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Abstract
Support Vector Machines are extensively used to solve classification problems in Pattern Recognition. They
deal with small errors in the training data using the concept of soft margin, that allow for imperfect classi-
fication. However, if the training data have systematic errors or outliers such strategy is not robust resulting
in bad generalization. In this paper we present a model for robust Support Vector Machine classification
that can automatically ignore spurius data. We show then that the model can be solved using a high per-
formance Mixed Integer Quadratic Programming solver and present preliminary numerical experiments
using real world data that looks promissing.

Keywords . SVM, mixed integer quadratic programming, outliers, classification.

1. Introduction. Support Vector Machines (SVM) are a set of supervised learning methods that is
used to build a decision surface that is able to recognize the classes distributed in the space. It achieves
this using convex optimization results in order to find a (optimal) decision surface that correctly clas-
sifies the training data. In order to avoid overfitting and achieve good generalization an SVM uses two
techniques. First, it tries to maximize the distance of the decision surface from the training data. At the
same time, it tries to correctly classify the data using a soft margin criterion, which allows part of the
training set samples to appear on the wrong side of the separating surface. In this case, all the wrong
classifications will have an influence on the determination of the separating surface and consequently
on the construction of the decision function. This can limit the quality of generalization of the SVM
[1, 2, 3, 4, 5]in the event that the misclassifications come from data with errors, unwanted noise effects,
or mislabeling.

In this context, there are several attempts to deal with outliers directly in a given SVM model. For
example, in [6] it was considered an SVM model based on an optimization problem whose objective
function is convex and which was obtained after relaxing an original model that is not convex. This
model will consecutively identify and ignore outliers. Another approach is presented in [7]. It is an SVM
model based on the value at risk (VaR) measure and considers an optimization problem that has a non-
convex objective function. The idea is to disregard a percentage of data that should be considered as
outliers.

In this work we propose to deal with erroneous data through a modification of the SVM model that
is based on Low Order-Value Optimization (LOVO) problem [8]. It will be called the LSVM problem. We
will prove that the new model has solutions and will show that it can be solved using a Mixed Integer
Quadratic Problem (MIQP) associated to the LSVM problem[9, 10]. Finally, some numerical experi-
ments will be performed, introducing different percentages of artificial outliers in the training data of

∗Facultad de Ciencias, Universidad Nacional Agraria la Molina, La molina, Lima, Perú. (rserna@lamolina.edu.pe).
†Instituto de Ciências Exatas e Biológicas , Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, CEP:

35400-000, Ouro Preto, MG, Brasil. (raimundo.leite@ufop.edu.br).
‡Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Rua Sérgio Buarque de

Holanda, 651 13083-859, Campinas, SP, Brasil. (pjssilva@unicamp.br).

27

http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0003-1213-6063
https://orcid.org/0000-0001-7730-9127
https://orcid.org/0000-0003-1340-965X
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17268/sel.mat.2021.01.03


28 Serna-Diaz R. et al.- Selecciones Matemáticas. 2021; Vol. 8(1): 27-36

real world data sets available in UCI Machine Learning and Kaggle Repositories. In the experiments, we
use the high performance MIQP solver Gurobi [11]. Finally, we close the paper with some conclusions
and directions for future research.

2. Optimal separating hyperplane and maximum and soft margin. Let us consider a binary train-
ing set T such that

(2.1) T = {(
x1, y1

)
,
(
x2, y2

)
, · · · ,

(
xm , ym

)}⊆ (
Rn ×Y

)
where, each sample (xi , yi ) is composed by a vector of n features, this is xi ∈ Rn , and a label yi ∈ Y =
{+1,−1} that indicates its classification. The (binary) classification problem consists on finding a deci-
sion function or classification rule f :Rn −→ {+1,−1} that separate the data into two classes and classify
correctly new samples belonging to the test set. Samples are assumed to be generated in independently
according to an unknown probability distribution P (x, y).

Support vector machines tries to solve the classification problem searching to a hyperplane the suc-
ceeds on linearly separating the classes. At the same time it tries to improve generalization by computing
a surface that is far away from the training points, creating an empty space between the classes and the
linear surface. This area is called the margin of separation. See Figure 2.1. This is achievable solving the
following optimization problem:

(HSVM)

∣∣∣∣∣∣∣
min
w,b

1

2
‖w‖2

s.t . yi [〈xi , w〉+b] ≥ 1 ∀i ∈ {1,2, . . . ,m}.

The objective function is associate with the objective of maximizing the margin, which is proportional
to 1/‖w‖, while the constraints enforce the linear separation. This is called the hard margin problem.

Figure 2.1: In 2D, the decision boundary is simply a line.

However, in many cases, the training points are not linearly separable or can only be fully separated
with a small margin. In this situation, the SVM model uses the concept of soft margin: it relaxes the
separation constraint in order to improve the margin. To achieve this, we introduce slack variables ξi in
the separation constraints, that measures by how much the original separation constraint fails to hold.
See the right picture in Figure 2.1. More formally, the (soft margin) SVM problem is

(SVM)

∣∣∣∣∣∣∣∣∣∣∣
min
w,b,ξ

1

2
‖w‖2 +C

m∑
i=1

ξi

s.t . yi [〈xi , w〉+b] ≥ 1−ξi ∀i ∈ {1,2, . . . ,m}

ξi ≥ 0 ∀i ∈ {1,2, . . . ,m},

,

where C > 0 is a penalty parameter which determines the weight between the two terms in the objective
function. This parameter weights how flexible the model will be in relation to errors, that is, the smaller
the value of C , the more permissive the model will be.
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Let (w∗,b∗,ξ∗) is an (SVM) solution, the corresponding decision function turns out to be

f (x) = sg n(
〈

w∗, x
〉+b∗).

Although it is possible prove directly the existence of a solution for the problem SVM, the existence
and calculation of this solution can also be obtained through an associated optimization problem, its
dual problem, in a clearer and simpler way due to its special structure 2.2.

Theorem 2.1. [12, Theorem 2.3.7] The dual associated problem to (SVM) problem is:

(2.2)

∣∣∣∣∣∣∣∣∣∣∣∣

max
λ

−1

2
λT Z T Zλ+

m∑
i=1

λi

s.t
m∑

i=1
λi yi = 0,

0 ≤λi ≤C , ∀i ∈ {1,2, . . . ,m},

where Z is the matrix defined as

Z :=
[

y1x1 y2x2 · · · ym xm

]
.

Note that the dual problem is also a quadratic programming problem but with very simple constraints.
The constraints are composed only by a box and a simple hyperplane. This is a set where it is easy to
project [13]. This fact opens up the path to develop high performance solvers for the dual problem bases
on methods like the Spectral Project Gradient method [14] and LIBSVM [15]. In particular, we can prove
the following results that shows how to recover an SVM solution from a dual solution.

Proposition 2.1. [12, Theorem 2.3.9] Consider a training set T as in (2.1) and let be a solution λ∗ for
the dual problem (2.2), then a (SVM) primal solution (w∗,b∗,ξ∗) can be obtained as follows

(2.3) w∗ =
m∑

i=1
λ∗

i yi xi .

And, if exist a λopt component λopt
j such that λopt

j ∈]0,C [ with j ∈ {1,2, . . . ,m}, then

(2.4) bopt = y j −
〈

wopt , x j
〉= y j −

m∑
i=1

λ
opt
i yi

〈
xi , x j

〉
or

bopt =

∑
j∈JC

y j −
〈

wopt , x j
〉

n(JC )
where JC = { j ∈ {1,2, . . . ,m} : 0 <λ

opt
j <C }.

Besides that

ξ
opt
i =

 0 i f i ∈ {1,2, . . . ,m} : 0 ≤λ
opt
i <C

1− yi
[〈

xi , wopt
〉+bopt

]
i f i ∈ {1,2, . . . ,m} : λ

opt
i =C .

3. Ignoring outliers of corrupted data. In this section we are interested in a problem where the
training data have some samples with measurement errors or some kind of systematic corruption that
should be identified. Note that in this case using simply the soft margin approach is not desirable, as the
errors will probably affect the decision boundary in a systematic way. This can limit the generalization
quality of the SVM. Our objective is to change the model in such a way that we can ignore the largest
errors in order to alleviate this effect.

Therefore, with the intention of eliminating the influence of wrong samples, we propose an SVM
model that uses selective sampling in order to control the unwanted effects of the corrupted data. To
achieve this we consider only that we have an estimate p of the number of samples that have systematic
errors. We start by introducing a notation that will be used throughout the text.

As in (SVM), let ξ ∈Rm+ represent classification errors. In order to ignore the largest errors, we reorder
these values as ξ[1] ≥ ξ[2] ≥ ... ≥ ξ[m] (decreasing order), where the brackets indicate the new index (used
in [16, 17]) necessary for the ordering to hold. In this case, the p largest values will be ignored, so the
errors terms to ignore are simply

(3.1) ξ[1],ξ[1], · · · ,ξ[p] , ∀ξ ∈Rm
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Now we can introduce our modified model. Let be a training sample data

(3.2) T = {(
x1d , y1

)
,
(
x2, y2

)
, · · · ,

(
xm , ym

)}⊆ (
Rn ×Y

)
, where Y = {+1,−1}

and p ∈ N such that p < m, that is an estimate of the maximum number of erroneous samples to con-
sider.

Ignoring the p largest values of the errors means that the term
p∑

i=1
ξ[i ] will be ignored in the objective

function of the soft margin SVM, so only the m−p smallest errors should be minimized in the objective
function of the soft margin SVM. Consequently, the primal soft margin problem reformulated for this
case is

(LSVM)

∣∣∣∣∣∣∣∣∣∣∣
min
w,b,ξ

1

2
‖w‖2 +C

m∑
i=p+1

ξ[i ]

s.t . yi [〈xi , w〉+b] ≥ 1−ξi ∀i ∈ {1,2, . . . ,m}

ξi ≥ 0 ∀i ∈ {1,2, . . . ,m}

where ξ[1] ≥ ξ[2] ≥ . . . ≥ ξ[m] and C > 0.
Even though the model looks similar to a regular SVM, it has a very different nature. In fact this

optimization model is highly nonconvex because the objective function in this case is not convex and
also nondifferentiable. This creates clear complications, as the usual methods used to train SVMs can
not be applied anymore. In particular, continuous optimization methods can no longer guarantee con-
vergence to global optima, but only to stationary points that are probably only local minima.

Moreover, the usual (Lagrangian) dual problem is probably much less useful, as there is duality gap
due to the nonconvexity. This means that we can not resort to methods that solve the dual problem with
its simple constraint set. We need to deal directly with the primal formulation.

In the next section we show that we can recast this model as a MIQP problem, opening the path to
solve it using high performance MIQP solvers showing that the problem is actually tractable.

4. A MIQP model for LSVM. The objective of this section is to develop a Mixed Integer Quadratic
Programming model that is equivalent to LSVM. This will open up the possibility of using a high perfor-
mance computational solver, like Gurobi [11], to solve it. This can be achieved adding extra variables to
bound the slacks ξ together with on-off variables. We do this in the next result.

Theorem 4.1. Consider the MIQP model

min
w,b,ξ,ζ,u

1

2
‖w‖2 +C

m∑
i=1

ζi

s.t. yi (〈w, xi 〉+b) ≥ 1−ξi , i = 1, . . . ,m,
m∑

i=1
ui ≤ p(MLSVM)

ξ≤ ζ+Mu

ξ,ζ≥ 0, u ∈ {0,1}m ,

where M ∈ R. If M is large enough, the components w,b,ξ of any solution to (MLSVM) also comprise
a solution to (LSVM) and there is at least one solution of (LSVM) that can be extended to a solution
of (MLSVM). In particular, both problems have the same optimal value.

Before proving this theorem, let us prove an auxiliary lemma that will allow us to find what is a good
value to the M constant.

Lemma 4.1. The problem (LSVM) has at least one solution.
Proof: Remember, first, that (SVM) always have a solution [12, Theorem 2.3.2]. Now, let I denote an

arbitrary subset of {1, . . . ,m} with m −p elements. Let us call SVMI the associated SVM problem where
only the samples with indexes in I are considered. Therefore, SVMI have a solution for all possible I .
Let I∗, denote the index set associated to a SVMI that has the smallest optimal value among all possible
I and let us denote by w∗,b∗,ξ∗I∗ its solution. Remember that ξ∗I∗ has coordinates only in the index set
I∗,this is the reason for its special notation.

Now consider a feasible point (w,b,ξ) in (LSVM) and, as before, let [1], [2], . . . [m] denotes an order
for the indexes of ξ such that ξ[1] ≥ ξ[2] ≥ . . . ≥ ξ[m]. Now, define I = {[p + 1], [p + 2], . . . [m]}. Clearly
(w,b,ξI ) is a feasible point of SVMI and, hence, its objective value, which coincides with the objective
value of (LSVM) for (w,b,ξ), is larger than the optimal value of SVMI∗ . This show that the optimal value
of (LSVM) is a larger than the optimal value of SVMI∗ .
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On the other hand, a solution of (w∗,b∗,ξ∗I∗ ) of SVMI∗ can be naturally extended to a feasible point
of (LSVM). Simply define the coordinates of ξ∗ outside I∗ as values that are large enough to ensure the
validity of the relaxed soft margin constraints and there are also larger than the coordinates already in
ξ∗I∗ . We conclude that this extended solution is also a feasible to (LSVM) with objective equal to the
optimal value of SVMI∗ . Therefore, the optimal values of SVMI∗ and (LSVM) are equal.

We can now proceed to prove the Theorem 4.1.
Proof: Let (w∗,b∗,ξ∗) be a solution to (LSVM). We will prove the result for an (MLSVM) defined with

M = ‖ξ∗‖∞. We start, considering a problem which is (LSVM) with an extra constraint:

min
w,b,ξ

1

2
‖w‖2 +C

m∑
i=p+1

ξ[i ]

s.t. yi (〈w, xi 〉+b) ≥ 1−ξi , i = 1, . . . ,m,(4.1)

ξ≤ M

ξ≥ 0.

Observe that (w∗,b∗,ξ∗) is feasible to (4.1). Moreover, since by construction this last problem is a restric-
tion of (LSVM) that has one of its solutions as a feasible point, it has the same optimal value as (LSVM).
Hence, it is a feasible problem whose solutions are also solutions to (LSVM) and there is at least one
solution to (LSVM), namely (w∗,b∗,ξ∗), which is also a solution to (4.1). That is (4.1) has exactly the
properties we want to prove for (MLSVM). Let us study the relationship between these three problems.

First, let us start with a feasible point (w,b,ξ) of (4.1), with associated order ξ[1] ≥ ξ[2] ≥ . . . ≥ ξ[m].
Define

u[1] := u[2] := . . .u[p] := 1,

u[p+1] := u[p+2] := . . . = u[m] := 0,

and

ζ[1] := max(0,ξ[1] −M) = 0,ζ[2] := max(0,ξ[2] −M) = 0, . . . ,ζ[p] := max(0,ξ[p] −M) = 0,

ζ[p+1] := ξ[p+1],ζ[p+2] := ξ[p+2], . . . ,ζ[m] := ξ[m].

These equations present a feasible point of (MLSVM) with exactly the same objective value as the orig-
inal point for (4.1). This implies that the optimal value of (4.1), which is equal to the optimal value
of (LSVM), is greater or equal to the optimal value of (MLSVM).

On the other hand, let (w,b,ξ,ζ,u) be feasible for (MLSVM). Redefine u, if necessary, so that ui := 1
whenever ξ is among the p largest values of ξ, and 0 otherwise. Analogously, redefine ζi := max(0,ξi −
Mui ). This new point is also feasible for (MLSVM). Its objective is

1

2
‖w‖2 +C

∑
ui=0

ξi +C
∑

ui=1
max(0,ξi −M).

The first two terms are the objective of (w,b,ξ) in (LSVM) and the last one is non-negative. Therefore,
we conclude the reverse inequality between the optimal value of (LSVM) and (MLSVM). Therefore, the
optimal values of (LSVM), (4.1), and (MLSVM) are all equal and the solution (w∗,b∗,ξ∗) can be extended
to a solution of (MLSVM) using the construction employed to derive the first inequality.

Finally, let (w?,b?,ξ?,ζ?,u?). As above, by redefining u? and ζ? if necessary, we can assume that
its objective has the form

1

2
‖w?‖2 +C

∑
u?i =0

ξ?i +C
∑

u?i =1

max(0,ξ?i −M),

where the first term is the objective value of (w?,b?,ξ?) in (LSVM). Since the optimal values are equal,
this implies that max(0,ξ?i −M) = 0 for the p largest values of ξ?, that is ξ? ≤ M and hence (w?,b?,ξ?)
is a solution of (4.1) and (LSVM). The proof is complete.

This result opens up the path to use Mixed Integer Quadratic Programming solvers to tackle (MLSVM)
and consequently the robust SVM variation (LSVM). This will allow us to avoid spurious local minima
that may attract methods that can only ensure local convergence as described in [18].

5. Numerical experiments. In order to test the efficiency of (MLSVM) in alleviating the error intro-
duced by corrupted training data, we have performed some preliminary numerical experiments using
the Gurobi solver [11]. Our experiments focused on problems with corrupted labels instead of corrupted
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features, as they are less likely to be amenable to treatment by usual statistical methods to identify out-
liers and spurious measurements.

Even though it is usual in the literature to use artificially generated data do test such modifica-
tions [7], we have to chosen to use not to do so in order to test the results under a more realistic setting.
We have then selected three test sets that are easily available and are amenable to linear classification.

The first set is the Breast Cancer Wisconsin (Diagnostic) data, that can be obtained at the UCI Ma-
chine Learning Repository. This test set is composed of 569 samples with 30 features extracted from
images of a breast mass from patients which are labeled as malignant and benign. This is a classical
data set that is linearly separable [19, 20].

The next data set is called Ionosphere. It is also available at the UCI repository. It is composed of
350 samples with 34 features representing radar data from electrons in the ionosphere. The patterns
are labeled either good (when there is evidence of some kind of structure in the ionosphere) or bad
(otherwise) [21].

Finally, the last data set has more samples. It has 1107 samples selected from the Credit Card Fraud
Detection data set to balance between the two classes that represent regular and fraudulent credit card
transactions. The data is available at Kaggle. The features were extracted using the PCA transforma-
tion of the original data to preserve confidentiality, only the first 29 most important PCA features are
present [22].

Now, we have to introduce systematic errors in the data. Instead of adding large random noise to
some samples like in [7], we preferred to do something more subtle to test the capacity of the (MLSVM)
model. We only performed changes in the labels. The idea is to introduce a region of “confusion”, where
part of the samples that were originally from a class are mislabeled creating regions where nearby sam-
ples of both class coexist. The objective is to model regions where the classification is difficult, or sit-
uations where the person that is labeling the training data has incentives to mislabel in one direction.
This happens, for example, in medical applications where it is dangerous to consider a sick patient as
healthy, for example.

To achieve this we start setting the number of samples that will be changed, let us call it p as before.
We then randomly selected one sample from each class. For each of these base samples, we sort all the
other samples of the same label from the nearest to the farthest flipping the label of p/2 every other
two samples, starting from the closest one to the farthest from the base sample. This will create two
regions of “confusion” in the data with p/2 nearby samples with flipped labels close to other samples
with correct information. As was said before, what we are trying to access is whether the (MLSVM)
model will be less sensitive to the wrong data than the regular (SVM) model.

We have then implemented the MIQP problem representing (MLSVM) using the Python program-
ming language extending the regular support vector machine implementation of the Scikit Learn li-
brary [23]. In order to solve the MIQP we used Gurobi version 9.0.2 [11]. The code was run on a com-
puter using 8 cores of an AMD Ryzen Threadripper 1950X CPU, with 64 GB of RAM, and running Ubuntu
Linux 20.04. We have also used the Scikit Learn library to perform basic pattern recognition operations
like randomly selecting samples, performing classical SVM training, and choosing the C hyper parame-
ter using cross validation with a regular SVM. Remember that the problem is a MIQP with many integer
variables. Fortunately, Gurobi was able to find good quality solutions fast. We left each problem running
until an optimal solution was found with a timeout of 10 minutes. This was necessary to make the test
run in a reasonable amount of time.

Data set Error p level Ideal SVM MLSVM

Breast cancer

0% 2% 97.72% 97.72% 97.81%

4% 2% 97.63% 96.75% 97.11%

4% 6% 97.63% 96.75% 97.37%

7% 5% 97.54% 95.70% 96.75%

7% 9% 97.54% 95.70% 97.63%

10% 8% 97.46% 94.47% 96.40%

10% 12% 97.46% 94.47% 97.63%

Ionosphere

0% 2% 86.71% 86.71% 86.57%

4% 2% 87.00% 85.57% 86.29%

4% 6% 87.00% 85.57% 84.14%

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/Ionosphere
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com
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7% 5% 87.14% 83.71% 83.71%

7% 9% 87.14% 83.71% 84.00%

10% 8% 86.71% 82.29% 82.71%

10% 12% 86.71% 82.29% 82.57%

Credit card

0% 2% 94.73% 94.73% 94.19%

4% 2% 94.73% 93.87% 94.14%

4% 6% 94.73% 93.87% 94.46%

7% 5% 94.73% 93.78% 94.05%

7% 9% 94.73% 93.78% 93.87%

10% 8% 94.95% 92.30% 93.29%

10% 12% 94.95% 92.30% 93.02%

Table 5.1: Comparison between generalization estimates for (regular) SVM and the robust version
MLSVM

The results are described in Table 5.1. The column “Error” has the amount of error that was intro-
duced in the data using the procedure described above. For example, if it says 4%, it means that 4% of
the training data had the labels flipped before the training. The column “p level” describes how many
samples MLSVM may ignore. Note that we never choose the exact error, because this value is never
really known in applications. We only test with a lower and upper estimate to see whether the robust
method behaves better in one of these cases.

All the other columns present an estimate for the generalization of the trained machines obtained
by the following procedure. We start randomly separating 20% of the data with the original, correct
labels, to estimate the generalization. The other 80% has “p level” of its labels corrupted as explained
above and is then used to train the machines. What we present are the mean values after ten runs of
these procedures.

For each test we present the generalization results for three variations of the support vector machine
classifier:

1. “Ideal”: in the case we first delete all the corrupted data and use the remaining information to
train a regular SVM. This simulates what is the best generalization than can be achieved if a
method is able to find exactly the corrupted data and ignore it.

2. “SVM”: a regular SVM is trained using training data that is partially corrupted. This is what
would be achieved in a standard method was used: a method that does not try to take into
account that the data has errors.

3. “MLSVM”: the robust version of the SVM described in Section 4.
The variation with the best generalization for each error and “p-level”, that are represented by lines in
the table, is either in boldface or in red. The red color indicates that the variation was the best for the
given error level considering the two “p levels”.

As it can be seen from the results, in the presence of corrupted data, MLSVM is almost always better
than a regular SVM when there is some error in the data, i.e. if the error is greater than 0. This can
be clearly seen as all red labeled data appears in the MLSVM column showing the effectiveness of the
model proposed in this work.

However, at least in one case the improvement is by a small margin: Ionosphere. In this case, which
is the one with the lowest generalization level in all tests, the generalization degrades quickly when the
error is introduced and the MLSVM model only has a limited capability to alleviate this phenomenon.

By analyzing this results we can see that the extra slack given to MLSVM is sometimes used badly
overfitting to the training data instead of improving generalization. In this situation a natural remedy in
Machine Learning is to try to use some kind of regularization that imposes a penalty to the overfitting. To
achieve this, we changed objective of MLSVM to only ignore a sample if it brings a sensible improvement
to the original objective. In other words, a sample will be ignored only if this improves the MLSVM
optimization criterion significantly. Formally, let ξ∗ be the slack of a solution of the regular SVM in the
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training data. Using the ordering notation from (LSVM), we change the original objective of (MLSVM)
from

1

2
‖w‖2 +C

m∑
i=1

ζi

to

(5.1)
1

2
‖w‖2 +C

m∑
i=1

ζi +RC

(∑m−p
i=1 ξ∗[i ]

p

)
m∑

i=1
ui ,

where R ≥ 0 is a parameter, typically in (0,1). The idea of the extra term is that in a solution it should
be interesting to erase the samples associated to the largest p errors only if they represent a gain pro-
portional to the mean error margin of an SVM that does not try to ignore the errors. This change should
preclude ignoring samples that marginally improve the objective that we know is just a rough approxi-
mation of the actual generalization capacity of the machine.

The new results are then presented in Table 5.2. This table has an extra column named “Reg.
MLSVM” for the regularized version with the objective described in (5.1). We also present the previous
information to facilitate the comparison.

It can be seen that the regularization was not effective for the first problem, Breast Cancer, where
the original MLSVM already is able to compete, and in some cases even outperform, the ideal method
that erases only the corrupted samples. Anyhow, in this case, the regularized version also have a very
good performance.

Data set Error p level Ideal SVM MLSVM Reg. MLSVM

Breast cancer

0% 2% 97.72% 97.72% 97.81% 97.72%

4% 2% 97.63% 96.75% 97.11% 96.75%

4% 6% 97.63% 96.75% 97.37% 97.19%

7% 5% 97.54% 95.70% 96.75% 95.53%

7% 9% 97.54% 95.70% 97.63% 97.19%

10% 8% 97.46% 94.47% 96.40% 96.40%

10% 12% 97.46% 94.47% 97.63% 97.11%

Ionosphere

0% 2% 86.71% 86.71% 86.57% 86.86%

4% 2% 87.00% 85.57% 86.29% 85.29%

4% 6% 87.00% 85.57% 84.14% 86.71%

7% 5% 87.14% 83.71% 83.71% 85.29%

7% 9% 87.14% 83.71% 84.00% 86.14%

10% 8% 86.71% 82.29% 82.71% 83.57%

10% 12% 86.71% 82.29% 82.57% 82.71%

Credit card

0% 2% 94.73% 94.73% 94.19% 94.28%

4% 2% 94.73% 93.87% 94.14% 93.87%

4% 6% 94.73% 93.87% 94.46% 94.50%

7% 5% 94.73% 93.78% 94.05% 93.83%

7% 9% 94.73% 93.78% 93.87% 94.01%

10% 8% 94.95% 92.30% 93.29% 93.06%

10% 12% 94.95% 92.30% 93.02% 93.51%

Table 5.2: Comparison between generalization estimates with the regularized variant of the MLSVM
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On the other hand, on the problems Ionosphere and Credit Card the regularization proves to be
effective. The improvement is specially high in the Ionosphere problem, which is the most difficult. In
this case, it can avoid the degradation of the generalization similarly to what would be achieved with the
ideal method up to the corruption level of 7%. Note that the non regularized version have generalization
estimates that are 2% lower than what is achieved in the regularized MLSVM.

6. Conclusions. In this work we have introduced a MIQP model that is equivalent to solve a varia-
tion of the Support Vector Machine Model that ignores corrupted samples, generating a robust classifier.
The new model was originally deduced using ideas from Low-Order Value Optimization that naturally
lead to nonconvex and nondifferentiable problems. To avoid the difficulties associated with the solution
of such optimization models we developed the MIQP variant that is equivalent to the robust model and
can be solved using state-of-the-art solvers like Gurobi.

We then performed initial tests using real world data in the difficult case of flipped labels. The test
showed that the solutions obtained from the MIQP model is able to alleviate the loss of generalization
when the training uses corrupted data. The initial results are encouraging and suggest that more re-
search should be done in this are.

A major problem with this approach is that the MLSVM model is not convex. This introduces duality
gap in the natural dual formulation destroying the nice interrelationship between the primal and dual.
This has two main consequences. First, methods of solution bases on the simple constraint structure of
the dual are not useful anymore, leaving us with methods to solve the primal problem directly. Second, it
is not possible to use kernels to perform nonlinear separation [24]. This is major drawback that appears
in previous robust versions of SVM [6, 7].

However, LOVO problems can usually be recast as a difference of convex problem as a LOVO func-
tion can be seen as the full sum minus the largest value of up to p entries [8, 18]. We are now trying to
explore this fact and the rich literature of difference of convex optimization that presents its rich dual
results [25, 26, 27] to try to derive a dual version of (MLSVM) that is amenable to the kernel trick allowing
nonlinear separation.
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