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Abstract
A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite
field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions
of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold
over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite
field where they are defined, we show a theorem which explicitly produces characteristic-dependent linear
rank inequalities; this theorem generalizes results previously obtained in the literature.
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Resumen
Una desigualdad rango lineal es una desigualdad lineal que es válida para dimensiones de espacios vec-
toriales sobre un cuerpo finito. Una desigualdad rango lineal dependiente de la caracterı́stica es también
una desigualdad lineal para dimensiones de espacios vectoriales pero ésta es válida sobre cuerpos finitos
de determinada caracterı́stica, y no es válida en general sobre otras caracterı́sticas. En este documento,
usando como guı́a matrices binarias cuyos rangos dependen del cuerpo finito en donde están definidas,
nosotros presentamos un teorema que produce explı́citamente desigualdades rango lineales dependientes
de la caracterı́stica; éste teorema generaliza resultados obtenidos previamente en la literatura.

Palabras clave. Espacios vectoriales mutuamente complementarios, Matriz binaria, Cuerpo finito, Entropı́a, Des-
igualdad rango lineal.

1. Introduction. A linear rank inequality is a linear inequality that is always satisfied by dimensions
(usually referred as ranks in information theory) of subspaces of a vector space over any field. Informa-
tion inequalities are a sub-class of linear rank inequalities [10]. Examples of these inequalities have been
presented in [3, 5, 6]. A characteristic-dependent linear rank inequality is like a linear rank inequality but
this is always satisfied by vector spaces over fields of certain characteristic and does not in general hold
over other characteristics. In information theory, especially in linear network coding, all these inequalities
are useful to calculate linear rates of communication networks [1, 2, 4, 9, 11]. Hence the importance of
finding this type of inequalities. Characteristic-dependent linear rank inequalities have been presented by
Blasiak, et al. [1]; Dougherty et al. [4]. In [7, 8], we show some inequalities using the ideas of Blasiak and
applications to network coding that improve some existing results.

We remark that in [1] two characteristic-dependent linear rank inequalities are produced in 7 variables;
the first inequality is valid over finite fields with characteristic two and the second inequality is valid over
finite fields with characteristic different from two. In [7], two inequalities are produced in n variables, for
each n of the form 2t + 3, t ≥ 2; the first inequality is valid over finite fields whose characteristic divides
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t and the second inequality is valid over finite fields whose characteristic does not divide t. Obtaining, for
each finite or co-finite set of prime numbers, an inequality that is valid over finite fields whose characteristic
is in this set. In [8], three inequalities in 21 variables are produced. The first inequality is valid on finite fields
of characteristic two; the second inequality in characteristic three; and the third inequality in characteristics
different from two and three. Inequalities presented in [1, 7, 8] use a different technique than the technique
used in [4].

2. Contributions and organization of the work. In this paper, we continue studding the technique
presented in [1, 7, 8]. We show a theorem that explicitly produces characteristic-dependent linear rank
inequalities whenever there exists a n×m binary matrix whose rank is different over different field charac-
teristic1. The inequalities presented in [1, 7, 8] can be deduced as particular cases where the binary matrix
is of a specific form. Therefore, the theorem summarizes the method for producing inequalities in [1, 7, 8].
As a corollary, for each n ≥ 7, we write 2

⌊
n−1
2

⌋
− 4 characteristic-dependent linear rank inequalities in n

variables for any n ≥ 7. This paper is organized as follows. In the next section, we give some definitions,
we show the main theorem and produce inequalities. The proof of the theorem is showed in appendix.

2.1. Inequalities . The concepts treated in this paper are basic concepts of linear algebra that use the
language of information theory to facilitate their writing. Let A, A1, . . ., An, B be vector subspaces of a
finite dimensional vector space V over a finite field F. Let

∑
Ai be the span of Ai, i ∈ I := {1, . . . , n}.

The entropy of A1, . . ., An is

H (Ai : i ∈ I) := dim

(∑
i∈I

Ai

)
.

For simplicity, we have relaxed the formal definition of entropy of random variables induced by vector
spaces. We remark that there is no loss of generality since the entropy of these variables is a fixed positive
multiple scalar of the dimension of span of the vector spaces involved. For more details, see [8, 10]. Other
measures are given as follows. The mutual information of A and B is given by

I (A;B) := dim (A ∩B) .

If B is a subspace of a subspace A, the codimension of B in A is given by codimA (B) := dim (A) −
dim (B) . We have

H (A | B) := codimA (A ∩B) .

Let P be a proper subset of primes, and let S1, . . ., Sk be subsets of {1, . . . ,m}. Let αi ∈ R for
1 ≤ i ≤ k. An inequality of the form

∑
i

αiH (Aj : j ∈ Si) ≥ 0 is called a characteristic-dependent linear

rank inequality if it holds for all vector spaces A1, . . ., Am over finite fields with characteristic in P , and
does not in general hold over other characteristics.

A linear rank inequality is an inequality with the same form but this is true over any field characteristic
[5]. Therefore, a characteristic-dependent linear rank inequality is like a linear rank inequality that is true
over some fields.

Let m ≤ n, for any n ×m binary matrix B with entries in a finite field F, we denote the i-th column
of B as eSi

where Si = {j : bji = 1}, and define the sets:

B′ := {eSi
: 1 < |Si| < n} ,

B′′ := {eSi
: |Si| = 1} ,

B′′′ :=

 {C} if there exists eSi
in B such that |Si| = n.

∅ in other case.

The set {e1, . . . , en} is the canonical basis in Fn. We also denote ei = eSi
if |Si| = 1. In this paper, we

consider vector subspaces labeled by the canonical basis and the set B′ =

{
eSj1

, . . . , eSj|B′|

}
.

1This paper is an improved version of our preprint arXiv:1905.00003 and these results are part of the author’s doctoral thesis
entitled “New Characteristic Dependent Linear Rank Inequalities”.
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The following interval notation is convenient:

[ek, ej ] := {ei : k ≤ i ≤ j} ,

[ek, ej) := {ei : k ≤ i < j} ,

[ek] := [e1, ek] = {ei : i ≤ k} .

For any Ae1 , . . ., Aen and C we define:

∇ (C) := H
(
C | A[en]

)
+
∑

ei∈[en]

I
(
A[en]−ei ;C

)
.

For each T ⊆ [en], it is straightforward to take some vectors ek1 , . . . , ekl
in T with k1 ≤ k2 ≤ · · · ≤ kl

such that the intervals [ek1
, ek2

), [ek2
, ek3

), . . .,
[
ekl−1

, ekl

]
are blocks, with maximum length, of a partition

of T . We remark that this partition is unique. We define:

∇ (Ae : e ∈ T ) := I
(
A[e1,ek1);A[ek1

,ek2 ]

)
+I
(
A[e1,ek2);A[ek2

,ek3 ]

)
+· · ·+I

(
A[e1,ekl−1);A[ekl−1

,ekl ]

)
.

The following theorem is the main theorem of this paper and gives a method for producing characteristic-
dependent linear rank inequalities from binary matrices whose rank is different over different field charac-
teristic. The demonstration is presented in appendix 4.

Theorem 2.1. Let B be a n × m binary matrix over a finite field F, m ≤ n and ts, . . . , t1 ≥ 2,
m > ms > · · · > m1 ≥ 1 integers. We suppose that rank (B) = mk if char (F) divides tk, k = 1, . . . , s,
and rank (B) = m in other cases. Let Ae1 , . . . , Aen , BeSj1

, . . . , BeSj|B′|
and C be vector subspaces of a

finite dimensional vector space V over a finite field F. Then
(i) For each k = 1, . . . , s, the following inequality is a characteristic-dependent linear rank inequality over

fields whose characteristic divides
∏
i≤k

ti,

H
(
Aej , BeSi

, C : eSi ∈ B′, ej ∈ B′′, C ∈ B′′′
)

+ (|B′′| |B′|+ |B′′|) H (C) ≤ mkI
(
A[en];C

)
+
∑

eSk
∈B′

[
H
(
BeSk

| Aei , C : i /∈ Sk

)
+ H

(
BeSk

| Aei : i ∈ Sk

)]
+ (|B′|+ 1)

∑
ei∈B′′

H (Aei)

+ (|B′′| |B′|+ |B′′′|+ |B′′|+ |B′|)

H
(
C | A[en]

)
+
∑

ei∈[en]

I
(
A[en]−ei ;C

)

+
∑

eSk
∈B′

[∇ (Aei : i ∈ Sk, ei /∈ B′′) +∇ (Aei : i /∈ Sk, ei /∈ B′′)] .

(ii) The following inequality is a characteristic-dependent linear rank inequality over fields whose charac-
teristic does not divide t :=

∏
i

ti,

H (C) ≤ 1

m
H
(
Aej , BeSi

, C : eSi ∈ B′, ej ∈ B′′, C ∈ B′′′
)

+ H
(
C | A[en]

)

+
∑

ei∈[en]

I
(
A[en]−ei ;C

)
+

∑
eSk
∈B′

[
H (C | Aei , BSk

: i /∈ Sk) + H
(
BeSk

| Aei : i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei : i /∈ Sk) +∇ (Aei : i ∈ Sk)] .
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The inequalities (i) do not in general hold over vector spaces whose characteristic does not divide t
and the inequality in item (ii) does not in general hold over vector spaces whose characteristic divides t.
A counterexample would be in V = GF (p)

n, take the vector spaces Aei = 〈ei〉, i ∈ [n], BeSj
=
〈
eSj

〉
,

eSj ∈ B′, and C = 〈
∑
ei〉 Then,

H (Aei) = H
(
BeSj

)
= H (C) = I

(
A[en];C

)
= 1,

H
(
BeSk

| Aei , C : i /∈ Sk

)
= H

(
BeSk

| Aei : i ∈ Sk

)
= H

(
C | A[en]

)
= 0,

H (C | Aei , BSk
: i /∈ Sk) = I

(
A[en]−ei ;C

)
= 0,

∇ (Aei : i ∈ Sk, ei /∈ B′′) = ∇ (Aei : i /∈ Sk, ei /∈ B′′) = 0,

H
(
Aej , BeSi

, C : eSi
∈ B′, ej ∈ B′′, C ∈ B′′′

)
=

 mk, if char (F) | tk
m, if char (F) - t.

Therefore, when p does not divide t, the inequalities (i) do not hold; and when p divides t, the inequality
(ii) does not hold.

B1 · · ·Bt+1At+2 · · ·AM(n,t)

0 · · · 1 0 · · · 0

1
... 1 0

... 0
...

...
...

...
... 0

1
... 1 0

... 0

1
... 0 0

...
...

1
... 1 1

... 0

1
...

... 0
... 0

1
... 1

...
... 0

1 · · · 1 0 · · · 1



Figure 2.1: Matrix Bt
M(n,t) whose rank is M (n, t) or M (n, t)− 1 according to the field characteristic.

Below is shown a class of
⌊
n−1
2

⌋
− 2 inequalities that are true over finite fields with characteristic

in a finite set of primes; and another class of
⌊
n−1
2

⌋
− 2 inequalities that are true over finite fields with

characteristic in a co-finite sets of primes.

Corollary 2.1. Let n ≥ 7, t integer such that 2 ≤ t ≤
⌊
n−1
2

⌋
− 1 and M (n, t) = n− t− 2. For any

A1, A2, . . ., AM(n,t), B1, B2, . . ., Bt+1 and C subspaces of a finite dimensional vector space V over a
finite field F, we have:
(a) If char (F) divides t,

H
(
B[t+1], A[t+2,M(n,t)]

)
+ (t+ 2) (M (n, t)− t− 1) H (C)

≤ (M (n, t)− 1) I
(
A[M(n,t)];C

)
+ (t+ 2)

M(n,t)∑
i=t+2

H (Ai)
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+ [(t+ 2) (M (n, t)− t)− 1]

H
(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)

+

t+1∑
i=1

(
H (Bi | Ai, C) + H

(
Bi | A[M(n,t)]−i

)
+ I
(
A[i];A[i+1,t+1]

)
+ I
(
A[i−1];Ai

))
.

(b) If char (F) does not divide t,

H (C) ≤ 1

M (n, t)
H
(
B[t+1], A[t+2,M(n,t)]

)
+ H

(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)

+

t+1∑
i=1

(
H (C | Ai, Bi) + H

(
Bi | A[M(n,t)]−i

)
+ I
(
A[i];A[i+1,M(n,t)]

)
+ I
(
A[i−1];Ai

))
.

Proof: Fixed n and t. In Theorem 2.1, we take the binary square matrixBt
M(n,t) as described in Figure

2.1. The rank of Bt
M(n,t) is M (n, t) when char (F) does not divide t and is M (n, t)− 1 in other case. We

have
∣∣∣B′Bt

M(n,t)

∣∣∣ = t+ 1,
∣∣∣B′′Bt

M(n,t)

∣∣∣ = M (n, t)− t− 1 and
∣∣∣B′′′Bt

M(n,t)

∣∣∣ = 0. We denote Bi := Be[M(n,t)]−i
,

Ai := Aei and have

∇ (C) = H
(
C | A[M(n,t)]

)
+

M(n,t)∑
i=1

I
(
A[M(n,t)]−i;C

)

∇ (Ak) = I
(
A[k−1];Ak

)
,

∇ (Ai : i ∈ [t+ 1]− k) = I
(
A[k];A[k+1,t+1]

)
,

∇ (Ai : i ∈ [M (n, t)]− k) = I
(
A[k];A[k+1,M(n,t)]

)
, for each k ∈ [t+ 1].

With this in mind, the inequalities are obtained. We remark the use of interval notation as used in previous
theorem. �

Remark 2.1. If we take n = 2t+3, M (n, t) = t+1, we obtain inequalities in [7]. Also, t = 2 implies
inequalities in [1].

3. Conclusions. In this paper, we have presented a theorem that works as a method for producing
characteristic-dependent linear rank inequalities whenever there exists a binary matrix whose rank is dif-
ferent according to the characteristic of the finite field where its entries are defined. In Corollary 2.1 are
shown some inequalities obtained but we remark that this corollary does not show all inequalities that the
method can produce because there are many suitable binary matrices that were not included. For example,
in Figure 3.1 is shown a matrix that can be used for producing inequalities; case p1 = 2, p2 = 3, n1 = 3,
n2 = 4 produces the characteristic-dependent linear rank inequalities in [8].


Bp1

M(n1,p1)
O O

O Bp1

M(n1,p1)
O

O O Bp2

M(n2,p2)


Figure 3.1: Binary matrix such that rankp1

= 2M (n1, p1) + M (n2, p2) − 2, rankp2
= 2M (n1, p1) +

M (n2, p2)− 1 and rankp 6=p1,p2 = 2M (n1, p1) +M (n2, p2).
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Appendix A. Proof of main theorem.
We use concepts of complementary vector spaces. Vector spaces Ae1 , . . ., Aen are mutually comple-

mentary spaces, if the span is a direct sum. In other words, every vector of span has a unique representation
as a sum of elements of Ae1 , . . ., Aen ; we denote this span by Ae1 ⊕ · · ·⊕Aen . In this case, πI denotes the
I-projection function

⊕
Aei �

⊕
i∈I
Aei given by x =

∑
i

xi 7→
∑
i∈I
xi. If there exists a vector subspace C of

V such that Ae1 ⊕ · · · ⊕Aei−1
⊕C ⊕Aei+1

⊕ · · · ⊕Aen ≤ V for all i, then we say that (Ae1 , . . . , Aen , C)
is a tuple of complementary vector spaces.

Before showing the proof of the main theorem or Theorem 2.1, we develop three propositions and four
lemmas. This makes the proof simpler.

Proposition A.1. Let B = (eSi
) be a n×m binary matrix over a finite field F, m ≤ n and tk ≥ 2, for

i = 1, . . . , s, m > ms > · · · · · · > m1 ≥ 1 integers. We suppose that rank (B) = mk if char (F) divides
tk, and rank (B) = m in other cases. Then, any tuple of complementary vector spaces (Ae1 , · · · , Aen , C)
holds

H (πSi
(C) : i ∈ [m]) =



m1H (C) if char (F) | t1.
...

...

msH (C) if char (F) | ts.

mH (C) if char (F) - t =
∏
i

ti.

Proof: In case char (F) does not divide t,
∑

i∈[m]

πSi
(C) is a direct sum by Corollary 9 in [8]. Then, we

have

H (πSi
(C) : i ∈ [m]) =

∑
i∈[m]

H (πSi
(C)) = mH (C) [from Proposition 6 in [8]].

Fixed k, we now suppose that rankB = mk if char (F) divides tk. There exists I ( [m] such that the rank
of the submatrix BI of B is mk. Then,

H (πSi
(C) : i ∈ [m]) = H (πSi

(C) : i ∈ I)

https://orcid.org/0000-0002-4020-015X
https://creativecommons.org/licenses/by/4.0/
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=
∑
i∈I

H (πSi (C)) [from Corollary 9 in [8]]

= mkH (C) [from Proposition 6 in [8]].

�
In previous proposition, the dependence relations of B, fixed a characteristic field, can be expressed

using projections of a suitable space C. The following two propositions get inequalities that depend on the
characteristic of F, and the involved spaces have some dependency relationships expressed by B.

Proposition A.2. For each tk, let F be a finite field such that char (F) divides tk. For any vector
subspaces Ae1 , . . . , Aen , BeSj1

, . . . , BeSj|B′|
and C of a finite dimensional vector space V over F, such

that (Ae1 , . . . , Aen , C) is a tuple of complementary vector spaces and
(i) Aei ≤ A[en]−ei ⊕ C for i such that ei ∈ B′′,
(ii) BeSi

≤
⊕
j∈Si

Aej for eSi
∈ B′,

(iii) BeSi
≤
⊕
j /∈Si

Aej ⊕ C for eSi
∈ B′.

We have

H
(
Aei , BeSj

, C : eSj ∈ B′, ei ∈ B′′, C ∈ B′′′
)
≤ mkH (C) .

Proof: See Lemma 5 in [7] and Proposition 11 in [8]. �

Proposition A.3. Let F be a finite field such that char (F) does not divide t =
∏
i

ti. For any vector

subspaces Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C of a finite dimensional vector space V over F, such

that (Ae1 , . . . , Aen , C) is a tuple of complementary vector subspaces and
(i) BeSi

≤
⊕
j∈Si

Aej for eSi
∈ B′.

(ii) C ≤
⊕
j /∈Si

Aej +BeSi
for eSi

∈ B′.

We have

mH (C) ≤ H
(
Aei , BeSj

, C : eSj ∈ B′, ei ∈ B′′, C ∈ B′′′
)
.

Proof: See Lemma 6 in [7] and Proposition 11 in [8]. �

Lemma A.1. For any Ae1 , . . ., Aen and C vector subspaces of a finite dimensional vector space V ,
there exists a tuple of complementary vector spaces

(
A′e1 , . . . , A

′
en , C̄

)
such that A′ei ≤ Aei , C̄ ≤ C,⊕

A′ei =
∑
Aei ,

H
(
Aei | A′ei

)
= I
(
A[ei−1];Aei

)
, i = 1, . . . , n, (A.1)

H
(
C | C̄

)
≤ ∇ (C) := H

(
C | A[en]

)
+

n∑
i=1

I
(
A[en]−ei ;C

)
, (A.2)

and for each T ⊆ [en],

H (Ae : e ∈ T | A′e : e ∈ T ) ≤ ∇ (Ae : e ∈ T )

:= I
(
A[e1,ek1);A[ek1

,ek2 ]

)
+ · · ·+ I

(
A[e1,ekl−1);A[ekl−1

,ekl ]

)
. (A.3)

where ek1
, . . . , ekl

are in T with k1 ≤ k2 ≤ · · · ≤ kl such that the intervals [ek1
, ek2

), . . .,
[
ekl−1

, ekl

]
are

blocks, with maximum length, of a partition of T .
Proof: We first build mutually complementary subspacesA′e1 ,...,A′en inA[en] fromA1, ..., An. Define

A′e1 := Ae1 , and for i = 2, . . ., n denote by A′ei a subspace of Ai which is a complementary subspace to
A[ei−1] in A[ei]. Then A′e1 , ..., A′en are mutually complementary and the following equations hold:

H
(
Aei | A′ei

)
= I
(
A[ei−1];Aei

)
, i = 1, . . . , n,
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where Ae0 := O. Second, we built a subspace C̄ of C ∩ A′[en] such that C̄ and A′[en]−ei form a direct sum
for all i. Let C(0) := C ∩ A[en]. Recursively, for i = 1, . . ., n denote by C(i) a subspace of C(i−1) which
is a complementary subspace to A′[en]−ei in C(i−1) + A′[en]−ei . We denote C̄ := C(n), this space satisfies
the required condition and the following inequalities:

H
(
C | C(0)

)
≤ H

(
C | A[en]

)
,

H
(
C(0) | C̄

)
≤

n∑
i=1

I
(
A[en]−ei ;C

)
.

These inequalities imply the bound on H
(
C | C̄

)
. For each T ⊆ [en], the bound on H (Ae : e ∈ T | A′e : e ∈ T )

is obtained from Lemma 3 in [8] and equations (A.1). �

Remark A.1. The tuple is not unique but we fix one of these.

Lemma A.2. Let Ae1 , . . . , Aen and C be vector subspaces of a vector spaces V . Define

Āek := A′ek ∩

C̄ +
⊕

ei /∈B′′
A′ei +

⊕
ei∈B′′,i<k

Āei +
⊕

ei∈B′′,i>k

A′ei

 , for ek ∈ B′′.

Āek := A′ek , for ek /∈ B′′.

Then,
(
Āe1 , . . . , Āen , C̄

)
is a tuple of complementary vector subspaces that satisfies (i) in Lemma A.2 and

H
(
Āek

)
= H

(
C̄
)
, for ek ∈ B′′,

H
(
Āek

)
= H

(
Aek | A[ek−1]

)
, for ek ∈ B′,

H
(
Aek | Āek

)
≤ H (Aek)−H (C) +∇ (C) , for ek ∈ B′′. (A.4)

Proof: We obviously have

Āek ≤ C̄ +
⊕

ei /∈B′′
A′ei +

⊕
ei∈B′′,i<k

Āei +
⊕

ei∈B′′,i>k

A′ei .

Now, for any k such that ek ∈ B′′, we have

C̄ ≤
⊕

ei /∈B′′
A′ei +

⊕
ei∈B′′,i≤k

Āei +
⊕

ei∈B′′,i>k

A′ei . (A.5)

In effect, we show case k = l := min {i : ei ∈ B′′}, i.e. we have to show that

C̄ ≤

⊕
i6=l′

A′ei

+ Āel .

The general case is proved by induction, we omit the proof. We note case C̄ = O is trivial. So, we suppose
that there exist c ∈ C̄ −O, then from [7, Lemma 3], c =

∑
i

ai for some ai ∈ A′ei −O. Thus,

al = c−
∑
i 6=l

ai ∈

C̄ ⊕
⊕

i 6=l′

A′ei

 ∩A′el .
Therefore, al ∈ Āel , which implies c ∈

(⊕
i6=l′

A′ei

)
+Āel . So, (A.5) is true. Taking k = max {i : ei ∈ B′′},

we obtain that C̄ ≤
⊕
Āei . Hence, the described tuple is a tuple of complementary vector subspaces that

satisfies (i) in Lemma A.2. We also have the equation:

H
(
Āek

)
= I

A′ek ; C̄,
⊕

ei /∈B′′
A′ei ,

⊕
ei∈B′′,i<k

Āei ,
⊕

ei∈B′′,i>k

A′ei
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= H
(
A′ek

)
−H

 ⊕
ei /∈B′′

A′ei ,
⊕

ei∈B′′,i<k

Āei ,
⊕

ei∈B′′,i≥k

A′ei

+H

C̄, ⊕
ei /∈B′′

A′ei ,
⊕

ei∈B′′,i<k

Āei ,
⊕

ei∈B′′,i>k

A′ei


[from definition of mutual information and (A.5)]

= H
(
C̄
)
. [definition of complementary subspaces]

This last equation can be used to obtain the described upper bound on H
(
Aek | Āek

)
. �

Lemma A.3. Let Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C be vector subspaces of a vector spaces V .

For each eSk
∈ B′, we define

B̄eSk
:= BeSk

∩

(⊕
ei∈Sk

Āei

)
∩

⊕
ei /∈Sk

Āei ⊕ C̄

 .

We have the subspaces Āe1 , . . . , Āen , B̄eSj1
, . . . , B̄eSj|B′|

and C̄ satisfy hypothesis in Lemma A.2 and

H
(
BeSk

| B̄eSk

)
≤ H

(
BeSk

| Aei : i ∈ Sk

)
+ H

(
BeSk

| Aei , C : i /∈ Sk

)
+
∑

ei∈B′′
H (Aei)

+∇ (Aei : i ∈ Sk, ei /∈ B′′) +∇ (Aei : i /∈ Sk, ei /∈ B′′) + (|B′′|+ 1)∇ (C)− |B′′|H (C)

Proof: The conditions in Lemma A.2 are obviously true. To prove the inequality, we have

H
(
BeSk

| B̄eSk

)
≤ H

(
BeSk

|

(⊕
i∈Sk

Āei

)
∩BeSk

)
+ H

BeSk
|

⊕
i/∈Sk

Āei ⊕ C̄

 ∩BeSk



= H

(
BeSk

|

(⊕
i∈Sk

Aei

)
∩BeSk

)
+ H

BeSk
|

⊕
i/∈Sk

Aei ⊕ C

 ∩BeSk



+H

((∑
i∈Sk

Aei

)
∩BeSk

|

(⊕
i∈Sk

Āei

)
∩BeSk

)

+H

∑
i/∈Sk

Aei ⊕ C

 ∩BeSk
|

⊕
i/∈Sk

Āei ⊕ C̄

 ∩BeSk



≤ H
(
BeSk

| Aei : i ∈ Sk

)
+ H

(
BeSk

| C,Aei : i /∈ Sk

)

+H

 ∑
i∈Sk,ei∈B′′

Aei |
⊕

i∈Sk,ei∈B′′
Āei

+ H

 ∑
i∈Sk,ei /∈B′′

Aei |
⊕

i∈Sk,ei /∈B′′
A′ei

+

H

 ∑
i/∈Sk,ei∈B′′

Aei |
⊕

i/∈Sk,ei∈B′′
Āei

+ H

 ∑
i/∈Sk,ei /∈B′′

Aei |
⊕

i/∈Sk,ei /∈B′′
A′ei

+ H
(
C | C̄

)

≤ H
(
BeSk

| Aei : i ∈ Sk

)
+ H

(
BeSk

| Aei , C : i /∈ Sk

)
+

∑
i∈Sk,ei∈B′′

H (Aei)
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+ |{ei ∈ B′′ : i ∈ Sk}| (∇ (C)−H (C)) +∇ (Aei : i ∈ Sk, ei /∈ B′′) +
∑

i/∈Sk,ei∈B′′
H (Aei)

+ |{ei ∈ B′′ : i /∈ Sk}| (∇ (C)−H (C)) +∇ (Aei : i /∈ Sk, ei /∈ B′′) +∇ (C)

[from Lemmas 3 and 4 in [9], inequalities (A.3) and (A.4)].

= H
(
BeSk

| Aei : i ∈ Sk

)
+ H

(
BeSk

| Aei , C : i /∈ Sk

)
+
∑

ei∈B′′
H (Aei)

+ (|B′′|+ 1)∇ (C)− |B′′|H (C) +∇ (Aei : i ∈ Sk, ei /∈ B′′) +∇ (Aei : i /∈ Sk, ei /∈ B′′)

�

Lemma A.4. Let Ae1 , . . . , Aen , BeSj1
, . . . , BeSj|B′|

and C be vector subspaces of a vector spaces V .

For each eSk
∈ B′, we define B̂eSk

:= BeSk
∩
⊕

j∈Sk

A′ej and

Ĉ := C̄
⋂
eSk

⊕
j /∈Si

A′ej + B̂eSk

 .

We have A′e1 , . . . , A
′
en , B̂eSj1

, . . . , B̂eSj|B′|
and Ĉ satisfy hypothesis in Lemma A.3 and

H
(
BeSk

| B̂eSk

)
≤ H

(
BeSk

| Aei : i ∈ Sk

)
+∇ (Aei : i ∈ Sk) , (A.6)

H
(
C | Ĉ

)
≤ ∇ (C) +

∑
eSk
∈B′

[
H (C | Aei , BSk

: i /∈ Sk) + H
(
BeSk

| Aei : i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei : i /∈ Sk) +∇ (Aei : i ∈ Sk)] . (A.7)

Proof: By definition, we remark that
(
A′e1 , . . . , A

′
en , Ĉ

)
is also a tuple of complementary vector

subspaces and the other conditions in A.3 are also true. We only show last inequality:

H
(
C | Ĉ

)
≤ H

(
C | C̄

)
+

∑
eSk
∈B′

H

C | C ∩
⊕
i/∈Sk

A′ei + B̂eSk



= H
(
C | C̄

)
+

∑
eSk
∈B′

H

C | C ∩
⊕
i/∈Sk

Aei +BeSk



+
∑

eSk
∈B′

H

C ∩
∑
i/∈Sk

Aei +BeSk

 | C ∩
⊕
i/∈Sk

A′ei + B̂eSk



≤ H
(
C | C̄

)
+

∑
eSk
∈B′

H

C |⊕
i/∈Sk

Aei +BeSk

+
∑

eSk
∈B′

H

∑
i/∈Sk

Aei |
⊕
i/∈Sk

A′ei



+
∑

eSk
∈B′

H
(
BeSk

| B̂eSk

)
[from Lemmas 3 and 4 in [8] and inequality (A.6)]
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≤ ∇ (C) +
∑

eSk
∈B′

[
H (C | Aei , BSk

: i /∈ Sk) + H
(
BeSk

| Aei : i ∈ Sk

)]

+
∑

eSk
∈B′

[∇ (Aei : i /∈ Sk) +∇ (Aei : i ∈ Sk)] [from (A.3)]

�

We finally prove the main theorem.

Proof of Theorem 2.1: By Lemmas A.2 and A.3, the subspaces Āe1 , . . . , Āen , B̄eSj1
, . . . , B̄eSj|B′|

and

C̄ satisfy hypothesis of the Proposition A.2 in a finite field F whose characteristic divides tk, we get

H
(
B̄eSi

, Āej , C̄ : eSi ∈ B′, ej ∈ B′′, C̄ ∈ B′′′
)
≤ mkH

(
C̄
)

. (A.8)

On the other hand,

H
(
C̄
)
≤ I
(
A[en];C

)
[from C̄ ≤ C], (A.9)

H

 ∑
eSk
∈B′

BSi |
∑

eSk
∈B′

B̄S1

 ≤ ∑
eSk
∈B′

H
(
BeSi

| B̄eSi

)
[from Lemma 3 in [8]].

Therefore,

H

 ∑
eSk
∈B′

BSi
+
∑

ei∈B′′
Aei + C |

∑
eSk
∈B′

B̄Si
+
∑

ei∈B′′
Āei + C̄

 ≤ ∑
eSk
∈B′

H
(
BeSk

| Aei : i ∈ Sk

)

+
∑

eSk
∈B′

H
(
BeSk

| Aei , C : i /∈ Sk

)
+ (|B′|+ 1)

∑
ei∈B′′

H (Aei)

+ (|B′′| |B′|+ |B′′|+ |B′|+ 1)∇ (C)− (|B′′| |B′|+ |B′′|) H (C)

+
∑

eSk
∈B′

[∇ (Aei : i ∈ Sk, ei /∈ B′′) +∇ (Aei : i /∈ Sk, ei /∈ B′′)] .

From (A.8) , (A.9), (A.2) and last inequality, we can obtain that the inequality in item (i) is true over fields
whose characteristic divides tk. We can do this for any k = 1, . . . , s. Noting that inequality (A.8) is also
true for fields whose characteristic divides to ts with ms < mk, we get that the inequality in item (i) is also
true when

∏
i≤k

ti.

To prove the inequality in item (ii), using Lemma A.4, the vector subspaces A′e1 , . . ., A′en , B̂eSj1
, . . .,

B̂eSj|B′|
and Ĉ satisfy hypothesis of Proposition A.3 in a finite field F whose characteristic does not divide

t, we get

mH
(
Ĉ
)
≤ H

(
A′ei , B̂eSj

, Ĉ : eSj
∈ B′, ei ∈ B′′, Ĉ ∈ B′′′

)
. (A.10)

On the other hand,

H
(
A′ei , B̂eSj

, Ĉ : eSj ∈ B′, ei ∈ B′′, Ĉ ∈ B′′′
)
≤ H

(
Aei , BeSj

, C : eSj ∈ B′, ei ∈ B′′, C ∈ B′′′
)
.

(A.11)
From (A.10) , (A.7) and last inequality, we can derive the inequality (ii) over fields whose characteristic
does not divide t. �


