} m_{1}^{-1 / 12} \lesssim\|f\|_{1} m_{1}^{-1 / 24}, \quad m=\left(m_{1}, 0\right)
$$

and

$$
\left|C_{m}\right| \lesssim\|f\|_{1} m_{2}^{-1 / 12} \lesssim\|f\|_{1} m_{2}^{-1 / 24}, \quad m=0,\left(m_{2}\right),
$$

it follows that

$$
\mu\left(\left\{m=\left(m_{1}, m_{2}\right) \in \mathcal{I}_{\lambda}: m_{1}=0 \text { or } m_{2}=0\right\}\right) \lesssim\left(\|f\|_{1} / \lambda\right)^{24}
$$

which combined with (3.8) above yields

$$
\begin{equation*}
\lambda^{24} \mu\left(\left\{m=\left(m_{1}, m_{2}\right),\left(m_{1}, m_{2}\right) \neq(0,0):\left|C_{m}\right|>\lambda\right\}\right) \lesssim\|f\|_{1}^{24} \tag{3.9}
\end{equation*}
$$

Now, if $m_{0}=(0,0) \in \mathcal{I}_{\lambda}$, since as observed above $\left|C_{m_{0}}\right| \leq\|f\|_{1}$, it follows that $\lambda<\left|C_{m_{0}}\right| \leq\|f\|_{1}$, and so

$$
\lambda^{24} \mu\left(m_{0}\right)=\lambda^{24} \leq\|f\|_{1}^{24}
$$

which combined with (3.9) above gives that

$$
\lambda^{24} \mu\left(\mathcal{I}_{\lambda}\right) \lesssim\|f\|_{1}^{24}
$$

Therefore, by (2.2), it follows that

$$
\begin{equation*}
\left\|\left\{C_{m}\right\}\right\|_{\ell^{24, \infty}}=\sup _{\lambda>0} \lambda \mu\left(\left\{m:\left|C_{m}\right|>\lambda\right\}\right)^{1 / 24} \lesssim\|f\|_{1} \tag{3.10}
\end{equation*}
$$

and T is continuous from $L^{1}\left(\mathbb{R}^{2}\right)$ into the sequence space $\ell(24, \infty)$.
Also, T is of type (2.2) as established by the Parseval-Plancherel formula, and, in particular,

$$
\begin{equation*}
\left\|\left\{C_{m}\right\}\right\|_{\ell^{2}}=\left(\sum_{m}\left|C_{m}\right|^{2}\right)^{1 / 2} \lesssim\|f\|_{2} \tag{3.11}
\end{equation*}
$$

We are, therefore, in the appropriate framework to interpolate for the Orlicz spaces. We remind the reader the underlying principle to obtain these interpolation results [13]. If a linear mapping T is of type, or weak-type, or mixed types, $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$, with $p_{0} \neq p_{1}$, and the equation of the straight line passing through the points $\left(1 / p_{0}, 1 / q_{0}\right),\left(1 / p_{1}, 1 / q_{1}\right)$ is given by $y=\varepsilon x+\gamma$, then, under appropriate growth conditions on the Young's functions A, B, the mapping T is of type (A, B) provided that

$$
B^{-1}(t)=t^{\gamma} A^{-1}\left(t^{\varepsilon}\right)
$$

In our case T is of weak-type $(1,24)$ and of type $(2,2)$, and the equation of the line passing through the points $(1,1 / 24)$ and $(1 / 2,1 / 2)$ is given by

$$
y=-\frac{11}{12} x+\frac{23}{24} .
$$

Hence, by [12, Theorem 2.8, p. 184], T is of type (A, B) provided that

$$
\begin{equation*}
B^{-1}(t)=t^{23 / 24} A^{-1}\left(t^{-11 / 12}\right), \quad t>0, \tag{3.12}
\end{equation*}
$$

which is precisely (3.4) for $n=2$.
Furthermore, since the Lorentz norms are monotone with respect to the second index, from (2.1) it follows that

$$
\left\|\left\{C_{n}\right\}\right\|_{\ell^{2}, \infty} \lesssim\left\|\left\{C_{n}\right\}\right\|_{\ell^{2}} \lesssim\|f\|_{2} \lesssim\|f\|_{2,1},
$$

and, thus, together with (3.10) we are in the right framework to interpolate for the Lorentz spaces, and so, by [3, Corollary to Theorem 10, p. 293] it follows that T maps the Lorentz space $L(p, s)$ continuously into the Lorentz sequence space $\ell(q, s), 1 \leq s \leq \infty$, where, for $0<\theta<1$,

$$
\frac{1}{p}=\theta+\frac{1-\theta}{2}, \quad \frac{1}{q}=\frac{\theta}{24}+\frac{1-\theta}{2} .
$$

Now, replacing θ above by its value,

$$
\theta=2\left(1-\frac{1}{p}\right)
$$

gives

$$
\frac{11}{12} \frac{1}{p}+\frac{1}{q}=\frac{23}{24}
$$

which is (3.2) for $n=2$. And so, for these values of p, q we have,

$$
\begin{equation*}
\left\|\left\{C_{n}\right\}\right\|_{\ell^{q, s}} \lesssim_{p, s}\|f\|_{p, s}, \quad 1 \leq s \leq \infty . \tag{3.13}
\end{equation*}
$$

Moreover, on account of the monotonicity of the Lorentz norms with respect to the second index, since for p, q verifying (3.2) we have $p<2<q$, setting $s=q$ in (3.13 3.14), it follows that

$$
\left\|\left\{C_{n}\right\}\right\|_{\ell^{q}} \lesssim\left\|\left\{C_{n}\right\}\right\|_{\ell^{q}, q} \lesssim_{p}\|f\|_{p, q} \lesssim_{p}\|f\|_{p . p} \lesssim_{p}\|f\|_{p},
$$

and T is of type (p, q). This conclusion also follows letting $A(t)=t^{p}$ in (3.12) above. This proves (3.3), and we have finished.

A companion result to the Hausdorff-Young inequality addresses under what conditions $\left\{c_{m}\right\}$ is the sequence of Fourier coefficients of a function f in the Hausdorff-Young range [2], [15, Vol.2, Theorem 2.3, p, 101]. For the Hermite expansions in \mathbb{R}, this is done in [4, Theorem 4.2].

In our context, for the Hermite expansions in n dimensions we have,
Theorem 3.2. Suppose that p, q verify,

$$
\begin{equation*}
\frac{12 n}{12 n-1}<p<2, \quad \text { and }, \quad \frac{1}{p}+\left(1-\frac{1}{6 n}\right) \frac{1}{q}=1-\frac{1}{12 n} . \tag{3.14}
\end{equation*}
$$

Then, given $\left\{c_{m}\right\}$ in the Lorentz sequence space $\ell(p, s)$, there is f in the Lorentz space $L(q, s), 1 \leq$ $s \leq \infty$, such that $f(x) \sim \sum_{m} c_{m} \mathcal{H}_{m}(x)$, and

$$
\begin{equation*}
\|f\|_{q, s} \lesssim_{p, s}\left\|\left\{c_{n}\right\}\right\|_{\ell^{p, s}} \tag{3.15}
\end{equation*}
$$

In particular, if τ denotes the mapping that assigns f to the sequence $\left\{c_{m}\right\}, \tau$ is of type (p, q) whenever (3.14) holds.

Moreover, if A, B are Young's functions such that $B(t) / t^{2}$ increases, and for some $r>2, B(t) / t^{r}$ decreases and $\int_{t}^{\infty} B(s) / s^{r} d s / s \lesssim B(t) / t^{r}$, then τ is of type (A, B), provided that A, B verify

$$
\begin{equation*}
B^{-1}(t)=t^{1 / 2((1-12 n) /(1-6 n))} A^{-1}\left(t^{-(6 n /(1-6 n))}\right), \quad t>0 \tag{3.16}
\end{equation*}
$$

Proof: For simplicity we argue the case $n=2$ as no new ideas are required for general n. Let $b(x)=\left\{\mathcal{H}_{m}(x)\right\}$. Then, as it was shown in the argument leading to (3.10), $b(x)$ is in the Lorentz sequence space $\ell(24, \infty)$, uniformly in x. Therefore, for a sequence $\left\{c_{m}\right\}$ in its conjugate Lorentz sequence space, $\ell(24 / 23,1)$, it follows that

$$
\left|\sum_{m} c_{m} \mathcal{H}_{m}(x)\right| \lesssim\left\|\left\{c_{m}\right\}\right\|_{\ell^{24 / 23,1}}, \quad \text { uniformly in } x \in \mathbb{R}^{2} .
$$

Hence, if $f(x) \sim \sum_{m} c_{m} \mathcal{H}_{m}(x)$, then $f \in L^{\infty}\left(\mathbb{R}^{2}\right)$, and

$$
\|f\|_{\infty, \infty}=\|f\|_{\infty} \lesssim\left\|\left\{c_{m}\right\}\right\|_{\ell^{14 / 23,1}}
$$

And, since by the Parseval-Plancherel formula τ is of type (2,2) and we have $\|f\|_{2, \infty} \lesssim\|f\|_{2} \lesssim$ $\left\|\left\{c_{m}\right\}\right\|_{2} \lesssim\left\|\left\{c_{m}\right\}\right\|_{\ell^{2,1}}$, interpolating, by [3, Corollary to Theorem 10, p. 293] it follows that τ maps the Lorentz sequence space $\ell(p, s)$ continuously into the Lorentz space $L(q, s), 1 \leq s \leq \infty$, where, $24 / 23<p<2$, and for $0<\theta<1$,

$$
\frac{1}{p}=\frac{23}{24} \theta+\frac{1-\theta}{2}, \quad \frac{1}{q}=\frac{1-\theta}{2} .
$$

Now, eliminating θ in the above relations gives (3.14) for $n=2$, and, provided that (3.14) holds, we get that

$$
\|f\|_{p, s} \lesssim_{p, s}\left\|\left\{c_{n}\right\}\right\|_{\ell(q, s}, \quad 1 \leq s \leq \infty
$$

And, since $p<q$, setting $s=q$ in (3.15) gives that τ is of type (p, q), provided that (3.14) holds.
The result for the Orlicz spaces follows now by interpolation. In our case the equation of the line that passes through $(23 / 24,0)$ and $(1 / 2,1 / 2)$ is given by

$$
y=-\frac{12}{11} x+\frac{23}{22}
$$

and, consequently, by [12, Theorem 2.8, p. 184], T is of type (A, B) provided that

$$
B^{-1}(t)=t^{23 / 22} A^{-1}\left(t^{-12 / 11}\right), \quad t>0
$$

which is (3.16) for $n=2$, and the proof is finished.
The reader will observe that as $n \rightarrow \infty$, the expressions (3.2) and (3.4) above relating p, q become $1 / p+1 / q=1$, which is precisely the Haussdorf-Young range in the case of Fourier expansions. And, naturally, the expressions (3.4) and (3.15) above approach the formula $B^{-1}(t)=t A^{-1}(1 / t)$, which is the condition for the Hausdorff-Young inequality to hold in the case of the Fourier transform [7].

ORCID and License

Calixto P. Calderón https://orcid.org/0000-0002-4211-2110
Alberto Torchinsky https://orcid.org/0000-0001-8325-3617

This work is licensed under the Creative Commons - Attribution 4.0 International (CC BY 4.0)

References

[1] Bennett C and Sharpley R. Interpolation of Operators, Academic Press, Orlando, Florida, 1988.
[2] Butzer PL. The Hausdorff-Young theorems of Fourier analysis and their impact, J. Fourier Anal. Appl. 1994; (1):113-130.
[3] Calderón AP. Spaces between L^{1} and L^{∞} and the theorem of Marcinkiewicz, Studia Math. XXVI. 1966; 273-299.
[4] Calderón CP and Torchinsky A. Maximal integral inequalities and Hausdorff-Young, preprint.
[5] Hille E. A class of reciprocal functions, Ann. of Math. 1926; (2): 27(4):427-464.
[6] Hunt RA. On L(p, q) spaces, Enseign. Math. 1966; 12(2):249-276.
[7] Jodeit M Jr. and Torchinsky A. Inequalities for Fourier transforms, Studia Math. XXXVII. 1971; 245-276.
[8] Krasnosels'kii MA and Rutickii Ya. B. Convex functions and Orlicz spaces, Nordhoff, Groningen, 1961.
[9] Oklander ET. Interpolación, Espacios de Lorentz, y el Teorema de Marcinkiewicz, Cursos y Seminarios 20, U. de Buenos Aires, 1965.
[10] Pinsky MA and Prather C. Pointwise convergence of n-dimensional Hermite expansions, Jour. Math. Anal. and Appl. 1996; 199:620-628.
[11] Stein EM and Weiss G. Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1971.
[12] Szegö G. Orthogonal polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc, Providence, R. I., 1959.
[13] Torchinsky A. Interpolation of operations and Orlicz classes, Studia Math. LIX. 1976/77; 2:177-207.
[14] Urbina-Romero W. Gaussian Harmonic Analysis, Springer International Publishing, 2019.
[15] Zygmund A. Trigonometric Series. Vol. I, II, 3rd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.

[^0]: *Department of Math. Stat. \& Comp Sci, University of Illinois at Chicago, Chicago IL 60607 USA. (cpc@uic.edu).
 ${ }^{\dagger}$ Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA. (torchins@indiana.edu).

