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Abstract
This article presents a rigorous review of the conformable fractional derivative given by J. E. Napoles in
[11], studying its classical properties, as a differential operator. Likewise, applications are given to Physics,
specifically to the free fall of bodies and Newton’s law of cooling.
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Resumen
En el presente artı́culo se presenta una revisión rigurosa de la derivada fraccionaria conformable dada
por J. E. Nápoles en [11], estudiando las propiedades clásicas, como operador diferencial, que posee,
ası́ mismo se dan aplicaciones a la Fı́sica, especı́ficamente a la caı́da libre de los cuerpos y la ley de
enfriamiento de Newton.

Palabras clave. Derivadas fraccionales, derivada fraccional de Nápoles, caı́da libre de los cuerpos, enfriamiento
de los cuerpos.

1. Introduction. In the area of Mathematics, specifically the well-known Fractional Calculus, various
models of fractional derivatives appear, understanding here those derivatives whose order is determined by
a real number and sometimes by complex numbers.

In 1985, the Riemann-Liouville fractional derivative appears [12] as a result of studies based on con-
troversial discussions among great mathematicians, including Leibniz, L’Hôpital, Laplace, Lacroix Fourier
and others. This fractional derivative takes the following form:

Definition 1.1. Let α > 0, x > a, α, a, b, x ∈ R. Then

Dα
a+f(x) =

1

Γ(n− α)

dn

dtn

∫ x

a

f(t)

(x− t)α+1−n dt, n− 1 < α < n ∈ N, (1.1)

Dα
b−f(x) =

1

Γ(n− α)

dn

dtn

∫ b

x

f(t)

(x− t)α+1−n dt, n− 1 < α < n,∈ N, (1.2)

and in the case α = n ∈ N ,

Dn
a+f(x) = Dn

b−f(x) =
dn

dtn
f(x).
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The operators (1.1) and (1.2) are called the left and right Riemman-Liouville fractional derivatives,
respectively. Other fractional derivative models have been introduced since the latter and in the first half of
the last century, among these are the fractional derivative of Caputo, Riesz, Grunwald-Letnikov, and others
that use special functions as the integration kernel, such as the function of Mittag-Leffler, the Hypergeomet-
ric function and functions of the Legendre type. All these definitions have shown good applications both in
Pure Mathematics and in other areas of science and technology. By the middle of the 20th century, Michelle
Caputo introduced a definition of a fractional derivative that differs from the Riemman-Liouville definition
in the position of the operator of ordinary derivative, in addition to the fact that the considered function has
demanding differentiability conditions.

Definition 1.2. Let α ∈ C with Re(α) ≥ 0. Let f be a real valued and n times differentiable function
defined on an interval [a, b]. Then

(CDα
a+f)(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt,

(CDα
b−f)(x) =

(−1)n

Γ(n− α)

∫ x

a

f (n)(t)

(t− x)α−n+1
dt.

In the case of the Riemman-Liouville derivative, the derivative of a constant function is not zero,
however it has shown its usefulness in problems related to viscoelasticity, viscoelastic deformations, and
viscous fluids [7, 8, 17]. Similarly, and because Caputo’s model allows including initial and boundary
conditions in fractional differential equations, it has been considered one of the models that best models
real life problems [3, 4, 15, 9].

Recently Atangana [2] shows certain properties that differential operators must fulfill. Among these
are: the operator defined with order zero is the same function, linearity, describe the rate of change in the
neighborhood of a given value, satisfy the product rule and also the chain rule, the quotient rule, and others.
Given that the Riemman-Liouville fractional derivative and the Caputo fractional derivative fail under some
of these conditions, Atangana states that they are not derivatives, in the strict sense, but must be considered
as fractional operators, Khalil [10], for his part, then introduces a definition of fractional derivative with
the qualifier ”conformable”, which meets the properties mentioned above. Similarly Atangana introduces a
new model and likewise Abdeljawad [1].

Several investigations have been carried out by other authors in this direction [13]. Other investigations
have directed their goals towards fractional derivatives with kernels involving special functions [5, 6, 14, 16]

Recently Juan E. Nápoles [11] proposes certain fractional derivatives, different from those of Khalil
and Abdeljawad, with certain kernels that classify them as conformable and not conformable.

The purpose of this paper is to develop in detail such definition, its properties and applications to
Newtonian Dynamics and cooling bodies law . In addition some graphic comparisons are shown between
the solutions obtained from the ordinary differential model and those obtained by means of the conformable
fractional derivatives.

2. Conformable fractional derivative. From Differential Calculus we know that the derivative of a
function f at a given point x = a of its domain is defined by the following limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if it limits exists, and we say that f is differentiable function on x = a, using the notation f ′(a).
Khalil, in [10], propose a new definition of fractional derivative as follows.
Definition 2.1. Given a function f : [0,∞) → R then the conformable fractional derivative of order

α ∈ (0, 1] is defined by

(Tαf)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
, (2.1)

for all t > 0. We will use the notation f (α) instead of Tαf . If the limit exist for some x = t > 0 then
it is said that f is α−differentiable in that point, similarly, is said to be α−differentiable on an interval
[a, b] ⊂ [0,∞) if it is α−differentiable in each point of [a, b], and it is said that f is α−differentiable if
its α−derivative exists in each point of its domain. In particular, if f is α−differentiable on some interval
(0, a) with a > 0 and limt→0+ f

(α)(t) then

f (α)(0) = lim
t→0+

f (α)(t).
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Abdeljawad [1] give the following definition.
Definition 2.2. The left fractional derivative of order α ∈ (0, 1], starting in a point a ∈ R of a function

f : [a,∞)→ R, is defined by

(T aαf)(t) = lim
ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
. (2.2)

Whwn a = 0 it will be written Tα. If (T aαf)(t) exists in some neighborhood of a then

(T aαf)(a) = lim
t→a+

(T aαf)(t). (2.3)

Similarly, the right fractional derivative of order α ∈ (0, 1], starting in a point b ∈ R, b > a , is defined by

(bTαf)(t) = − lim
ε→0

f(t+ ε(b− t)1−α)− f(t)

ε
. (2.4)

If (bTαf)(t) exists in some neighborhood of b then

(bTαf)(b) = lim
t→b.

(bTαf)(t). (2.5)

Even the aforementioned authors have introduced conformable fractional operators. In the case of
Khalil, the author introduces the following definition.

Definition 2.3. (Ver [10]) The conformable fractional integral (Iaαf)(t) of the function f starting in a
point a ≥ 0 is defined by

(Iaαf)(t) =

∫ t

a

xα−1f(x)dx.

Abdeljawad propose his fractional integral operator as follows.
Definition 2.4. The conformable fractional integral operator of the function f starting in the point

a > 0 is defined by

(Iaαf)(t) =

∫ t

a

(x− a)α−1f(x)dx,

and the conformable fractional integral operator ending in b > 0 is defined by

(Iaαf)(t) =

∫ b

t

(b− x)α−1f(x)dx.

J. E. Nápoles warns that both the increase added to the argument of the derivatives of Khalil and
Abdeljawad, as well as the kernel of the integrals defined by both authors, are functions that depend on
the parameter α and the starting or terminal point considered. So he introduces a definition involving the
exponential function as follows

Definition 2.5. Let f : [0,∞)→ R be a function. Then the Nα
e −derivative of f , of order α ∈ (0, 1] is

defined by

(Nα
e f)(t) = limε→0

f(t+ εe(α−1)t)− f(t)

ε
. (2.6)

With the change h = εe(α−1)t, we can observe that h→ 0 when ε→ 0 and so, we have

(Nα
e f)(t) = limε→0

f(t+ εe(α−1)t)− f(t)

ε
= limh→0

f(t+ h)− f(t)

h/e(α−1)t
(2.7)

= e(α−1)tlimh→0
f(t+ h)− f(t)

h
= e(α−1)tf ′(t).

Now we will study some classical properties of the differential operators.
For a constant function we have.
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Theorem 2.1. Let f : (a, b) → R a function such that f(t) = k for all t ≥ 0, where k is an arbitrary
real number. Then

(Nα
e f)(t) = 0.

Proof: Using Definition 2.6 we have that

(Nα
e f)(t) = limε→0

f(t+ εe(α−1)t)− f(t)

ε
= limε→0

k − k
ε

= 0.

The proof is complete. �
Theorem 2.2. Let f : (a, b) → R be a function such that f(t) = tr for all t ≥ 0, where r ≥ 0 is any

real positive number. Then

(Nα
e f)(t) = e(α−1)trtr−1.

Proof: Using (2.7) we have

(Nαf)(t) = e(α−1)trtr−1.

Then the proof is complete. �
A similar result is obtained for the case r ≤ 0 for functions defined on (0,∞).
Now we will see that Nα

e −diferenciability implies continuity.
Theorem 2.3. If a function f is Nα

e −differentiable in its domain then f is continuous on it.
Proof: We will proof the continuity of f from the expression

lim
h→0

f (x+ h)− f(x) = 0.

Let observe that

f (x+ h)− f(x) = e(α−1)t
f(t+ h)− f(t)

h
· h

e(α−1)t
,

so

lim
h→0

f (x+ h)− f(x) = e(α−1)t lim
h→0

f(t+ h)− f(t)

h
· lim
h→0

h

et−α
= (Nα

e f)(t) · 0 = 0.

The proof is complete. �
Now we will see the linearity of conformable fractional derivative.
Theorem 2.4. Let f, g be real valued functions defined on an interval (a, b) , both Nα

e −diferentiable,
and β, δ arbitries real numbers. Then

(Nα
e [βf + δg])(t) = β(Nα

e f)(t) + δ(Nα
e g)(t).

Proof: Let f, g as in the statement and β, δ arbitries real numbers. Then, using Definition 2.6 we have

(Nα
e [βf + δg])(t) = limε→0

[βf + δg] (t+ εe(α−1)t)− [βf + δg] (t)

ε

= limε→0
βf(t+ εe(α−1)t)− βf(t) + δg(t+ εe(α−1)t)− δg(t)

ε

= limε→0
βf(t+ εe(α−1)t)− βf(t)

ε
+ limε→0

δg(t+ εe(α−1)t)− δg(t)

ε
= β(Nα

e f)(t) + δ(Nα
e g)(t).

The proof is complete. �
The rule of the product of functions is established as follows.
Theorem 2.5. Let f, g be two Nα

e −differentiable in a point t > 0 and α ∈ (0, 1] . Then

(Nα
e [fg]) (t) = g(t) (Nα

e f) (t) + f(t) (Nα
e g) (t).
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Proof: Let f and g be two functions as in the statement and α ∈ (0, 1]. Then, using Definition 2.6 we
get

(Nα
e [fg]) (t) = lim

ε→0

fg(t+ εe(α−1)t)− fg(t)

ε

= lim
ε→0

f(t+ εe(α−1)t)g(t+ εe(α−1)t)− fg(t)

ε

= lim
ε→0

f(t+ εe(α−1)t)g(t+ εe(α−1)t)− f(t)g(t+ εe(α−1)t) + f(t)g(t+ εe(α−1)t)− fg(t)

ε

= lim
ε→0

[
f(t+ εe(α−1)t)− f(t)

]
g(t+ εe(α−1)t)− f(t)

[
g(t+ εe(α−1)t)− g(t)

]
ε

= lim
ε→0

[
f(t+ εe(α−1)t)− f(t)

]
g(t+ εe(α−1)t)

ε
+ lim
ε→0

[
g(t+ εe(α−1)t)− g(t)

]
f(t)

ε
= g(t) (Nα

e f) (t) + f(t) (Nα
e g) (t).

The proof is complete. �
The rule for the Nα

e −derivative of the multiplicative inverse function is established as follows.
Theorem 2.6. Let h(x) = f−1(x) defined in those points where f is different from zero. Then

(
Nα
e f
−1) (t) = −N

α
e f(t)

f2(t)
.

Proof: Using Definition 2.6 we have that

(
Nα
e f
−1) (t) = lim

ε→0

f−1(t+ εe(α−1)t)− f−1(t)

ε

= lim
ε→0

f(t)− f(t+ εe(α−1)t)

ε
[
f(t)− f(t+ εe(α−1)t)

]
= − lim

ε→0

f(t+ εe(α−1)t)− f(t)

ε
[
f(t)− f(t+ εe(α−1)t)

]
= − lim

ε→0

f(t+ εe(α−1)t)− f(t)

ε
· lim
ε→0

1

f(t)− f(t+ εe(α−1)t)

= −N
α
e f(t)

f2(t)
.

The proof is complete. �
With this last result it can be prooved the rule for the quotient of two functions.
Theorem 2.7. Let f and g be two Nα

e −differentiable functions in some t > 0, α ∈ (0, 1] , and such
that g(t) 6= 0. Then

(Nα
e [f/g]) (t) =

g(t) (Nα
e f) (t)− f(t) (Nα

e g) (t)

g2(t)
.

Proof: Using Theorems 2.5 and 2.6 we have that

(Nα
e [f/g]) (t) =

(
Nα
e

[
fg−1

])
(t) = g−1(t) (Nα

e f) (t) + f(t)
(
Nα
e g
−1) (t)

=
(Nα

e f) (t)

g(t)
− f(t) (Nα

e g) (t)

g2(t)

=
g(t) (Nα

e f) (t)− f(t) (Nα
e g) (t)

g2(t)
.

The proof is complete. �
Naturally, the following integral operator is defined.
Definition 2.6. Let f be a locally integrable function in the interval [a, b]. Then the conformable

integral operator is defined by

aJ
α
Nef(t) =

∫ t

a

f(s)ds

e(α−1)s
=

∫ t

a

e−(α−1)sf(s)ds. (2.8)
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The linearity of this operator can be observed in the following development.

aJ
α
Ne (βf + δg) (t) =

∫ t

a

(βf(s) + δg(s))ds

e(α−1)s

= β

∫ t

a

f(s)ds

e(α−1)s
+ δ

∫ t

a

g(s)ds

e(α−1)s

= β (aJ
α
Nef)(t) + δ (aJ

α
Neg)(t).

In addition, we have that

aJ
α
Ne [Nα

e f ] (t) =

∫ t

a

e−(α−1)sNα
e f(s)ds =

∫ t

a

e−(α−1)se(α−1)sf ′(s)ds = f(t)− f(a),

and

Nα
e

[
aJ

α
Nef

]
(t) = Nα

e

[∫ t

a

f(s)ds

e(α−1)s

]
= e(α−1)s

(∫ t

a

f(s)ds

e(α−1)s

)′
= f(t).

.

3. Aplications to Physiscs.

3.1. Falling Bodies. This problem considers the fall of a body of massm, starting from rest, under the
action of gravity. Suppose that the chosen reference system has as its origin the starting point (rest of the
body) at a height A from the floor at the moment the fall begins, that is, at t = 0. The downward movement
will be chosen as positive. At any point P on its trajectory, the distance traveled will be the function y
dependent on time t, consequently, using ordinary derivatives, the instantaneous velocity and acceleration
snapshot, respectively, are given by

v(t) =
dy(t)

dt
y a =

dv(t)

dt
=
d2y(t)

dt2
.

According to Newton’s Law, we have

F = mg = m
dv(t)

dt
ó
dv(t)

dt
= g.

Then this problem is modeled by the following differential equation with initial condition as follows

dv(t)

dt
= g, v(0) = 0.

Then starting with integration we get that

v(t) = gt+ C,

using the initial condition we get

v(t) = gt.

Expressing in terms of the position function we have that

dy(t)

dt
= gt, y(0) = 0.

Another integration will give

y(t) =
gt2

2
+D,

and using the initial condition we obtain

y(t) =
gt2

2
.
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Now consider the problem with the conformable fractional derivative defined in Definition 2.6

Nα
e v(t) = mg, v(0) = 0.

Using (2.7) we have

e(α−1)tv′(t) = mg ó v′(t) = mge−(α−1)t,

integrating we have that

v(t) =
−mge−(α−1)t

(α− 1)
+ E,

using the initial condition we get

v(t) =
−mge−(α−1)t

(α− 1)
+

mg

(α− 1)
.

Similarly at the case of ordinary derivative

y′(t) = e−(α−1)t
[
−mge−(α−1)t

(α− 1)
+

mg

(α− 1)

]
,

again, applying integration

y(t) =

∫
−mge−2(α−1)t

(α− 1)
dt+

∫
mge−(α−1)t

(α− 1)
dt =

mge−2(α−1)t

2(α− 1)2
− mge−(α−1)t

(α− 1)2
+ F.

Using the initial condition

y(t) =
mge−2(α−1)t

2(α− 1)2
− mge−(α−1)t

(α− 1)2
+

mg

2(α− 1)2
.

The following graph in 3.1 shows the solutions obtained by means of the conformable fractional derivative,
for different values of α: α = 0.5 (verde), α = 0.75 (azul) y α = 0.95 (magenta), and the solution obtained
by means of ordinary derivatives

Figure 3.1: Comparative solutions for several values of α.

The following development allows us to obtain a fractional expression for the total time needed by a
body to complete its fall. Making y(t) = A we find

A =
mge−2(α−1)t

2(α− 1)2
− mge−(α−1)t

(α− 1)2
+

mg

2(α− 1)2
,
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with some algebraic operations we get

A(α− 1)2

mg
− 1

2
=
e−2(α−1)t

2
− e−(α−1)t.

Using the changes u = e−(α−1)t and s = A(α− 1)2/mg − 1/2 we can write

u2

2
− u− s = 0.

Then, solving the quadratic equation

u =
1 +
√

1 + 2s

1
y u =

1−
√

1 + 2s

1
,

to avoid u < 0, then we choose the following solution

e−(α−1)t = 1 +

√
1 + 2

(
A(α− 1)2

mg
− 1

2

)
applying the logarithm function we get

t =

− ln

[
1 +

√
1 + 2

(
A(α−1)2
mg − 1

2

)]
α− 1

.

3.2. Cooling bodies law. Newton’s law of cooling states that the rate of heat loss from a body is
proportional to the temperature difference between the body and its surroundings. Heat transfer is important
in physical processes because it is a type of energy that is in motion due to temperature change, for example,
is present in processes of condensation, vaporization, crystallization, climatic changes and others.

Specifically, Newton’s law of cooling states that the cooling of a body is directly proportional to the
difference between the initial temperature of a body T (t), t > 0, and that of the environment Ta, and follows
the following differential model

dT

dt
= −k (T (t)− Ta) , T (0) = T0,

where T0 is the initial temperature in t = 0. The solution shows how cooling of a body follows a law of
exponential decay of the form

T (t) = Ta + (T0 − Ta)e−kt.

The graph of this solution is shown below in 3.2.
Using (2.7) we can write fractional differential model as follows

dαT

dtα
= −k (T (t)− Ta) ,

so, we have

eα−1T ′(t) = −k (T (t)− Ta)⇒ dT (t)

dt
= −e1−αk (T (t)− Ta)⇒ dT

T (t)− Ta
= −e1−αk,

then applying integration

ln(T (t)− Ta) = −e1−αkt+ C.

Using the initial condition we obtain

ln(T0 − Ta) = C,

so we have

ln(T (t)− Ta) = −e1−αkt+ ln(T0 − Ta),

applying the properties of the logarithm function we get

ln

(
T (t)− Ta
T0 − Ta

)
= −e1−αkt,

and using the exponential function we obtain

T (t) = e−e
1−αkt (T0 − Ta) + Ta.

Next, we show the graph of this solution in 3.3 for some values of α: α : α = 0.5 (green), α = 0.75
(azul), α = 0.95 (sienna) , for the comparison with the graph of the obtained solution using ordinary
derivative (red).
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Figure 3.2: Graph of the solution of the differential equations with ordinary derivative.

Figure 3.3: Comparative solutions for several values of α.

4. Conclusions. In this article, a brief review of the classical fractional derivatives was made, it also
focuses its attention on the conformable derivative given in (2.6), evaluating its basic properties as a dif-
ferential operator and from these apply said derivative fractional in classical problems of Physics, such as:
the free fall of bodies and the cooling of bodies law given by Newton. We find original solutions to these
problems and some contrast graph are given.

We hope that the results found will stimulate research in this area of Fractional Calculus.

5. Acknowledgments. The authors thank the Postgraduate Institute of the Universidad Técnica de
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η−convex functions. Revista Matemática: Teorı́a y Aplicaciones. 2019; 26(1):1-19.
[6] Hernández Hernández J E, Vivas-Cortez M. On a Hardy’s inequality for a fractional integral operator. Annals of the University

of Craiova, Math. and Computer Science Series 2018; 45(2):232-242.
[7] Jackson FH. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908; 46:253-281.
[8] Kanno R. Representation of random walk in fractal space-time. Phys. A. 1998; 248:165-175.
[9] Katz VJ. Ideas of calculus in Islam and India. Math. Mag. 1995; 68(3):163-174.

[10] Khalil R, Al-Horani M, Yousef A. Sababheh M. A new definition of fractional derivative. J. of Computational and Applied
Math. 2014; 264:65-70.
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