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Abstract
We discuss a sharpened Hausdorff–Young inequality for n-dimensional Hermite expansions.

Keywords. Hausdorff–Young inequality, n-dimensional Hermite expansions.

Resumen
Consideramos una desigualdad de Hausdorff–Young refinada para expansiones de Hermite n–dimensionales.

Palabras clave. Desigualdad de Hausdorff–Young, expansiones de Hermite n–dimensionales.

1. Introduction. This note concerns the sharpened Hausdorff–Young inequality in the context of n–
dimensional Hermite expansions. The corresponding 1–dimensional result was considered in [4].

The Hermite functions constitute an ONS in R with respect to the Lebesgue measure there, and are
defined as follows [5, 12, 14]. Szegö introduced the Hermite polynomials, Hm(x), in Chapter V of [12].
Earlier, Hille had also considered the Hermite polynomials, and proved some remarkable formulas and
estimates [5, 14]. In particular, Hille considered the generating formula

∞∑
m=0

Hm(x)
um

m!
= e2xu− u

2
,

and defined the Hermite functionsHm(x), m ≥ 0, by

Hm(x) =
1

(m!)1/2
1

2m/2
Hm(x) e−x

2/2, x ∈ R .

The n–dimensional Hermite functions are obtained as products of the 1–dimensional Hermite functions
[10, 14], and constitute an ONS in Rn with respect to the Lebesgue measure there. To the point, given
x = (x1, · · · , xn) in Rn and an n–tuple of nonnegative integers m = (m1, . . . ,mn), let the Hermite
functionsHm(x) be given by

Hm(x) = Hm1
(x1) · · ·Hmn

(xn) .
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Now, for a function f(x) defined on Rn, the Hermite expansion of f is given by

f(x) ∼
∑
m

CmHm(x) , x ∈ Rn ,

where the Hermite coefficients of f(x), Cm, are defined by

Cm =

∫
Rn

f(x)Hm(x) dx . (1.1)

In order to verify that the n–dimensional Hermite functions are an ONS, it suffices to show that if all
the Hermite coefficients of an L2(Rn) function f(x) ∼

∑
m CmHm(x) vanish, then f(x) = 0 a.e. with

respect to the Lebesgue measure on Rn. For simplicity we assume that n = 2, and let f(x1, x2) be such
that Cm = 0 for all m = (m1,m2) with m1,m2 = 0, 1, 2, . . .

Let then

ϕm2(x1) =

∫
R
f(x1, x2)Hm2(x2) dx2 , x1 ∈ R ,m2 = 0, 1, 2, . . . ,

and observe that all the Hermite coefficients C ′m1
of ϕm2

vanish. Indeed, with m = (m1,m2),

C ′m1
=

∫
R
ϕm2

(x1)Hm1
(x1) dx1

=

∫
R

∫
R
f(x1, x2)Hm2

(x2) dx2Hm1
(x1) dx1 = Cm = 0 .

Hence, by the completeness of the Hermite functions in R, ϕm2(x1) vanishes a.e. with respect to the
Lebesgue measure on the line for each m2 = 0, 1, 2, . . . Let Em2

be the set of Lebesgue measure 0 in the
line outside of which ϕm2

vanishes, and let E =
⋃∞
m2=0Em2

; E is a set of Lebesgue measure 0 in R.
Now, for each x1 ∈ R \ E, we have∫

R
f(x1, x2)Hm2

(x2) dx2 = 0 , m2 = 0, 1, 2, . . . ,

and by the completeness of the Hermite expansion in R, f(x1, x2) = 0 a.e.x2 in R whenever x1 ∈ R \ E.
Then, by Tonelli’s theorem, on account of the above observations it follows that∫

R2

|f(x)|2dx =

∫
R

∫
E

|f(x1, x2)|2dx1dx2 +
∫
R\E

∫
R
|f(x1, x2)|2dx2dx1 = 0 ,

and so, f(x1, x2) = 0 a.e. on R2.
Thus, in particular, the n–dimensional Hermite expansions satisfy the Parseval–Plancherel formula in

Rn, ∫
Rn

|f(x)|2dx =
∑
m

∣∣Cm∣∣2,
and, in order to discuss the Hausdorff–Young inequality, we introduce some preliminary material concern-
ing Lebesgue, Lorentz and Orlicz spaces.

2. Preliminaries. Given a function f defined on Rn, with ν the Lebesgue measure onRn, letm(f, λ)
denote the distribution function of f ,

m(f, λ) = ν
(
{x ∈ Rn : |f(x)| > λ}

)
, λ > 0 .

m(f, λ) is nonincreasing and right continuous, and the nonincreasing rearrangement f∗ of f defined
for t > 0 by

f∗(t) = inf{λ : m(f, λ) ≤ t} , inf ∅ = 0 ,

is informally its inverse (this statement is made precise in [9, p. 43]). f∗ is nonincreasing and right contin-
uous and, at its points of continuity t, f∗(t) = λ is equivalent to m(f, λ) = t .

The Lorentz space Lp,q(Rn) = L(p, q), 0 < p < ∞, 0 < q ≤ ∞, consists of those measurable
functions f with finite quasinorm ‖f‖p,q given by

‖f‖p,q =
(
q

p

∫ ∞
0

(
t1/pf∗(t)

)q dt
t

)1/q

, 0 < q <∞ ,
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and,

‖f‖p,∞ = sup
t>0

(
t1/pf∗(t)

)
= sup

λ>0
λm(f, λ)1/p , q =∞ .

The Lorentz spaces are monotone with respect to the second index, that is, if 0 < q < q1 ≤ ∞, then
L(p, q) ⊂ L(p, q1), and

‖f‖p,q1 . ‖f‖p,q , (2.1)

with L(p, p) the Lebesgue space Lp(Rn), and L(p,∞) the space weak–Lp(Rn).
As for the Lorentz sequence spaces, given n–tuples of non–negative integers m, and a sequence c =

{cm}, let {c∗k} denote the sequence obtained by ordering {|cm|} in a nonincreasing fashion. The Lorentz
sequence space `(p, q), 1 ≤ p < ∞, 1 ≤ q ≤ ∞, consists of those sequences c = {cm} with finite
quasinorm ‖c‖`p,q given by

‖c‖`p,q =
( ∞∑
k=1

(
k1/pc∗k

)q 1
k

)1/q
, 1 ≤ q <∞ ,

and, with µ the atomic measure concentrated on the lattice of n-tuples of nonnegative integer atoms m
taking the value µ(m) = 1 on each such atom,

‖c‖`p,∞ = sup
k≥1

k1/pc∗k = sup
λ>0

λµ({m : |cm| > λ})1/p , q =∞ . (2.2)

As for the Orlicz spaces, the letters A,B are reserved for Young’s functions, i.e., for functions A(t)
defined for t ≥ 0 that are zero at zero, increasing, and convex, or, more generally, A(t)/t increasing to∞
as t→∞. The Orlicz space LA(Rn) consists of those measurable functions f (modulo equality a.e.) such
that

∫
Rn A

(
|f(x)|/M

)
dx <∞ for some M , normed by

‖f‖A = inf
{
λ > 0 :

∫
Rn

A
( |f(x)|

λ

)
dx ≤ 1

}
.

The Orlicz sequence space `A consists of those sequence c = {cm} such that for some M ,∑
m

A
(
|cm|/M

)
<∞ ,

normed by

‖c‖`A = inf
{
λ > 0 :

∑
m

A
( |cm|
λ

)
≤ 1
}
.

Finally, an operator T of a class of functions f on Rn into a linear class of functions is said to be linear
provided that, if T is defined for f0, f1, and λ ∈ R, then T is defined for f0 + λ f1, and T (f0 + λ f1)(x) =
T (f0)(x) + λT (f1)(x).

A linear operator T defined for f ∈ LA(Rn) and taking values T (f) = {cm} in `B is said to be
bounded if there is a constant K > 0 such that∑

m

B
( |cm|
K

)
≤ 1

, whenever ∫
Rn

A
(
|f(x)|

)
dx ≤ 1.

A bounded operator T from `A to LB(Rn) is defined similarly. In either case, the smallest K above
is called the norm of T , is denoted by ‖T‖, and the operator is said to be of type (A,B). These operators
satisfy ‖T (f)‖`B . ‖f‖A, and ‖T ({cm})‖B . ‖{cm}‖`A , respectively. When A(t) = tp and B(t) = tq ,
we say that T is of type (p, q). If the mapping T is from an Lp(Rn) space into an Lq(Rn), or a sequence
space `(q,∞), the mapping is said to be of weak–type (p, q). Similarly for mappings from `p into weak–
Lq(Rn) spaces.

For further consideration of the Lorentz and Orlicz spaces the reader may consult [1, 6, 8, 9].
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3. The Hausdorff–Young Inequality. The sharpened Hausdorff–Young inequality for n = 1 proved
in [4, Theorem 4.1] rests on a remarkable estimate for the Hermite functions established by Hille [5, p. 436],
[12, p. 240], to wit, ∣∣Hm(x)

∣∣ . m−1/12. (3.1)

Hille notes that (3.1) is the best possible estimate, but that in applications he will only use the weaker
formula |Hm(x)| . 1. On the other hand, as in [4], we will use (3.1) to obtain a sharperned Hausdorff–
Young inequality for Hermite expansions on Rn. We refer to these estimates as sharpened because they are
of type (p, q) with q < p′.

We then have,
Theorem 3.1. Let f(x) ∼

∑
m CmHm(x) denote the expansion of a function f defined on Rn in

a Hermite series, and let T be the mapping that assigns to f its sequence of Hermite coefficients {Cm}.
Then, T maps the Lorentz space L(p, s) continuously into the Lorentz sequence space `(q, s), 1 ≤ s ≤ ∞,
provided that p, q verify

1 < p < 2, and,
(
1− 1

6n

) 1

p
+

1

q
= 1− 1

12n
. (3.2)

In particular,

‖T (f)‖`q = ‖{Cm}‖`q .
p
‖f‖p, (3.3)

and T is of type (p, q) whenever (3.2) holds.
Moreover, if A,B are Young’s functions such that

∫ t
0
B(s)/s12n ds/s . B(t)/t12n and B(t)/t2 in-

creases, T is of type (A,B), provided that A,B verify

B−1(t) = t

(
(12n−1)/12n

)
A−1

(
t

(
(1−6n)/6n

))
, t > 0 . (3.4)

Proof: For simplicity, since no new ideas are required for general n, we will carry out the proof for n = 2.
Let f(x) ∼

∑
m CmHm(x) denote the Hermite expansion of f in a Hermite series, where the {Cm} are

defined as in (1.1) above.
Note that sinceH0(t) = 1, it follows that if m0 = (0, 0), then |Cm0

| ≤ ‖f‖1, and also that∣∣Cm∣∣ . ‖f‖1m1
−1/12 , m = (m1, 0) ,m1 ≥ 1, (3.5)

and, ∣∣Cm∣∣ . ‖f‖1m2
−1/12 , m = (0,m2) ,m2 ≥ 1 . (3.6)

Also, for m = (m1,m2) with m1 ·m2 6= 0, we have∣∣Cm∣∣ . ‖f‖1(m1m2)
−1/12, m = (m1,m2) ,m1 ·m2 6= 0 . (3.7)

Let µ denote the atomic measure concentrated on the lattice of 2-tuples of integer atomsm = (m1,m2)
with m1,m2 = 0, 1, 2, . . ., taking the value µ(m) = 1 on each such atom.

Given λ > 0, let Iλ = {m : |Cm| > λ} . Now, if m = (m1,m2) is in Iλ and m1 ·m2 6= 0, by (3.7)
we have

λ < |Cm| . ‖f‖1 (m1m2)
− 1

12 ,

and, consequently,

m1m2 ≤
(
‖f‖1/λ

)12
,

which, since m1,m2 ≥ 1 implies that

m1 .
(
‖f‖1/λ

)12
, m2 .

(
‖f‖1/λ

)12
.

Hence,

µ({m = (m1,m2) ∈ Iλ : m1 ·m2 6= 0})

.
(
‖f‖1/λ

)12(
‖f‖1/λ

)12
=
(
‖f‖1/λ

)24
. (3.8)
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Also, since from (3.5) and (3.6) above∣∣Cm∣∣ . ‖f‖1m−1/121 . ‖f‖1m−1/241 , m = (m1, 0) ,

and ∣∣Cm∣∣ . ‖f‖1m−1/122 . ‖f‖1m−1/242 , m = 0, (m2) ,

it follows that

µ({m = (m1,m2) ∈ Iλ : m1 = 0 or m2 = 0}) .
(
‖f‖1/λ

)24
,

which combined with (3.8) above yields

λ24 µ
({
m = (m1,m2), (m1,m2) 6= (0, 0) : |Cm| > λ

})
. ‖f‖241 . (3.9)

Now, if m0 = (0, 0) ∈ Iλ, since as observed above |Cm0 | ≤ ‖f‖1, it follows that λ < |Cm0 | ≤ ‖f‖1 ,
and so

λ24 µ(m0) = λ24 ≤ ‖f‖241 ,

which combined with (3.9) above gives that

λ24 µ
(
Iλ
)
. ‖f‖241 .

Therefore, by (2.2), it follows that

‖{Cm}‖`24,∞ = sup
λ>0

λµ
({
m : |Cm| > λ

})1/24
. ‖f‖1 , (3.10)

and T is continuous from L1(R2) into the sequence space `(24,∞).
Also, T is of type (2.2) as established by the Parseval–Plancherel formula, and, in particular,

‖{Cm}‖`2 =
(∑

m

|Cm|2
)1/2

. ‖f‖2 . (3.11)

We are, therefore, in the appropriate framework to interpolate for the Orlicz spaces. We remind the
reader the underlying principle to obtain these interpolation results [13]. If a linear mapping T is of type,
or weak–type, or mixed types, (p0, q0) and (p1, q1), with p0 6= p1 , and the equation of the straight line
passing through the points (1/p0, 1/q0), (1/p1, 1/q1) is given by y = εx + γ, then, under appropriate
growth conditions on the Young’s functions A,B, the mapping T is of type (A,B) provided that

B−1(t) = tγ A−1(tε) .

In our case T is of weak–type (1, 24) and of type (2,2), and the equation of the line passing through
the points (1, 1/24) and (1/2, 1/2) is given by

y = −11

12
x+

23

24
.

Hence, by [12, Theorem 2.8, p. 184], T is of type (A,B) provided that

B−1(t) = t23/24A−1(t−11/12) , t > 0 , (3.12)

which is precisely (3.4) for n = 2.
Furthermore, since the Lorentz norms are monotone with respect to the second index, from (2.1) it

follows that

‖{Cn}‖`2,∞ . ‖{Cn}‖`2 . ‖f‖2 . ‖f‖2,1 ,

and, thus, together with (3.10) we are in the right framework to interpolate for the Lorentz spaces, and so,
by [3, Corollary to Theorem 10, p. 293] it follows that T maps the Lorentz space L(p, s) continuously into
the Lorentz sequence space `(q, s), 1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1

p
= θ +

1− θ
2

,
1

q
=

θ

24
+

1− θ
2

.
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Now, replacing θ above by its value,

θ = 2
(
1− 1

p

)
,

gives

11

12

1

p
+

1

q
=

23

24
,

which is (3.2) for n = 2. And so, for these values of p, q we have,

‖{Cn} ‖`q,s .
p,s
‖f‖p,s , 1 ≤ s ≤ ∞ . (3.13)

Moreover, on account of the monotonicity of the Lorentz norms with respect to the second index, since
for p, q verifying (3.2) we have p < 2 < q, setting s = q in (3.13 3.14), it follows that

‖{Cn} ‖`q . ‖{Cn} ‖`q,q .
p
‖f‖p,q .

p
‖f‖p.p .

p
‖f‖p ,

and T is of type (p, q) . This conclusion also follows letting A(t) = tp in (3.12) above. This proves (3.3),
and we have finished.

A companion result to the Hausdorff–Young inequality addresses under what conditions {cm} is the
sequence of Fourier coefficients of a function f in the Hausdorff–Young range [2], [15, Vol.2, Theorem 2.3,
p,101]. For the Hermite expansions in R, this is done in [4, Theorem 4.2].

In our context, for the Hermite expansions in n dimensions we have,
Theorem 3.2. Suppose that p, q verify,

12n

12n− 1
< p < 2, and,

1

p
+
(
1− 1

6n

) 1

q
= 1− 1

12n
. (3.14)

Then, given {cm} in the Lorentz sequence space `(p, s), there is f in the Lorentz space L(q, s), 1 ≤
s ≤ ∞, such that f(x) ∼

∑
m cmHm(x), and

‖f‖q,s .
p,s
‖{cn}‖`p,s . (3.15)

In particular, if τ denotes the mapping that assigns f to the sequence {cm}, τ is of type (p, q) whenever
(3.14) holds.

Moreover, if A,B are Young’s functions such that B(t)/t2 increases, and for some r > 2, B(t)/tr

decreases and
∫∞
t
B(s)/sr ds/s . B(t)/tr, then τ is of type (A,B), provided that A,B verify

B−1(t) = t1/2
(
(1−12n)/(1−6n)

)
A−1(t−

(
6n/(1−6n)

)
) , t > 0 . (3.16)

Proof: For simplicity we argue the case n = 2 as no new ideas are required for general n. Let
b(x) = {Hm(x)}. Then, as it was shown in the argument leading to (3.10), b(x) is in the Lorentz sequence
space `(24,∞), uniformly in x. Therefore, for a sequence {cm} in its conjugate Lorentz sequence space,
`(24/23, 1), it follows that∣∣∣∑

m

cmHm(x)
∣∣∣ . ‖{cm}‖`24/23,1 , uniformly in x ∈ R2 .

Hence, if f(x) ∼
∑
m cmHm(x), then f ∈ L∞(R2), and

‖f‖∞,∞ = ‖f‖∞ . ‖{cm}‖`14/23,1 .

And, since by the Parseval–Plancherel formula τ is of type (2,2) and we have ‖f‖2,∞ . ‖f‖2 .
‖{cm}‖2 . ‖{cm}‖`2,1 , interpolating, by [3, Corollary to Theorem 10, p. 293] it follows that τ maps
the Lorentz sequence space `(p, s) continuously into the Lorentz space L(q, s), 1 ≤ s ≤ ∞, where,
24/23 < p < 2, and for 0 < θ < 1,

1

p
=

23

24
θ +

1− θ
2

,
1

q
=

1− θ
2

.
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Now, eliminating θ in the above relations gives (3.14) for n = 2, and, provided that (3.14) holds, we
get that

‖f‖p,s .
p,s
‖{cn} ‖`q,s , 1 ≤ s ≤ ∞ .

And, since p < q, setting s = q in (3.15) gives that τ is of type (p, q), provided that (3.14) holds.
The result for the Orlicz spaces follows now by interpolation. In our case the equation of the line that

passes through (23/24, 0) and (1/2, 1/2) is given by

y = −12

11
x+

23

22
,

and, consequently, by [12, Theorem 2.8, p. 184], T is of type (A,B) provided that

B−1(t) = t23/22A−1(t−12/11) , t > 0 ,

which is (3.16) for n = 2, and the proof is finished.
The reader will observe that as n → ∞, the expressions (3.2) and (3.4) above relating p, q become

1/p + 1/q = 1, which is precisely the Haussdorf–Young range in the case of Fourier expansions. And,
naturally, the expressions (3.4) and (3.15) above approach the formula B−1(t) = t A−1(1/t), which is the
condition for the Hausdorff–Young inequality to hold in the case of the Fourier transform [7].
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[12] Szegö G. Orthogonal polynomials, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc, Providence, R. I., 1959.
[13] Torchinsky A. Interpolation of operations and Orlicz classes, Studia Math. LIX. 1976/77; 2:177–207.
[14] Urbina–Romero W. Gaussian Harmonic Analysis, Springer International Publishing, 2019.
[15] Zygmund A. Trigonometric Series. Vol. I, II, 3rd edition, Cambridge Mathematical Library, Cambridge University Press, Cam-

bridge, 2002.

https://orcid.org/0000-0002-4211-2110
https://orcid.org/0000-0001-8325-3617
https://creativecommons.org/licenses/by/4.0/

