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Abstract
In this paper we consider M a fixed hypersurface in Euclidean space and we introduce two types of spaces
relative to M , of type I and type II. We observe that when M is a hyperplane, the two geometries coin-
cides with the isotropic geometry. By applying the theory to a Dupin hypersurface M , we define a relative
Dupin hypersurfaceM of type I and type II , we provide necessary and sufficient conditions for a relative
hypersurface M to be relative Dupin parametrized by relative lines of curvature, in both spaces. More-
over, we provides a relationship between the Dupin hypersurfaces locally associated to M by a Ribaucour
transformation and the type II Dupin hypersurfaces relativeM. We provide explicit examples of the Dupin
hypersurface relative to a hyperplane, torus, S1 × Rn−1 and S2 × Rn−2, in both spaces.

Keywords. Relative hypersurface, Relative Dupin hypersurface , Isotropic geometry, Ribaucour transformations.

Resumen
En este artı́culo consideramos M una hipersuperficie fija en el espacio euclidiano e introducimos dos tipos
de espacios relativos a M de tipo I y tipo II. Observamos que cuando M es un hiperplano, las geometrı́as
coinciden con la geometrı́a isotrópica. Aplicando la teorı́a a una hipersuperficie de Dupin M , definimos
una hipersuperficie de Dupin relativa M de tipo I y tipo II, proporcionamos condiciones necesarias y
suficientes para que una hipersuperficie relativaM sea Dupin relativo parametrizado por lı́neas relativas
de curvatura, en ambos espacios. Además, proporcionamos una relación entre las hipersuperficies de Dupin
asociadas localmente a M mediante una transformación de Ribaucour y las hipersuperficies de Dupin
relativasM de tipo II . Proporcionamos ejemplos explı́citos de la hipersuperficie de Dupin relativa a un
hiperplano, toroide, S1 × Rn−1 y S2 × Rn−2, en ambos espacios.

Palabras clave. Hipersuperficie relativa, Hipersuperficie de Dupin relativa, geometrı́a isotrópica, Transformación
de Ribaucour.

1. Introduction. The isotropic geometry introduced by Strubecker in [13], [14] and [15], and devel-
oped by several authors, study of the properties invariant by the action of the 6-parameter group G6 in
R3

x′ = a + x cosφ − y sinφ

y′ = b + x sinφ + y cosφ

z′ = c + c1x + c2y + z,

where a, b, c, c1, c2, φ ∈ R.
In other word, G6 is the group of rigid motions. Notice that on the xy-plane this geometry looks exactly
like the plane Euclidean geometry R2. The projection of a vector u = (u1, u2, u3) on the xy-plane is the
top view of u and we shall denote it by ũ = (u1, u2, 0). The top view concet plays a fundamental role in
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the isotropic space I3, since the z-direction is preserved by the action of G6. A line with this direction is
called an isotropic line and a plane that contained an isotropic line is said to be an isotropic plane. One may
introduce a isotropic inner product between two vectors u, v as

〈(u1 , u2 , u3) , (v1 , v2 , v3)〉Z = u1v1 + u2v2,

from which the isotropic distance is defined as

dK(A , B) =
√
〈A−B , A−B〉Z .

The inner product and distance above are just the plane Euclidean counterparties of the top views ũ and
ṽ. In addition, since the isotropic metric is degenerate, the distance from a point A = (a1, a2, a3) to
v = (b1, b2, b3) is zero if Ã = B̃. In this cases, one may define a codistance by

CdZ(A , B) = |b3 − a3|,

which is then preserved by G6. To study the geometry of a surface in isotropic space, it is considered a
surface as a graph of a function, given by

X(u1 , u2) = (u1 , u2 , h(u1 , u2)).

The isotropic Gauss map, is given by

NI = (−h,1 , −h,2 , 1).

The coefficients of the first and second fundamental forms are defined by

gij = δij , bij = 〈X,ij , NI〉.

In this work motivated by isotropic geometry, we generalize the idea of isotropic distance. Let Rn+1

be the Euclidean space with the usual metric 〈 , 〉 and considerM a hypersurface fixed in Rn+1, with Gauss
map N . We introduce the space relative to M , as being

Rn+1
M = {p+ tN | p ∈M, t ∈ R, p1 + t1N 6= p2 + t2N, p1, p2 ∈M, p1 6= p2, t1, t2 ∈ R}.

We define the space relative to M of the type I, as being the space Rn+1
M , with the distance defined by

dR1

(
p1 + t1N(p1) , p2 + t2N(p2)

)
= d

(
p1 , p2

)
, (1.1)

where d
(
p1 , p2

)
is the distance between p1 and p2, considering M as a metric space.

On the other hand, let q = p + tN(p) be a point in Rn+1
M , we can consider TqRn+1

M = TpRn+1, and we
define the space relative to M of the type II, as being the space Rn+1

M , with the metric defined by

〈Vq , Wq〉R2 = 〈V T
p , WT

p 〉, (1.2)

where V T
p denotes the orthogonal projection of Vq on TpM .

LetM be a hypersurface in Rn+1
M , locally, M can be parametrized by X : U ⊂ Rn → Rn+1

M

X(u) = Y (u) + h(u)N(u), u ∈ U, (1.3)

where h : U ⊂ Rn → R is a real function and Y : U → M is a local parameterization of the M . In this
case, the function h is called the height function.

Let N be the Gauss map of theM. We define the relative Gauss map by

NR(u) =
N (u)

〈N (u) , N(u)〉
. (1.4)

Considering M to be a hypersurface in the relative space of the type I, the coefficients of the first and
second fundamental forms of theM relative to M are given by

g1
ij(u) = 〈Y,i , Y,j 〉, bij = 〈X,ij (u) , NR(u)〉. (1.5)

Moreover, we define the relative Weingartem matrix W of theM by W = −BG−1
1 , where B is the matrix

of coefficients of the second fundamental form and G1 is the matrix of coefficients of the first fundamental
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form.
Analogously, consideringM to be a hypersurface in the relative space of the type II, the coefficients of the
first and second fundamental forms of theM relative to M are given by

g2
ij(u) = 〈Y,i +hN,i , Y,j +hN,j 〉, bij = 〈X,ij (u) , NR(u)〉. (1.6)

We define the relative Weingartem matrixW of theM byW = −BG−1
2 , whereB andG2 are, respectively,

the matrices of the coefficients of the first and second fundamental forms of theM relative to M .
We observe that in the two relative spaces,M has the same relative normal map and the same second

fundamental form, what are different are its first fundamental forms.
Ribaucour transformations for hypersurfaces, parametrized by lines of curvature, were classically stud-

ied by Bianchi [4]. They can be applied to obtain surfaces of constant Gaussian curvature and surfaces of
constant mean curvature, from a given such surface, respectively, with constant Gaussian curvature and con-
stant mean curvature. The first application of this method to minimal and cmc surfaces in R3 was obtained
by Corro, Ferreira, and Tenenblat in [6]-[8].

Dupin’s surfaces in Euclidean space are classified. There are several equivalent definitions of Dupin
cyclides, for example, in Euclidean space, they can be defined as any inversion of a torus, cylinder or double
cone, i.e, Dupin cyclide is invariant under Möbius transformations. Classically the cyclides of Dupin were
characterized by the property that both sheets of the focal set are curves. Another equivalent definition says
that such surfaces can also be given as surfaces that are the envelope of two families at 1-parameter spheres
(including planes as degenerate spheres). For more on Dupin cyclides see [2] and [3].

We consider M a fixed hypersurface in Euclidean space and we introduce two types of spaces relative
to M , of type I and type II. We observe that when M is a hyperplane, the two geometries coincides with the
isotropic geometry. By applying the theory to a Dupin hypersurface M , we define a relative Dupin hyper-
surfaceM of type I and type II , we provide necessary and sufficient conditions for a relative hypersurface
M to be relative Dupin parametrized by relative lines of curvature, in both spaces. Moreover, we provides
a relationship between the Dupin hypersurfaces locally associated to M by a Ribaucour transformation and
the type II Dupin hypersurfaces relativeM. We provide explicit examples of the Dupin hypersurface rela-
tive to a hyperplane, torus, S1×Rn−1 and S2×Rn−2, in both spaces. This work is organized as follows. In
section 1, we provide the basic local theory of the Ribaucour transformation and Dupin hypersurface defini-
tion. In section 2, we provide a local characterization of the hypersurfaces relatives, to a fixed hypersurface
parametrized by lines of curvature, in both types. Moreover, we provide the relative Weingarten matrix and
a necessary and sufficient condition for a relative hypersurfaceM to be a relative Dupin parametrized by
lines of relative curvature, in both types. In section 3, we highlight the type I relative Dupin hypersurfaces
and we generate families of type I Dupin hypersurface relative to a hyperplane, a torus, S1 × Rn−1 and
S2 × Rn−2. In section 4, we highlight the type II relative Dupin hypersurfaces, we provides a relationship
between the Dupin hypersurfaces locally associated to M by a Ribaucour transformation and the type II
Dupin hypersurfaces relative to M . Moreover, we generate families of type II Dupin hypersurface relative
to a hyperplane, a torus, S1 × Rn−1 and S2 × Rn−2.

2. Preliminaries. This section contains definitions and basic concepts that will be used in later sec-
tions.

A sphere congruence is an n-parameter family of spheres whose centers lie on an n-dimensional man-
ifold M0 contained in Rn+1. Locally, we may condider M0 parametrized by X0 : U ⊂ Rn → Rn+1.
For each u ∈ U , we consider a sphere centered at X0(u) with radius r(u), where r is a differentiable
real funcition. Two hypersurfaces M and M̃ are said to be associated by a sphere congruence if there is a
difeomorphism ψ : M → M̃ , such that at corresponding points p and ψ(p) the manifolds are tangent to the
same sphere of the sphere congruence. A special case occurs when ψ preserves lines of curvature.

Let M and M̃ be orientable hypersurfaces of Rn+1. We denote by N and Ñ their Gauss map. We
say that M and M̃ are associated by a Ribaucour transformation, if and only if, there exists a differentiable
function h defined on M and a diffeomorphism ψ : M → M̃

(a) for all p ∈M , p+ h(p)N(p) = ψ(p) + h(p)Ñ(ψ(p)), where Ñ is the Gauss map of M̃ .
(b) The subset p+ h(p)N(p), p ∈M , is a n-dimensional submanifold.
(c) ψ preserves lines of curvature.

We say that M and M̃ are locally associated by a Ribaucour transformation if, for all p ∈ M , there exists
a neighborhood of p in M which is associated by a Ribaucour transformation to an open subset of M̃ .
Similarly, one may consider the notion of parametrized hypersurfaces locally associated by a Ribaucour
transformation.

A hypersurface M ⊂ Rn+1 is a Dupin submanifold if its principal curvatures are constant along
the corresponding lines of curvature. Whenever, the principal curvatures are constant, M is a called an
isoparametric submanifold.
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Let M be an orientable hypersurface in Rn+1, N its Gauss map and suppose that M has an orthogonal
parameterization by lines of curvature Y : U ⊂ Rn →M , with principal curvatures−λi, 1 ≤ i ≤ n. Then,

〈Y,i , Y,j 〉 = δijLij , 1 ≤ i, j ≤ n, (2.1)
N,i = λiY,i , 1 ≤ i ≤ n, (2.2)

〈N,N〉 = 1, (2.3)

where 〈, 〉 denotes the Euclidean metric in Rn+1.
Moreover for 1 ≤ i 6= j ≤ n, we have

Y,ij −Γi
ijY,i−Γj

ijY,j = 0, (2.4)(
λj − λi

)
Γi
ij = λi,j , (2.5)

where Γi
ij are the Christoffel symbols.

The Christoffel symbols in terms of the metric (2.1) are given by

Γi
ii =

Lii,i

2Lii
, Γj

ii = −Γi
ij

Lii

Ljj
, Γi

ij =
Lii,j

2Lii
, (2.6)

where 1 ≤ i, j ≤ 2 are distinct.
From (2.1)-(2.3) and (2.6), we get

Y,ii = Γi
iiY,i−

n∑
j 6=i

Γi
ij

Lii

Ljj
Y,j −λiLiiN. (2.7)

3. Relative Weingarten matrix. In this section, we start with a local characterization of a relative
hypersurface of the type I and (or) type II to a fixed hypersurface in Rn+1. We provide the relative Wein-
garten matrix and a necessary and sufficient condition for a relative hypersurfaceM has a parameterization
by lines of relative curvature.

Theorem 3.1. Let M be an orientable hypersurface in Rn+1, N its Gauss map and suppose that M
has an orthogonal parameterization by lines of curvature Y : U ⊂ Rn → M , with principal curvatures
−λi, 1 ≤ i ≤ n. LetM be a hypersurface in Rn+1

M of the type I or type II. ThenM can be parabeterized
by

X = Y + hN, (3.1)

with the relative normal NR, given by

NR = −
n∑

r=1

h,r Y,r(
1 + λrh

)
Lrr

+N, (3.2)

where Lrr = 〈Y,r , Y,r 〉. Moreover, the type I (or type II) relative Weingarten matrix of X , V =
(
Vij
)

is
given by

Vij =
1

gjj

[
h,ij −Ai

[ n∑
r=1

Γr
ijh,r

Ar
+ δijLiiλi

]
− h,i h,j

[
λj
Aj

+
λi
Ai

]
− hλi,jh,i

Ai

]
, (3.3)

where Ai = 1 + hλi, Γr
ij 1 ≤ i, j, r ≤ n are given by (2.6) and gjj are the coefficients of the first

fundamental form of X given by (1.5), if type I and by (1.6), if type II.
Proof: LetM be a hypersurface in Rn+1

M . Since that Y : U ⊂ Rn → M is a parameterization by lines of
curvature for M , we have thatM can be parametrized by X = Y + hN , where N is a vector field normal
to Y . Differentiating X with respect to ui and uj 1 ≤ i , j ≤ n, we get

X,i =
(
1 + λih

)
Y,i +h,iN, (3.4)

X,ij = h,ij N + (1 + λih)

[ n∑
r=1

Γr
ijY,r −δijLiiλiN

]
+ λi,jhY,i +λih,j Y,i +λjh,i Y,j , (3.5)

where λi, 1 ≤ i ≤ n are the principal curvatures of the M .
In order, we will consider N the unit vector field normal toM given by

N =

n∑
r=1

brY,r +bn+1N, (3.6)
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where
n∑

r=1

(
br
)2
Lrr +

(
bn+1

)2
= 1.

Since 〈X,i ,N〉 = 0, for all 1 ≤ i ≤ n, using (3.4) we get

bi(1 + λih)Lii + bn+1h,i = 0.

Substituting in (3.6), we have

N = bn+1

(
−

n∑
r=1

h,r(
1 + λrh

)
Lrr

Y,r +N

)
.

Therefore the relative normal

NR =
N

〈N , N〉
,

is given by (3.2).
Finally, let V =

(
Vij
)

be the type I (or type II) relative Weingarten matrix of X . Thus

Vij =
−〈NR , X,ij 〉

gjj

where gjj are the coefficients of the first fundamental form of X given by (1.5), if type I and by (1.6), if
type II. Using (3.2) and (3.5), we have (3.3).

2

Let M be an orientable hypersurface in Rn+1 and considerM a hypersurface in Rn+1
M of the type I

(or type II). For each p ∈ M there exists a type I (or type II) relative orthonormal basis {eR1 , eR2 , ... , eRn }
of TpM such that dNR(eRi ) = λRi e

R
i , 1 ≤ i ≤ n. The functions −λRi are called the type I (or type II)

relative principal curvatures at p and the corresponding directions, that is, eRi are called type I (or type II)
relative principal directions at p. We say that a hypersurfaceM in Rn+1

M is parametrized by lines of relative

curvature X of the type I (or type II), if for each p ∈ M, eRi =
X,i (p)√
gii(p)

, are type I (or type II) relative

principal directions.
Theorem 3.2. Let M be an orientable hypersurface in Rn+1, N its Gauss map and suppose that M

has an orthogonal parameterization by lines of curvature Y : U ⊂ Rn → M , with principal curvatures
−λi, 1 ≤ i ≤ n. Then (3.1) is an orthogonal parameterization by lines of relative curvature of the type I (or
type II) for a hypersurfaceM relative toM of the type I (or type II), if and only if, there exists nonvanishing
functions Ω, Ωi and W , where h = Ω

W , such that

Ωi,j = Ωj aj,i
ai
, for i 6= j,

Ω,i = aiΩ
i, (3.7)

W,i = −aiΩiλi,

with ai =
√
〈Y,i , Y,i 〉, and W (W + λiΩ) 6= 0. Moreover X given by (3.1) becomes

X = Y +
Ω

W
N. (3.8)

Proof: From Theorem 1, the type I (or type II) relative Weingarten matrix of X , V =
(
Vij
)
, is given by

(3.3). Therefore, if V is diagonal, then X is a parameterization by lines of relative curvature of the type I
(or type II). Thus, for Vij = 0, i 6= j, we get

h,ij −
1 + λih

1 + λjh
Γj
ijh,j −

1 + λjh

1 + λih
Γi
ijh,i−

(
λj

1 + λjh
+

λi
1 + λih

)
h,i h,j = 0, 1 ≤ i 6= j ≤ n. (3.9)

From Proposition 2.3 of [6], h is a solution of (3.9), if and only if, there exists nonvanishing functions Ω,
Ωi and W , where h = Ω

W , which satisfy

Ωi,j = Ωj aj,i
ai
, for i 6= j,

Ω,i = aiΩ
i, (3.10)

W,i = −aiΩiλi,
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with ai =
√
〈Y,i , Y,i 〉, Γi

ij =
ai,j
ai

and W (W + λiΩ) 6= 0.
2

Remark 3.1. Let M be a hypersurface in Rn+1
M of the type I (or type II), parametrized by lines of

relative curvature of the type I (or type II), as in Theorem 2. Then the type I (or type II) relative Weingarten
matrix, V =

(
Vij
)

given by in the Theorem 1, can be rewritten as follows Vij = 0, 1 ≤ i 6= j ≤ n and

Vii =
W + λiΩ

W 2gii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
. (3.11)

where W and Ω satisfies (3.10).
Remark 3.2. Let M be a hypersurface in Rn+1

M of the type I (or type II), parametrized by lines of
relative curvature of the type I (or type II). Then, the relative principal curvatures ofM of the type I (or
type II) λRi , are given by λRi = Vii, 1 ≤ i ≤ n.

Definition 3.1. A hypersurfaceM ⊂ Rn+1
M is a relative Dupin submanifold of the type I (or type II)

if its relative principal curvatures of type I ( or type II) are constant along the corresponding relative lines
of curvature of type I ( or type II). Whenever, the relative principal curvatures of type I ( or type II) are
constant,M is a called a relative isoparametric submanifold of type I ( or type II).

Using Remark 2 and Definition 1, we immediately get the corollary.
Corollary 3.1. Let M be a Dupin hypersurface in Rn+1 and suppose that M has an orthogonal

parameterization by lines of curvature Y : U ⊂ Rn → M . LetM be a hypersurface in Rn+1
M of the type

I (or type II), and consider the relative Weingarten matrix of the type I (or type II), V =
(
Vij
)

given by
(3.11). ThenM is a Dupin hypersurface in Rn+1

M of the type I (or type II) if, and only if, Vii,i = 0.
Remark 3.3. If M is the hyperplane Rn, then the hypersurfaceM relative to M of the type I and type

II is an isotropic hypersurface.

4. Relative geometry of the type I. In this section, we highlight the relative Dupin hypersurfaces
type I. We start by providing a relationship between the Dupin hypersurfaces locally associated to Rn by a
Ribaucour transformation and the type I Dupin hypersurfaces relative to Rn. We will generate families of
type I Dupin hypersurfaces relative to a hyperplane, a torus, S1 × Rn−1 and S2 × Rn−2.

Let M be an orientable hypersurface in Rn+1, N its Gauss map and suppose that M has an orthogonal
parameterization by lines of curvature Y : U ⊂ Rn → M , with principal curvatures −λi, 1 ≤ i ≤ n. Let
M be a hypersurface in Rn+1

M of the type I. ThenM can be parametrized by

X = Y + hN,

where h is a differentiable real function defined onM. Moreover, for (1.5), the coefficients of the first and
second fundamental forms of X are given by

g1
ij = 〈Y,i , Y,j 〉 = δijLii, b1ij = 〈NR , X,ij 〉,

where the normal relative NR is given by (3.2).
The first theorem provides a relationship between the Dupin hypersurfaces locally associated to Rn by

a Ribaucour transformation and the type I Dupin hypersurfaces relative to Rn.
Theorem 4.1. Let Rn be a hyperplane parametrized by Y (u1, ... , un) = (u1, ... , un, 0). Consider

M̃ the hypersurface locally associated to Rn by a Ribaucour transformation. Let M be a type I hyper-
surface relative to Rn, thenM is a type I Dupin hypersurface relative to Rn, if and only if, M̃ is a Dupin
hypersurface.
Proof: From Corollary 1,M is a type I Dupin hypersurface relative to Rn if, and only if, Vii,i = 0, where

Vii =
W + λiΩ

W 2Lii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
,

with functions W and Ω satisfying (3.10).
On the other hand, from [9], M̃ locally associated to Rn by a Ribaucour transformation, is a Dupin hyper-
surface, if and only if, Ti,i = 0, where

Ti =
2

Lii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
,

with functions W and Ω satisfying (3.10).
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Since the principal curvatures of Y are λi = 0 and the metric Lij = δij , for 1 ≤ i, j ≤ n, it follows
from equation (3.10) that

Ω =

n∑
i=1

fi(ui), W = c 6= 0,

where fi(ui) are differentiable functions. Therefore, Vii,i = 0, if and only if, Ti,i = 0.
2

Remark 4.1. When M is the hyperplane Rn, the geometry of Rn+1
M coincides with the isotropic ge-

ometry. Then in the theorem 3, we show that the hypersurface M̃ locally associated to Rn by a Ribaucour
transformation is a Dupin hypersurface, if and only if, the hypersurfaceM is an isotropic Dupin hypersur-
face. Moreover,M is the hypersurface of center of the Ribaucour transformation.

In the next results, we provide families of type I Dupin hypersurfaces relative to a hyperplane, a torus,
S1 × Rn−1 and S2 × Rn−2.

Proposition 4.1. Consider the hyperplane in the Euclidean space Rn+1, parametrized by Y (u1, ..., un) =
(u1, ..., un, 0). Then M is a type I Dupin hypersurface relative to Rn+1, if and only if, M can be
parametrized by

X(u1, ..., un) =

(
u1, ..., un,

∑n
i=1 fi(ui)

c

)
, (4.1)

where fi(ui) = ci2u
2
i + ci1ui + ci0, 1 ≤ i ≤ n, and c 6= 0, ci2, ci1, ci0 ∈ R.

Proof: Since the principal curvatures of Y are λi = 0 and the metric Lij = δij , for 1 ≤ i, j ≤ n, it follows
from equation (3.10) that

Ω =

n∑
i=1

fi(ui), W = c 6= 0,

where fi(ui) are differentiable functions. In order, to obtain type I Dupin hypersurface relative to Rn, we
consider Vii given by (3.11),

Vii =
f ′′i
c
.

From Corollary 1, M parametrized by X = Y +
Ω

W
en+1, where en+1 = (0, 0, ..., 0, 1) is a unit vector

field normal to Rn, is a type I Dupin hypersurface relative to Rn, if and only if, Vii,i = 0. Therefore,
fi(ui) = ci2u

2
i + ci1ui + ci0, with ci2, ci1, ci0 ∈ R and from (3.8), X is given by (5.2).

2

Proposition 4.2. Consider the torus in R3, parametrized by

Y (u1, u2) =
(
(a+ r cos u2) cos u1 , (a+ r cos u2) sin u1 , r sin u2

)
.

ThenM is a Type I Dupin hypersurface relative to torus, if and only if,M can be parametrized by

X =


− cos u1

(
−aB2 sin u2+(−aB1+rB+A) cos u2

)
cos u2(A2 sin u1+A1 cos u1)+B2 sin u2

,

− sin u1

(
−aB2 sin u2+(−aB1+rB+A) cos u2

)
cos u2(A2 sin u1+A1 cos u1)+B2 sin u2

,

− sin u2

(
aA2 sin u1+aA1 cos u1−aB1+rB+A

)
cos u2(A2 sin u1+A1 cos u1)+B2 sin u2

 . (4.2)

where Bi, Ai, A and B are real constants.
Proof: The principal curvatures of the torus and coefficients of the metric of the torus are

λ1 =
cos u2

a− r cos u2
, λ2 =

1

r
, L11 =

(
a+ r cos u2

)2
, L22 = r2.

Using (3.10), we obtain

Ω =
(
a+ r cos u2

)
f1 + rf2 +A, W = − cos u2 f1 − f2 +B,

where A, B are constants and f1, f2 are differentiable functions of u1 and u2, respectively.
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Consider Vii given by (3.11). Thus

V11 =
W + Ωλ1(

a+ r cos u2

)
W 2

[
f ′′1 + f1 − sin u2f

′
2 − cos u2

(
B − f2

)]
, (4.3)

V22 =
W + Ωλ2

rW 2

[
f ′′2 + f2 −B

]
. (4.4)

From Corollary 1,M parametrized by (3.8) is a type I Dupin hypersurface relative to torus, if and only if,
Vii,i = 0 for all 1 ≤ i ≤ 2.
Since

(
W + λiΩ

)
,i = 0 and

(
a+ r cos u2

)
,1 = 0, we conclude that Vii,i = 0, if and only if,[

1

W 2

(
f ′′1 + f1 − sin u2f

′
2 − cos u2

(
B − f2

))]
,1

= 0, (4.5)[
1

W 2

(
f ′′2 + f2 −B

)]
,2

= 0. (4.6)

If f ′1 = 0, then we have V11,1 = 0. Then suppose f ′1 6= 0.
Since (4.6), we get

−2W,2
W

(
f ′′2 + f2 −B

)
+ f ′′′2 + f ′2 = 0.

This last equation can be rewritten as

2W,2
(
f ′′2 + f2 −B

)
= W

(
f ′′′2 + f ′2

)
. (4.7)

Differentiating with respect to u1, we get

2W,12

(
f ′′2 + f2 −B

)
= W,1

(
f ′′′2 + f ′2

)
.

As W,12 = sin(u2)f ′1 and W,1 = − cos(u2)f ′1, then if f ′′2 +f2−B 6= 0, we get f ′′2 +f2−B = A1 cos2 u2.
Substituting in (4.7) and using that W,2 = sinu2f1 − f ′2, we obtain a contradiction. Therefore, we have
f ′′2 + f2 −B = 0. Thus

f2 = B1 cos u2 +B2 sin u2 +B. (4.8)

Substituting (4.8) in (4.5), we obtain [
1

W 2

(
f ′′1 + f1 +B1

)]
,1

= 0, (4.9)

Thus

−2W,1
W

(
f ′′1 + f1 +B1

)
+ f ′′′1 + f ′1 = 0.

This last equation can be rewritten as

2W,1
(
f ′′1 + f1 +B1

)
= W

(
f ′′′1 + f ′1

)
. (4.10)

Differentiating with respect to u2, we get

2W,12

(
f ′′1 + f1 +B1

)
= W,2

(
f ′′′1 + f ′1

)
.

As W,12 = sin u2f
′
1 and W,2 = sinu2f1 − f ′2, then if f ′′′1 + f ′1 6= 0, we get f ′′1 + f1 +B1 6= 0 and

2f ′1
(
f ′′1 + f1 +B

)
f ′′′1 + f ′1

− f1 =
−f ′2

sin u2
.

Hence
2f ′1
(
f ′′1 + f1 +B1

)
f ′′′1 + f ′1

− f1 = B1, since (4.8). Thus f ′′1 + f1 + B1 = c(f1 + B1)2, which is a

contradiction, since (4.10), W,1 = − cos(u2)f ′1 and W = − cos u2 f1 − f2 + B. Therefore, we have
f ′′′1 + f ′1 = 0. Substituting in (4.10), we get f ′′1 + f1 +B1 = 0, since W,1 6= 0. Thus

f1(u1) = A1 cos u1 +A2 sin u1 −B1. (4.11)
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Figure 4.1: On the surface above we have a type I Dupin surface relative to torus, with a = 4, r = 1, A =
3, B = −2, A2 = B2 = 1, B1 = −1 and A1 = B = −2.

Finally, considering the unit vector field normal to Y

N =

(
cos u1 cos u2 , sin u1 cos u2 , sin u2

)
,

and substituting f1, f2, Ω and W in X = Y + Ω
WN we obtain (5.3).

2

Proposition 4.3. Consider the submanifold S2 × Rn−2 in Rn+1, parametrized by

Y (u1, ..., un) =
(

sin u1 cos u2 , sin u1 sin u2 , cos u1 , u3 , u4 , ... , un
)
.

ThenM is a type I Dupin hypersurface relative to Y , if and only if,M can be parametrized by

X = Y +
Ω

W
N,

where

N(u1, ..., un) =
(

sin u1 cos u2 , sin u1 sin u2 , cos u1 , 0 , ... , 0
)
,

Ω = sin u1f2 +

n∑
i 6=2

fi, W = − sin u1f2 − f1 + C, f1(u1) = A1 cos u1 + C,

f2(u2) = B1 cos u2 +B2 sin u2 fj(uj) = Cj2u
2
j + Cj1uj + Cj0, 3 ≤ j ≤ n,

with C, Ai, Bi, Cj2, Cj1 and Cj0 are real constants.
Proof: The principal curvatures and coefficients of the metric of the of the S2 × Rn−2 are

λ1 = λ2 = 1, λj = 0, 3 ≤ j ≤ n, Lii = 1, 1 ≤ i 6= 2 ≤ n, L22 = sin2 u1.

Using (3.10), we obtain

Ω = sin u1f2 +

n∑
i 6=2

fi, W = − sin u1f2 − f1 + C,

where C is constant and fi are differentiable functions of ui, 1 ≤ i ≤ n.
Consider Vii given by (3.11). Thus

V11 =
W + Ω

W 2

[
f ′′1 + f1 − C

]
, (4.12)

V22 =
W + Ω

sin u1W 2

[
f ′′2 + f2 + cos u1f

′
1 + sin u1f1 − C sin u1

]
, (4.13)

Vjj =
f ′′j
W
, 3 ≤ j ≤ n. (4.14)

From Corollary 1, M parametrized by (3.8) is a type I Dupin hypersurface relative to S2 × Rn−2, if and
only if, Vii,i = 0 for all 1 ≤ i ≤ n.
Proceeding similarly to the proof of Proposition 2, we obtain that Vii,i = 0, 1 ≤ i ≤ 2, if and only if, f1

and f2 are given by

f1(u1) = A1 cos u1 +A2 sin u1 + C, f2(u2) = B1 cos u2 +B2 sin u2 −A2. (4.15)



252 Corro VA, Ferro ML.- Selecciones Matemáticas. 2022; Vol. 9(2): 243-257

Figure 4.2: On the surface above we have a type I Dupin surface relative to S2, withB2 = 0, B1 = 2, A1 =
−1 and C = 1.

Without loss of generality, can be considered A2 = 0. In fact, substituting f1 and f2 given above into the
expressions of W and Ω, we have that W and Ω do not depend on A2.
Moreover, since that (4.14) and W,j = 0, we conclude that fj , 3 ≤ j ≤ n are given by

fj(uj) = Cj2u
2
j + Cj1uj + Cj0. (4.16)

2

Proposition 4.4. Consider the submanifold S1 × Rn−1 in Rn+1, parametrized by

Y (u1, ..., un) =
(

cos u1 , sin u1 , u2 , u3 , ... , un
)
.

ThenM is an isotropic Dupin hypersurface relative to Y , if and only if,M can be parametrized by

X = Y +
Ω

W
N,

where

N(u1, ..., un) =
(

cos u1 , sin u1 , 0 , ... , 0
)
,

Ω =

n∑
i=1

fi, W = −f1 + C, fj(uj) = Cj2u
2
j + Cj1uj + Cj0, 2 ≤ j ≤ n,

and f1 satisfies f ′′1 + f1 − C − C1(f1 − C)2 = 0, with C, C1, Cj2, Cj1 and Cj0 are real constants.
Proof: The principal curvatures and coefficients of the metric of the of the S1 × Rn−1 are

λ1 = 1, λj = 0, 2 ≤ j ≤ n, Lii = 1, 1 ≤ i ≤ n.

Using (3.10), we obtain

Ω =

n∑
i 6=1

fi, W = −f1 + C,

where C is constant and fi are differentiable functions of ui, 1 ≤ i ≤ n.
Consider Vii given by (3.11). Thus

V11 =
W + Ω

W 2

[
f ′′1 + f1 − C

]
, (4.17)

Vjj =
f ′′j
W
, 2 ≤ j ≤ n. (4.18)

From Corollary 1, M parametrized by (3.8) is a type I Dupin hypersurface relative to S1 × Rn−1, if and
only if, Vii,i = 0 for all 1 ≤ i ≤ n.
Since

(
W + Ω

)
,1 = 0 and W = C − f1, we conclude from Vii,i = 0 that the functions fj are given by

fj(uj) = Cj2u
2
j + Cj1uj + Cj0 2 ≤ j ≤ n,

and f1 satisfies f ′′1 + f1 − C − C1(f1 − C)2 = 0. where C1, Cj2, Cj1 and Cj0 are real constants.
2
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Figure 4.3: On the surface above we have a type I Dupin surface relative to cylinder S1 × R, with C21 =
0, C22 = −1, C20 = 1, C = C1 = 1 and f1 = 2.

5. Relative geometry of the type II. In this section, we highlight the relative Dupin hypersurfaces
of the type II. We start by providing a relationship between the Dupin hypersurfaces locally associated to
a fixed Dupin hypersurface M by a Ribaucour transformation and the type II Dupin hypersurfaces relative
M. We will generate families of type II Dupin hypersurfaces relative to a hyperplane, a torus, S1 × Rn−1

and S2 × Rn−2.
Let M be an orientable hypersurface in Rn+1, N its Gauss map and suppose that M has an orthogonal

parameterization by lines of curvature Y : U ⊂ Rn → M , with principal curvatures −λi, 1 ≤ i ≤ n. Let
M be a hypersurface in Rn+1

M of the type II. ThenM can be parametrized by

X = Y + hN,

where h is a differentiable real function defined onM. From (1.6), the coefficients of the first and second
fundamental forms of X are given by

g2
ij =

(
1 + hλi

)2
δijLii, b2ij = 〈NR , X,ij 〉,

where δijLii = 〈Y,i , Y,j 〉 and the normal relative NR is given by (3.2). Moreover, since that X is a
parameterization by lines of relative curvature, then the relative Weingarten matrix of X , V =

(
Vij
)

is
given by Vij = 0, 1 ≤ i 6= j ≤ i, and

Vii =
1

(W + λiΩ)Lii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
(5.1)

where Ω and W satisfies (3.10).
Theorem 5.1. Let M be a Dupin hypersurface and suppose that it has a parameterization by lines of

curvature Y : U ⊂ Rn → M , with principal curvatures −λi, 1 ≤ i ≤ n. Consider M̃ the hypersurface
locally associated to M by a Ribaucour transformation. LetM be a type II hypersurface relative to M ,
thenM is a type II Dupin hypersurface relative to M , if and only if, M̃ is a Dupin hypersurface.
Proof: From Corollary 1,M is a type II Dupin hypersurface relative to M if, and only if, Vii,i = 0, where

Vii =
1

(W + λiΩ)Lii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
,

with functions W and Ω satisfying (3.10).
On the other hand, from [9], M̃ locally associated to M by a Ribaucour transformation, is a Dupin hyper-
surface, if and only if, Ti,i = 0, where

Ti =
2

Lii

[
Ω,ii−

n∑
r=1

Γr
iiΩ,r −LiiλiW

]
,

with functions W and Ω satisfying (3.10).
Since M is a Dupin hypersurface, we have (W + λiΩ),i = 0. Therefore, Vii,i = 0, if and only if,

Ti,i = 0.
2

In the next results, we provides families of type II Dupin hypersurfaces relative to a hyperplane, a torus,
S1 × Rn−1 and S2 × Rn−2.

Proposition 5.1. Consider the hyperplane in the Euclidean space Rn+1, parametrized by Y (u1, ..., un) =
(u1, ..., un, 0). Then M is a type II Dupin hypersurface relative to Rn+1, if and only if, M can be
parametrized by

X(u1, ..., un) =

(
u1, ..., un,

∑n
i=1 fi(ui)

c

)
, (5.2)
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where fi(ui) = ci2u
2
i + ci1ui + ci0, 1 ≤ i ≤ n, and c 6= 0, ci2, ci1, ci0 ∈ R.

Proof: Since the principal curvatures of Y are λi = 0 and the metric Lij = δij , for 1 ≤ i, j ≤ n, it follows
from equation (3.10) that

Ω =

n∑
i=1

fi(ui), W = c 6= 0,

where fi(ui) are differentiable functions. In order, to obtain type II Dupin hypersurface relative to Rn+1,
we consider Vii given by (5.1),

Vii =
f ′′i
c
.

From Corollary 1, M parametrized by X = Y +
Ω

W
en+1, where en+1 = (0, 0, ..., 0, 1) is a unit vector

field normal to Rn, is a type II Dupin hypersurface relative to Rn, if and only if, Vii,i = 0. Therefore,
fi(ui) = ci2u

2
i + ci1ui + ci0, with ci2, ci1, ci0 ∈ R and from (3.8), X is given by (5.2).

2

Remark 5.1. In Proposition 5, one observes that the type II Dupin hypersurface X relative to Rn is an
isotropic Dupin hypersurface.

Proposition 5.2. Consider the torus in R3, parametrized by

Y (u1, u2) =
(
(a+ r cos u2) cos u1 , (a+ r cos u2) sin u1 , r sin u2

)
.

ThenM is a type II Dupin hypersurface relative to Y , if and only if,M can be parametrized by

X =


− cos u1

(
−aB2 sin u2+(−aB1+rB+A) cos u2+aB−aB3

)
cos u2(A1 cos u1+A2 sin u1+A3+B1)+B2 sin u2+B3−B ,

− sin u1

(
−aB2 sin u2+(−aB1+rB+A) cos u2+aB−aB3

)
cos u2(A1 cos u1+A2 sin u1+A3+B1)+B2 sin u2+B3−B ,

− sin u2

(
aA1 cos u1+aA2 sin u1+aA3+rB+A

)
cos u2(A1 cos u1+A2 sin u1+A3+B1)+B2 sin u2+B3−B

 . (5.3)

where Bi, Ai, A and B are real constants.
Proof: The principal curvatures of the torus and coefficients of the metric of the torus are

λ1 =
cos u2

a− r cos u2
, λ2 =

1

r
, L11 =

(
a+ r cos u2

)2
, L22 = r2.

Using (3.10), we obtain

Ω =
(
a+ r cos u2

)
f1 + rf2 +A, W = − cos u2 f1 − f2 +B,

where A, B are constants and f1, f2 are differentiable functions of u1 and u2, respectively.
Consider Vii given by (5.1). Thus

V11 =
1(

a+ r cos u2

)(
W + Ωλ1

)[f ′′1 + f1 − sin u2f
′
2 − cos u2

(
B − f2

)]
, (5.4)

V22 =
1

r
(
W + Ωλ2

)[f ′′2 + f2 −B
]
. (5.5)

From Corollary 1,M parametrized by (3.8) is a type II Dupin hypersurface relative to torus, if and only if,
Vii,i = 0 for all 1 ≤ i ≤ 2.
Since

(
W + λiΩ

)
,i = 0, we conclude from Vii,i = 0 that the functions fi are given by

f1(u1) = A1 cos u1 +A2 sin u1 +A3, f2 = B1 cos u2 +B2 sin u2 +B3.

Finally, considering the unit vector field normal to Y

N =

(
cos u1 cos u2 , sin u1 cos u2 , sin u2

)
,

and substituting f1, f2, Ω and W in X = Y + Ω
WN we obtain (5.3).

2
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Figure 5.1: On the surfaces above we have a type II Dupin surface relative to torus, with a = 4, r = 1, A =
10, B = −3, A2 = B2 = 0, B1 = B3 = 1, A1 = −1 and A3 = −2.

Proposition 5.3. Consider the submanifold S2 × Rn−2 in Rn+1, parametrized by

Y (u1, ..., un) =
(

sin u1 cos u2 , sin u1 sin u2 , cos u1 , u3 , u4 , ... , un
)
.

ThenM is a type II Dupin hypersurface relative to Y , if and only if,M can be parametrized by

X = Y +
Ω

W
N,

where

N(u1, ..., un) =
(

sin u1 cos u2 , sin u1 sin u2 , cos u1 , 0 , ... , 0
)
,

and Ω = sin u1f2 +
∑n

i 6=2 fi, W = − sin u1f2−f1 +C, f1(u1) = Ai cos ui +Bi sin ui +Ci, 1 ≤ i ≤ 2

and fj(uj) = Cj2u
2
j +Cj1uj +Cj0, 3 ≤ j ≤ n, with C, Ai, Bi, Ci, Cj2, Cj1 and Cj0 are real constants.

Proof: The principal curvatures and coefficients of the metric of the of the S2 × Rn−2 are

λ1 = λ2 = 1, λj = 0, 3 ≤ j ≤ n, Lii = 1, 1 ≤ i 6= 2 ≤ n, L22 = sin2 u1.

Using (3.10), we obtain

Ω = sin u1f2 +

n∑
i6=2

fi, W = − sin u1f2 − f1 + C,

where C is constant and fi are differentiable functions of ui, 1 ≤ i ≤ n.
Consider Vii given by (5.1). Thus

V11 =
1

W + Ω

[
f ′′1 + f1 − C

]
, (5.6)

V22 =
1

sin u1

(
W + Ω

)[f ′′2 + f2 + cos u1f
′
1 + sin u1f1 − C sin u1

]
, (5.7)

Vjj =
f ′′j
W
, 3 ≤ j ≤ n. (5.8)

From Corollary 1, M parametrized by (3.8) is a type II Dupin hypersurface relative to S2 × Rn2 , if and
only if, Vii,i = 0 for all 1 ≤ i ≤ n.
Since

(
W + Ω

)
,j = 0, 1 ≤ j ≤ 2 and W,r = 0, 3 ≤ r ≤ n we conclude from Vii,i = 0 that the functions

fi are given by

fi(ui) = Ai cos ui +Bi sin ui + Ci, 1 ≤ i ≤ 2, fj(uj) = Cj2u
2
j + Cj1uj + Cj0 3 ≤ j ≤ n,

where Ai, Bi, Ci, Cj2, Cj1 and Cj0 are real constants.
2

Proposition 5.4. Consider the submanifold S1 × Rn−1 in Rn+1, parametrized by

Y (u1, ..., un) =
(

cos u1 , sin u1 , u2 , u3 , ... , un
)
.

ThenM is a type II Dupin hypersurface relative to Y , if and only if,M can be parametrized by

X = Y +
Ω

W
N,

where

N(u1, ..., un) =
(

cos, u1 , sin u1 , 0 , ... , 0
)
,
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Figure 5.2: On the surfaces above we have a type II Dupin surface relative to S2, with A2 = B2 = 0, B1 =
2, A3 = 4A1 = −1, B3 = −2 and C = 1.

and Ω =
∑n

i=1 fi, W = −f1 +C, f1(u1) = A1 cos u1 +B1 sin u1 +C1 and fj(uj) = Cj2u
2
j +Cj1uj +

Cj0, 2 ≤ j ≤ n, with C, A1, B1, C1, Cj2, Cj1 and Cj0 are real constants.
Proof: The principal curvatures and coefficients of the metric of the of the S1 × Rn−1 are

λ1 = 1, λj = 0, 2 ≤ j ≤ n, Lii = 1, 1 ≤ i ≤ n.

Using (3.10), we obtain

Ω =

n∑
i 6=1

fi, W = −f1 + C,

where C is constant and fi are differentiable functions of ui, 1 ≤ i ≤ n.
Consider Vii given by (5.1). Thus

V11 =
1

W + Ω

[
f ′′1 + f1 − C

]
, (5.9)

Vjj =
f ′′j
W
, 2 ≤ j ≤ n. (5.10)

From Corollary 1,M parametrized by (3.8) is a type II Dupin hypersurface relative to S1 × Rn−1, if and
only if, Vii,i = 0 for all 1 ≤ i ≤ n.
Since

(
W + Ω

)
,1 = 0 and W,r = 0, 2 ≤ r ≤ n we conclude from Vii,i = 0 that the functions fi are given

by

f1(u1) = A1 cos u1 +B1 sin u1 + C1, fj(uj) = Cj2u
2
j + Cj1uj + Cj0 2 ≤ j ≤ n,

where A1, B1, C1, Cj2, Cj1 and Cj0 are real constants.
2

Figure 5.3: On the surface above we have a type II Dupin surface relative to cylinder S1 × R, with C21 =
B1 = 0, C1 = 3, A1 = −2, C22 = −1, C20 = 2 and C = 1.

6. Conclusions. From the results obtained in this work we can make the following conclusions:
For each fixed hypersurface M in Euclidean space and we introduce two types of spaces relative to M , of
type I and type II. We observe that whenM is a hyperplane, the two geometries coincides with the isotropic
geometry.
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References
[1] Aydin ME, Ergut M. Isotropic geometry of graph surfaces associated with product production functions in economics. Tamkang

J. Math. 2016; 47:433-443.
[2] Berger M. Geometry II. Springer; 1987.
[3] Berger M, Gostiaux B. Differential geometry: manifolds, curves, and surfaces. Springer; 1988.
[4] Bianchi L. Lezioni di geometria Differenziale. Terza Edicione. Nicola Zanichelli Editore; 1927.
[5] Chen BY, Decu S, Verstraelen L. Notes on isotropic geometry of production models. Kragujevac J. Math. 2014; 38:23-33.
[6] Corro AMV, Ferreira WP, Tenenblat K. On Ribaucour transformations for hypersurfaces. Mat. Contemp. 1999; 17:137-160.
[7] Corro AMV, Ferreira WP, Tenenblat K. Ribaucour transformations for Constant mean curvature and linear Weingarten surfaces.

Pacific Journal of Mathematics. 2003; 212(2):265-296.
[8] Corro AMV, Ferreira WP, Tenenblat K. Minimal surfaces obtained by Ribaucour transformations. Geometriae Dedicata, Net-

therlands. 2003; 96(1):117-150.
[9] Corro AMV, Tenenblat K. Ribaucour transformation revisited. Comum. Geom. 2004; 12(5):1055-1082.

[10] Da Silva LCB. The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. J. Geom. 2019;
110:31. DOI: 10.1007/s00022-019-0488-9

[11] Da Silva LCB. Rotation minimizing frames and spherical curves in simply isotropic and pseudo-isotropic 3-spaces. Tamkang
Journal Of Mathematics. 2020; 31(1):1-23.

[12] Pottmann H, Opitz K. Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces. Comput.
Aided Geom. Des. 1994; 11:655-674.

[13] Strubecker K. Differentialgeometrie des isotropen Raumes, I. Theorie der Raumkurven. Sitzungsber. Akad. Wiss. Wien. Math.-
Naturw. Kl. IIa. 1941; 150:1-53.

[14] Strubecker K. Differentialgeometrie des isotropen Raumes II. Die Flächen konstanter Relativkrümmung K = rt− s2. Math.
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