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Abstract
This paper explains how to obtain the number Φ, using a square with side length equal to a, the right triangle
with sides a/2 and a, and a circle with radius equal to the hypotenuse of this right triangle. In particular,
from a square whose side length is equal to a, we will show how to obtain a segment b in such a way that
the value of a/b is the number Φ. It is well known that this ratio is also calculated from equating the ratios
obtained by dividing a segment of length a + b by a (being a always the largest segment) and a by b, that
is, (a + b)/a = a/b. This equality is a consequence of the ratio of proportionality in triangles applying
Thales’s Theorem. And, we must mention also how this golden ratio it is obtained as a consequence of the
Fibonacci sequence. However, the golden ratio as a consequence of the limit of Fibonacci sequence was
found later than many masterpieces, as for instance the ones of Leonardo da Vinci. This is the main reason
because we analyzed how to find the proportionality golden ratio using the most common geometric figures
and its symmetries. This paper aims to show how the golden ratio can be obtained knowing the side length
a of a square.
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1. Introduction. The Φ number, the golden ratio, has always been and is a number that has amazed
and surprised us.

Transcendent number, we usually call it. He and someone else received that name because they simply
have characteristics that make them different from others.

This number leaves us thoughtful. It seems that the beauty of the most harmonic forms resides in it,
and it makes us wonder: how can this happen?.

Many times, as a mathematicians, we have felt a very small human being when we observe certain
results, because they seem to be not by chance, but the work of someone whose conjunction between mind
and soul is supreme, divine.

It is well known that this ratio is also calculated from equating the ratios obtained by dividing a segment
of length a+ b by a (being a always the largest segment) and a by b, that is, (a + b)/a = a/b. This equality
is a consequence of the ratio of proportionality in triangles applying Thales’s Theorem, see Fig. 1.1 .

And, we must also mention how this golden ratio it is obtained as a consequence of the Fibonacci
sequence. This sequence, which terms are {1, 1, 2, 3, 5, 8, 13, 21, 34,. . . } has numerous applications in
computer science, mathematics, game theory, in topological quantum computing with a system of Fibonacci
anyons described by the Yang–Lee model the SU(2) special case of the Chern-Simons theory and Wess-
Zumino-Witten models [12, 14], as well as in Linguistics in the syntactic derivation of sentence structures.
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Figure 1.1: Right triangle where
a + b

a
=

a

b
.

It also appears in biological configurations, such as in the branches of trees, in the arrangement of leaves
on the stem, in the flowers of artichokes and sunflowers, in the inflorescences of Romanesco broccoli, in
the configuration of coniferous conifers, in the reproduction of rabbits and in how DNA encodes the growth
of complex organic forms. And allow us to draw a spiral using squares with side length equal to each term
of the sequence, as it shows Fig. 1.2. The growth ratio is Φ, that is, the golden ratio.

Figure 1.2: Fibonacci spiral (Image from Quora.com).

This Fibonacci spiral, it is found in the spiral structure of the shell of some mollusks, such as the
nautilus as it shows Fig.1.3, and also in Leonardo da Vinci’s masterpieces, as for instance it is shown in Fig.
1.4.

Mathematicians like Edouard Lucas [13] and Kepler studied this sequence, and the Scottish mathe-
matician Robert Simson found in 1753 (later than Leonardo da Vinci’s masterpieces) that the relationship
between two successive Fibonacci numbers approaches the golden ratio Φ when n tends to infinity.

And like them, many others worked and wrote about it [1, 5] to [10, 11, 13].

In our case, one day observing Leonardo da Vinci’s masterpieces, we wondered how it was possible
that the Fibonacci spiral and consequently the number phi were present in his masterpieces, if Fibonacci
was born centuries later than Leonardo da Vinci.

The Vetruvian Man caught our attention too. Analyzing this masterpiece, anyone can observe that he
was using squares and circles circumscribing a human body to obtain certain body proportions.
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Figure 1.3: Nautilus and Fibonacci spiral (Image from divermates.es).

Figure 1.4: Mona Lisa and Fibonacci spiral (Image from imgs.classicfm.com).

It was at that moment when we begin to build the idea shown in this paper, playing with the most basic
geometric figures and concepts.

This paper only aims to show how we can obtain the Φ number using the most basic geometric shapes:
a square, a right triangle and a circle.

In particular, from a square whose side length is equal to a, we will show how to obtain a segment b in
such a way that the value of

a

b
is the number Φ.

The paper is organized as follows: in Sec.2 we explain how we can obtain Φ using these basic geometric
figures and concepts and in Sec.3 we wrap up our conclusions.



Jouis C, Orus-Lacort M.- Selecciones Matemáticas. 2021; Vol. 8(2): 404-410 407

2. How to obtain Φ number. First, as it shows the Fig. 2.1 , we draw a square with side length equal
to a.

Figure 2.1: Square with side length equal to a.

Next, we divide this square in two equal rectangles, see Fig. 2.2, and we draw the rectangle diagonal
OC (hypotenuse h of the right triangle OCD) as it shows Fig. 2.3.

Figure 2.2: Square divided in two equal rectangles.

Now, considering the point O as the center and the diagonal OC as the radius, we draw a circle as it
shows Fig.2.4, and we call b to the distance between D and F .

Note that the distance OF is the radius OC, that is, the hypotenuse of the ßright triangle OCD, and at
the same time it is equal to

a

2
+ b.
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Figure 2.3: Right triangle with sides
a

2
and a and hypotenuse h.

Figure 2.4: Circle with center O and radius OC.

The number Φ is the proportion between a and b, that is,
a

b
.

Hence, to obtain
a

b
value, we calculate it as follows.

From the right triangle OCD, the radius OC, that is, the hypotenuse is equal to:

OC =

√
(
a

2
)2 + a2 =

a
√

5

2
(2.1)
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And since OC = OF , we have:

a
√

5

2
=

a

2
+ b

a
√

5

2
− a

2
= b

a(

√
5

2
− 1

2
) = b

a

b
=

2√
5− 1

=
2(
√

5 + 1)

(
√

5− 1)(
√

5 + 1)
=

2(
√

5 + 1)

4

a

b
=

√
5 + 1

2

(2.2)

Therefore, the golden ratio
a

b
also known as the number Φ is equal to:

Φ =
a

b
=

1 +
√

5

2
(2.3)

3. Conclusions. In this paper we have shown how to calculate two segments a and b, so that
a

b
is the

number Φ.
In particular, we have shown how from a square whose side measures a, this length being arbitrary, the

appropriate segment of length b is the one that allows us to build a circle of radius
a

2
+ b, centered on the

base of the square at point
a

2
, and so that the semicircle of this circle circumscribes the upper part of the

square, as it is shown in Fig.3.1.

Figure 3.1: Circle with radius OC = OF and segment b = DF .
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