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Abstract
In this article, some nontrivial 2—cocycles are computed for crossed products of algebraic extensions of the
field of rational numbers Q with cyclic groups of order 2 and 3, with finite groups of order 4, 6 and 8. The
2—cocycles are applied for bilinear forms over finite-dimensional vector space whose scalars field is Q and
few examples of these cocycles are presented in terms of matrices.
Keywords . Rational bilinear form, 2—cocycle, crossed product, Galois extension, Galois Group of a polynomial.

1. Introduction. The authors of [1] studied the Hochschild (co)homology of a twisted group algebra
Axy G, where A/k is a simple algebraic extension of fields and G is a finite groupln this case E = A%y G
is a crossed product of an algebra with a group, where f is a 2—cocyclic for F. The study of Hochschild
K[X]
(X2)
cocycles of crossed products. We inquire if ¥ = Q and G = S3 (nonabelian group), is possible to find a
nontrivial 2—cocycle f such that A x ¢ G is a crossed product for some Q—algebra A.

In [2] is presented as example of polynomial not solvable by radicals f(z) = 225 — 52* + 5 over Q by
means of Affirmation 2: If f(x) is an irreducible polynomial in Q[z] of degree 5 that has exactly 2 nonreal
roots in the field of the complex numbers, then Galois group of f(x) is the symmetric group Ss.

Following the same arguments, it is noted that this affirmation holds for polynomials of degree prime p > 3,
the Galois group of an irreducible polynomial f(x) in Q[z] of degree 3 that has exactly 2 nonreal roots in
the field of the complex numbers is the symmetric group Ss. Using this fact and the characterization of a
crossed product [3, Corollary 4.6] an affirmative answer is given to the question (see Section 4).

homology of the crossed product £/ = X ¢ Cy originated the concern of to compute the nontrivial

The purpose of this article is to show examples of nontrivial 2—cocycles for crossed products of the
forms %BD X g Cy, 2 Py P L yCsand %[ L 1 Gy. The development of this work is done in the three sections:
In the second section, a crossed product of an algebra with a group is presented.

In the third section, we apply the term of the cochain complex “2—cocycle” for bilinear forms over finite-
dimensional vector space whose scalars field is Q and are presented few examples of these cocycles in terms
of matrices.

In the fourth section, we give examples of rational nontrivial 2—cocycles for the crossed products

%[ ] X f Cg, [ ] T Cg, [X] X5 G4, [ ] x5 Ge and <EP>] % ¢ Gg. Furthermore, it is shown that a crossed

product of the form %[ >] X G can have 2-cycles which are nonrational.

2. Cross Product of an Algebra with a Group. Let G a group, K a field, A a K —algebra and
A* the group of units of A. Leto : G — Autg(A), g — o(g)(a) = a? Va € A, an action of G on A; and
f:GxG— A* (g9,h) — f(g,h) amap .
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Definition 2.1. [1] A crossed product, A x¢ G, of a K—algebra A with a group G, is a K —vector
space A ® K[G] endowed with the multiplication

(awy)(bwn) = ab? f(g, h)wgh,

satisfying the following 3 conditions :
1) f(lag) :f(gvl) =1,
2) f(g1.92)" f(90,9192) = f(90,91)f (9091, 92) »
3) (a%)% f(g0,91) = f(g0, g1)a?9" .
Condition 1) is the condition of normality, 2) is the condition of 2—cocycle and 3) is the twisted module
condition.
Remark 2.1. E = A x; G is a Hopf crossed product of A by H = K|[G].
H = K|G] is a Hopf algebra with canonical basis G (see [4, Example 2.2.11]), where the comultipli-
cation A and counit ¢, are given by A(g) = g ® gand e(g) = 1, Vg € G.
By definition, A x ¢ G is the K —vector space A ® K [G] with multiplication given by
(awgq)(bwy) = ab? f(g, h)wgn satisfying the conditions of normality, of 2—cocycle and twisted module. In
terms of tensorial product ® = ® g,

(a®g)(b® h) = ab?f(g,h) ® gh, since A(g) =g ® g,
= ab?"” f(g@, V) @ @R .

Since A(g) = g ® g and £(g) = 1, the following 3 conditions are satisfied :
1) f(1,9) = f(g,1) =e(g)la.

w
2) f(9 M, f(90?,91P9P) = Fl90D, 91 D) f(96P 0P, 90)
3) (a9 )90 £(ge®, g1 @) = f(go®, g1 D)ago @ ®
It is observed that the action o of G on A, induces a weak action # of K[G] on A through #(g,a) = o(g)(a)
for g € G; while that the map f : G x G — A* induces a K —bilinear map f : K[G] x K[G] — A.
Therefore, according to [5] E = A# ;K[G]; that is, E is a Hopf crossed product of A by K[G] .

3. Rational Bilinear Forms. In this section, the matrix of a rational bilinear form in an ordered basis
B of a vector space V of dimension n is introduced, and the concept of normal 2—cocycle over V is given.

Definition 3.1. Let V be a vector space over the field of the rational numbers Q. A rational bilinear
form on'V is a function f : V x V — Q, which assigns to each ordered pair of vectors u,v € V a scalar
f(u,v) € Q such that:

Z) f()‘ul + ug, ’U) = >‘a f(ulav) + f(’U,Q,’U),

1) f(u, 1 4+ v2) = Af(u,v1) + f(u,v2),
for all u,uy,us,v,v1,v2 €V and all scalar A € Q.

Let V be a finite-dimensional vector space over the field Q, dimV = 2 and B = {ej, e3} an ordered
basis of V. Let u = x1e1 + x2e2 and v = yje1 + yo2e2 be vectors in V.

Example 3.1. The function f : V x V — Q defined by

3.1 flu,v) = 2x1y1 + 322y2

is a rational bilinear form on V.
Ifu,v/,v € Vand \ € Q, then

FOu+ ', v) =2(A\z1 + 2))y1 + 3z + x5)y0
= A(2z1y1 + 3x2y2) + 227 y1 + 3x5y0
A f(w0) + £ 0)

Similarly, f(u, Av 4+ v") = Af(u,v) + f(u,v’) forall u,v,v’ € Vand A € Q.
Example 3.2. The function f : V x V — Q defined by

(3.2) flu,v) = z1y1 + T1y2 + Toy1 + 3T2yo

is a rational bilinear form on V.
If u,v,v" € Vand A € Q, then

Flu, W' 4 v) = 21(Ays 4+ 1) + 21 (Aya + y2) + 22(Ay1 + 1) + 3z2(Ay2 + 5)
= XNx1y1 + 1Yz + Tay1 + 3x2y2) + (T1y) + 1Yy + T2y) + 3T2y5)
= Af(u,v) + f(u,v’) .
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Similarly, f(Au + v, v) = Af(u,v) + f(u/,v) forallu,v’,v € Vand A € Q.
Example 3.3. If f is a rational bilinear form on V, then f is completely determined with the four
scalars a;; = f(e;, e;) by

2
Flu,v) = > aimiy;.

ij=1

If X and Y are the coordinate matrices of u and v in the basis B3, and if A is the matrix 2 x 2 with entries
Qij = f(ei, ej), then

(3.3) flu,v) = XPAY .

The Example 3.3 can be generalized to describe all the rational bilinear forms on a finite-dimensional vector
space V over the field Q. Let B = {ey, ..., e,} be an ordered basis of V and f a rational bilinear form on
V.lif u=2x1e1 4+ -+ xpepn, v =111 + -+ + ype, €V, then

n
f(u,v) = Z aijriy; = X AY

ij=1
where a;; = f(e;,e;); X and Y are the coordinate matrices of v and v in the basis B.

Thus, every rational bilinear form on V is given by
(3.4) f(u,v) = [u]5Al]s,

for some n X n matrix A over Q.

Conversely, if A is n x n matrix over Q, then it is easy to check that (3.4) defines a rational bilinear form
on V such that a;; = f(e;, e;) (see Example 3.1 and Example 3.2). Then the matrix A is called the matrix
of the rational bilinear form f in the basis B, and denoted by [f]5.

Let L(V,V, Q) be the vector space of all rational bilinear forms on V.

Theorem 3.1. [6, Theorem X.1] Let V be a finite-dimensional vector space over the field Q and
dimV = n. For each ordered basis B of V, the function that associates with each rational bilinear form on
V its matrix in the ordered basis B, f — [f]p, is an isomorphism of the space L(V,V, Q) onto the space
of n X n matrices over the field Q.

The formula for the coboundary map is (see [7, (1.5.1.1)] )

B)ar, - angr) = a1 flag, .., ant1)
+ Z (—1)if(a1,...7aiai+17...an+1)

0<i<n+1
(3.5) + (=" flay,...,an) @01

Then f is a2—cocycleif af(b, c)— f(ab, ¢)+ f(a, bc)— f(a, b)c = 0. If the right action is trivial, f(a,b)c =
f(a,b). Writing the left action with exponential notation, af(b,c) = f(b,c)*. Thus, the condition of
2—cocycle is f(b,e)* + f(a,bc) = f(a,b) + f(ab,c). Using the multiplicative notation for the above
condition, it will be said that f satisfies the condition of 2—cocycle if f(b,c)” f(a,bc) = f(a,b)f(ab, c).

Definition 3.2. Let f be a rational bilinear form on'V , B a basis of V endowed with structure of group.
If exists a left action of B on Q, then f is a 2—cocycle on V if the matrix of f in B satisfies the condition of
2—cocycle and this condition admits multiplicative notation .

Let B = G = (g) = {1, g} be the group of automorphisms of the field Q(1/2), where g(1) = 1 and
9(v/2) = —v/2. Then V = Q|G] and G = G(Q(+/2)/Q) [8, Example 48.7]. In the case of rational bilinear
forms on V, it will use 2—cocycle to mean 2—cocycle on V.

Example 3.4. The rational bilinear form on V

fu,v) = z1y1 + 21Y2 + T2y1 + 3T200

is a 2—cocycle.

Since [f]|p = = , the condition of 2—cocycle is satisfied;

I

7( 1 3

ie., f(b,c)"f(a,bc) = f(a,b)f(ab,c) for all a,b,c € B. This is expressed with the following eight
equalities:

) 1
)
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(1) 1= f(Q1, 1)1f(1, (D)D) = L, F((1)(1),1),
(2) 1= f(l,g)lf(L (D)(9)) = F(L, ) F((1)(1),9)
(3) 1= f(g, 1)1f(17 (9)(1) = f(1,9)f((1)(g),1),
(4) 3= f(g9,9) f(1,(9)(9) = f(1,9)f((1)(9),9) »
(5) 1= f(1,1)?f(g,(1)(1)) = f(g, D f((9)(1), 1),
(6) 3= f(1,9)"f(g,(1)(9)) = f(g D) f((9)(1),9),
(7) 3= f(9,1)?f(9,(9)(1)) = f(9,9)f((9)(9),1),
(8) 3=1(9,9)f(9.9%) = f(9,9)f(g% 9) -

The condition of 2—cocycl

f(g,9) € Q.

Example 3.5. The rational bilinear form on V

[¢]

admits multiplicative notation because f(1,1), f(1,g), f(g,1) and

f(u,v) = 22191 + 322y2
is not a 2—cocycle.

0
Since [f]g = = , the condition of 2—cocycle is not satisfied because

f(g:1)  f(g,9) 0 3
(4) 6= f(g.9) f(L (9)(9)) = F(1.9)F(1)(g),9) =0.

Example 3.6. The rational bilinear form on V

flu,v) = x1y1 + 21y2 + X211

is not a 2—cocycle.

fL,1) f(1,9)

Since [f]p = = , the condition of 2—cocycle does not admit multi-
flg. 1) flg,9) 10
plicative notation because :
(8) 0= £(g9,9)°f(g9,9%) = f(g,9)f (g% g) where f(g,g) = 0 does not have multiplicative inverse .
Example 3.7. Find all the 2 x 2 matrices over Q which define by (3.4) 2—cocycles on V.
Let f be a 2—cocycle on V such that [f]z = fa.1 - f(1,9) — | " "2 Then the
flg:1)  flg,9) Q21 G22
condition of 2—cocycle is satisfied; i.e.,f(b,c)? f(a,bc) = f(a,b)f(ab,c) for all a,b,c € B. This is
expressed with the following eight equalities:

(1) a1itan = anian . (5) a119az21 = asaz ,
(2) aiz'aiz = anrarz, (6) a129a22 = asiazs ,
(3) astaiz = arza0r , (7) a219az2 = asza1; ,
(4) aseain = arzass , (8) ag2%az1 = aga12 .

As the condition of 2—cocycle admits multiplicative notation for f; a11, a12, a1 and ase € Q.
Since the action is trivial, from (6) by the cancellation law is obtained that a2 = ag;. Similarly from (7),
az1 = ayi. Itis noted that aze # 0 is arbitrary, then setting a11 = a2 = ao; = a and ags = b; it follows

a a
that [f]z = where a and b € Q*.

a b
Thus, in Example 3.4 ¢ = 1 and b = 3.

11
Definition 3.3. A 2—cocycle f on 'V is said to be normal if [f]g = donde b € Q*.
1 b
If in addition b = 1 it is said to be the 2—cocycle f is trivial. In the case in which b # 1, f is nontrivial
2—cocycle.
According to Example 3.4, f(u,v) = x1y1 + 21y2 + T2y1 + 3x2yo is nontrivial normal 2—cocycle.

Since Q* is abelian group, Q* may be regarded as a trivial left G—module for any group G (as in [9,
section VL.1]). If G is a finite group, then V = Q[G] is finite-dimensional vector space over the field Q,
whose basis is B = G. Thus, there exists trivial left action of B on Q;i.e., 79 = r forallr € Qand g € B.
One may consider V = Q[Z3] where Z3 = (g) = {1, g, ¢*}.

Example 3.8. Find all the 3 x 3 matrices over Q which allow to define by (3.4) normal 2—cocycles on
V.
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1 1 1
Let f be anormal 2—cocycle on V. Proceeding as in the Example 3.7, itresults that [f]ls = | 1 a b
1 b 2

where a and b € Q*.
Let u = z1e1 + xaes + T3e3, v = y1€1 + Ya2e2 + yses be vectors in V = Q[Zs]. Taking a = 1, the above
matrix yields

Example 3.9. The rational bilinear form on V defined by

11 1] | w
flu,v) = [ T1 To X3 110 Y2
1 b b Y3

is a normal 2—cocycle.
Example 3.10. If one consider the case V = Q[Z4]. Then the matrix

1 1 1 1
1 a b ¢
Lboo:
1 ¢ ¢ 7

where a, b and c € Q; allows to define by (3.4) a normal 2—cocycle on V.
4. Rational Nontrivial Cocycles for Crossed Products. Let G be a group, K a field and K* the

group multiplicative of units of K. It is interesting to note the sequence
H(G,K*) —%5 H(G x G,K*) —25 H(Gx G x G, K*) =% ...,
because f € H(G x G, K*) is a 2—cocycle if da(f) = 1, one can then see that
da(f) : G x G x G — K* is such that
da(f)(a,b,¢) = [[f(b,¢)]*f(a,bo)][[f(a,b)].f(ab, c)] ! but right action is trivial

= [[£(b,0)]" f (. be)][f (a, ) f (ab, )]~
1.

Thus, f is a 2—cocycle if it satisfies [f (b, ¢)]* f(a, bc) = f(a,b) f(ab,c) .

Denoting H (G x G, K*) by H?(G, K*), the existence of a 2—cocycle in H?(G(M/K), M*) com-
patible with the action is guaranteed by finding f € H?(G(M/K), M*) such that
[f(b, )] f(a,bc) = f(a,b)f(ab,c) for all a,b,c € G. But, for the map f to be 2—cocycle with respect to
a cross product, it is also required that f be normal and that it satisfies the twisted module condition as we
will see next.

If M/K is finite and Galois extension of a field K & G(M/K) is the Galois group of M over K, then
is possible to find an element f of H*(G(M/K), M*) such that M x y G(M/K) is a crossed product. That
is, there exists f € H?(G(M/K), M*) a normal 2—cocycle compatible with the action o : G(M/K) —
Aut(M), g — o(g) : M — M defined by o(g)(a) = a9; such that the twisted module condition holds [3,
Corollary 4.6].

4.1. Cocycles for a crossed product Qé[ x ¢ Cy. Letbe M = Q(v/2), K = Q and G(M/K) is the

Galois group of M over K. Let P(X) = X? — 2. Since M = K(Rp(x)), according to [2, Prop 3.1.5] it

is known that M is Galois extension of Q. Since M = {a1 + asV2 | a1, ay € Q}, {1, \/i} is a basis of M
over Q. Then G(M/K) = {1, g} is described by the table

1 g
4.1) 11 1 1
V2 V2 V2

Since G(M/K) is the Galois group of M over K, G(M/K) acts (weakly) on M.

Clearly M = K[V/2] = KIX]

———, where irr(vy, K) = X2 — 2, is afield; so the group of units of M is
Gy, ) )
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M* = M\{0}.

Let f : G(M/K) x G(M/K) — M* be a function such that £ = M x; G(M/K) is a crossed
product. The following three conditions are satisfied according to ([5, page 140] and [3, Corollary 4.6]) :
1) f(lg") = flg" 1) =1,

2) f(e',9")" F(a',97 ") = o', 9))F(g"* 0"
3) ((by +b2v/2)9)9 f(g%, ¢7) = f(g", 7)) (b1 + ba/2)9"", where by + by/2 € M .
All the elements of G(M/K) x G(M/K) x G(M/K) are in the following arrangement:

(1,1,1) (1,1,9)
(1,9,1) (1,9,9)

(9,1,1)  (9,1,9)
(9,9:1)  (9,9,9)

The assertion 3) for f, (b1 + b2v/2)9" )9 (g%, 97) = f(g%,g7) (b1 + by/2)9" ", is satisfied due to that the
K —algebra M is commutative and G(M/K) x M — M,

(g%, a1 + ag\/2) = (a1 + az\/2)? is an action of G(M/K) on M. ‘

Considering the above arrangement, the assertion 2) for f, f(¢7, %)’ f(g%, ¢71t%) = (g%, ¢?) f(g"t7, g").
is expanded to 8 equalities (see Example 3.4). _

Since f(gj,g’“)lf(Lg”’“) =f(L,g)f(g7. g"); F(1,6%)7 Fg',g") = F(g',1)f(g%, g*) and
F(@?, 1) f(g',97) = f(g', ) ("7, 1); the following equality holds :

(8) f(9,9)7f(9,9%) = fg,9) (9% 9) -
If f(g,9) = a+ b2, f(g,9)? = a— bv/2. Since g = 1, from the equality (8) it is deduced that

f(g,9) = a, where a € Q*.
Setting a = 3 is obtained the matrix ( 3 ) Consequently, the rational bilinear form f such that

fL1) f(Lg) 11
[fls = =
flg: 1) f(g,9) 13
, - . __Qx] oy
is a nontrivial 2—cocycle such that A <y C5 is a crossed product, where A = m and Cy = (g) is

the Galois group of X2 — 2 over Q.

4.2. Cocycles for a crossed product % x ¢C3. The polynomial P(X) = X3—7X +7 is irreducible

in Q[X] by Eisenstein’s criterion with p = 7. Using the techniques of calculus for polinomial function
P(z) = 23 — Tx + 7 as in the proof of [2, Affirmation 2], it is seen that P(z) has three real roots.
Let be y one of the roots of P = P(X), M = Q(y), K = Q and G(M/K) is the Galois group of M
over K. Since M = K(Rp(x)), it is known that M is Galois extension of K. Since M = {a1 + aoy +
azy? | a1, az,a3 € Q}, {1,v,+%} is a basis of M over Q. Then G(M/K) = {1, g, g*} is described by the
table

11 1 1
4.2)

Y| Y T2 T3

2 2 2 2
Y Y rg T3

where 7y = 7, 79 = 372 + 4y — 14 and r3 = —37% — 5 + 14 are roots of

irr(y, K) = X® — 7X + 7 [?, page 33].

Since G(M/K) is the Galois group of M over K, G(M/K) acts (weakly) on M.
KX

Clearly M = K (v) = X]

————— whereirr(y, K) = X® — 7X + 7, is a field; so the group of units of M
(irr(y, K))
is M* = M\{0}.

Let f : G(M/K) x G(M/K) — M* be a function such that E = M x; G(M/K) is a crossed
product. Then the following three conditions are satisfied :

1) f(lagi) :f(giv]-) =1,
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2) (o, (" 9t = F(g'9) f (9" 9" N
3) ((a1+a27+a37) 9 fg %) = fg, 97 arn + asy +agy?)e

where aq + a2y + as
All the elements of GZ M/ K >< G(M/K) x G(M/K) are in the following arrangement:

(1,1,1) (1,1,9) (1,1,9%) (Lg,1)  (1,9,9) (Lg,g*) (1,¢%1) (1,4%9)
(L,g%9%) (9,1,1) (9:1,9) (9:1,9>)  (9,9,1) (9:9,9)  (9,9.9°) (9,9%1)
(9.9%9) (9.9%9%) (¢*1L1) (¢*1,9) (¢%1,9%) (%9 (¢* 9.9 (4%9,9°)
(¢%,9%1)  (¢%d%9) (d%.9%9°)

Considering this arrangement, the assertion 2) for f, f(g7, g’“)glf(gi7 Y = f(g%, ¢7) f(g"T, o),
is expanded to 27 equalities.

Since f(g7, 9 ) F(Lg7) = F(1,g) f(g,g5): F(L.g")7 F(g'g") = £(g',1)f(g",g*) and
g8, 1)? flgt, g) = flg', ¢7) f(giti, 1); the following 8 equalities hold :

N

(14) f(9.9)f(9,9%) = f(9,9)f(9* 9) »

(15) f(g,9%)° = f(g.9)f (g% ¢*) .

(17) f(g*%9)° = f(g.9%) .

(18) f(9%9°)" f(9.9) = f(9,9) ,

(23) f(g.9)? 2(92,92) = f(g%9) .

(24) f(9.6*)° = f(g%9),

(26) f(9°,9)" = f(9%9°)f(9.9).

@27) flg% 62" [(g%9) = F(g% 62 [ (g, 9°)

If a, b € Q*, then the matrix

flo.9) flgg®) \ _[a b
f(g%9) f(g* ) b 2

presents a solution of the above system of 8 equations.
Therefore, the rational bilinear form f of Example 3.8 given by

11 1
fls=1]1 a b
1 b 2
X
is a nontrivial 2—cocycle such that A x ¢ Cs is a crossed product, where A = ()(3@[7)(]+7> and Cj3

is the Galois group of X3 — 7X + 7over Q.

= (g)

4.3. Cocycles for a crossed product Qé[ py s Ga. Letbe M = Q(v2,V3), K = Q and G(M/K)
is the Galois group of M over K. According to Fraleigh [8, Example 53.3] it is known that M is Galois

extension of Q.

Since M = {a1 + asV2 + azv/3 + asV6 | a1,a2,a3,a4 € Q}, then G(M/K) = {g0,91, 92,93} is

described by
91 92 g3
1 1 1
(4.3) -2 V2 -2

S5 & -
SHS-s
S S
5%
54
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Hence, the group table for G(M/K) is given by

go 91 92 93

go | 9o 91 92 93
4.4 g1 |91 9o g3 92

92 | 92 93 G0 G1

93193 92 g1 4go-

Itis considered o : G(M/K) — Aut(M), g; — o(g;) : M — M defined by
o(gi)(a1 + aaV2 + azV/3 + asV/6) = (a1 + aaV2 + azV/3 + a4 V/6)9:.
Recalls that G(M/K) X G(M/K) = {(90790)7 (90791)7 (90792)u (gOag?))u (glago)u (glagl)u

(91, 92), (91, 93), (92, 90); (92, 91); (92, 92), (92, 93); (93, 90), (93, 91), (93, 92), (93, 93) }-
If (9i,9;) € G(M/K) x G(M/K), then 0(gig;) = o(g:)o(g;)-

In fact, if a; 4+ a2V/2 4 asV/3 4+ a4V/6 € M, then by (4.3) & (4.4):

o(g193)(a1 + aaV2 + asV3 4+ asV6) = 0(g2) (a1 + azv2 + asV'3 + ayV/6)
:a1+a2\/§—a3\/§—a4\/6,

o(g1)o(gs)(ar + azV2 + asV3 + asV6) = o(g1) (a1 — a2v2 — a3V/3 + a4 V6)
= ai —+ (12\/5 — CL3\/§ — a4\/6.

The others equalities are checked similarly.

Since G(M/K) is the Galois group of M over K, the map o(g;) is a X —algebra automorphism of M.
Thatis; if A € K, a1 + asv2 + a3v/3 + a4v/6 and by + b3v/2 + bsv/3 + by/6 € M, then :

Do(g:)(Mar + a2v2 + a3 V3 + asV6)) = Aa(gi) (a1 + a2v2 + a3V/3 + asV6),

2)0(g:)((a1 + a2v2 + azV/3 + asvV/6) + (b1 + b2v/2 + b3v/3 + b4V6))
= O’(gi)((h + az\/iJr a3\/§+ CL4\/6> + U(gi)(bl + bz\@+ b3\/§+ b4\/6),

3)a(g:)((a1 + a2V2 + azV3 + asV6)(by + b2 V2 + bsv/3 + by V6))

=o(gi)(a1 + 02\/54- a3\/§+ a4\/6)0(gi)(b1 + b2\/§+ bg\/§ + b4\/6)-

Therefore, G(M/K) acts (weakly) on M.

K[X]

By the primitive element theorem [2, p 74] exists v € M such that M = K[y] = (. K))
7

so the group of units of M is M* = M\{0}.

1
For example (1 4+ V2 + V3 +V6)"! = 5(1—[—\/5—&—\/6).
Ify=1+v2+V3+ V6, thenirr(y, K) = X* —4X3 — 10X? — 20X — 23.

is a field;

Let f : G(M/K) x G(M/K) — M* be a function such that E = M x; G(M/K) is a crossed
product. Then the following three conditions are satisfied :

1) f(g0,9:) = f(9i,90) =1,
2) f(95,96)" f(9i-959%) = [(9i95)f(9i95, 9x) »
3) (b1 +b2v/2+ b33 + b4v/6)%)% f (g5, 95) = f(9i95) (b1 + b2v/2 + b3v/3 + b4/6)%193,

where b; + b2ﬂ+ b3\/§+ b4\/6 e M.
All the elements of G(M/K) x G(M/K) x G(M/K) are the following:

905 90, 90 90,90,91)  (90,90,92) (90,90,93) (90,91,90) (g0,91,91) (90,91,92 90,91, 93

905 925 9o 905 92, 91 90, 92, g2 90,92,93)  (90,93,90) (90,93,91) (90,93, 92 90, 93, g3

91,90, 90 91,90, 91 91,90, 92

( )

( ) )
( ) )
(91:92,90)  (91,92,91) (91,92, 92 91,92,93)  (91,93,90) (91,93,91)
(92:90,90) (92, 90,91)

( ) )

( ) )

( ) )

(
(
(91,91,93
(91,93, 93
(

) (
) ) (
) (91,90,93) (91,91,90) (91,91,91) (91,91,92
) ) (
) ) (

(92,91,90) (92,91,91) (92,91,92

92,92, 9o 92,92, 91 92,92,92) (92,92,93) (92,93,90) (92,93,91) (92,93,92) (92,93,93

93,90, 90 93,90, 91 93,90,92) (93,90,93) (93,91,90) (93,91,91) (93,91,92) (93,91,93

( ( ) )
( ( ) )
( ( ) )
( ( 91,93,92) )
(92:90,92) (92, 90,93 ) (92,91,93)
( ( ) )
( ( ) )
( ( ) )

93,92, 90 93,92, 91 93,92,92) (93,92,93) (93,93,90) (93,93,91) (93,93,92) (93,953,953
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Using the group table (4.4), f(g;,9x)" f(9i,959%) = f(9i9;)f(9i9;. 9x) is expanded to 64 equa-
licies. Since f(g;, )" f(90: 959%) = f(90,95) (95, 9); f(90,95)" f(9:: 9x) = [(9i,90)f(9i, g1) and
£(95.90)" f(9i,95) = f(9i-97)f(9ig5, 90); the following 27 equalities hold :

(22) f(g1,91)"" = fg1,91), (44) f(g2,93)” f(92,91) = f(92,92),

(23) f(91,9 )glf( 1,93) = f(91,91), (46) f(93,9 )ng(g2,g2) f(92,93)f(g1,91),
(24) f(g1,93)" f(91,92) = f(g1.91). (47) f(93,92)% f(92,91) = f(ge, 93)f(91792)
(26) f(g2,9 )glf(gvaB) f(91,92)f(93,91)s (48) f(g3,93)” = f(g2,93)f(91,93),

(27) f(g2,92)"" = f(91.92)f (g3, 92) (54) f(91,g1)g3 f(93,91)f(92,91)

(28) f(g2, gs)‘“f(gl,m) f(ghga)f(gs,gs), (55) f(g1,92)% f(g3,93) = f(g:s,gl)f(gmgz
(30) f(g3,91)" f(g1,92) = fg1,93)f (92, 91), (56) f(g1,93)% f(g3,92) = f(g3,91)f (g2, 93),
(31) f(g3,92)"" f(g1,91) = f91,93)f (g2, 92), (58) f(g2,91)% f(g3,93) = f(g3,92)f (91, 91),
(32) f(g3,93)"" = f(91,93)f(92,93), (59) f(92,92)" = f(g3,92)f(g1,92)s

(38) fg1,91)" = f(92,91)f (93, 1), (60) f(g2,93)% f(g3,91) = f(g3,92)f (91, 93),
(39) f(g1,92)% f(92,93) = f(92,91)f (g3, 92), (62) f(g3,91)” f(g3,92) = f(g3,93),

(40) f(91’93)g2f(92792) f(g92,91)f(g3,93), (63) f(93792)93f(93,91) f(g3,93)

(42) f(g2,91)% f(g2,93) = f(92,92), (64) f(g3,93)" = f(g3,93) -

(43) f(gz,gz)92 f(92,92)-

If f(gi,95) = aij + bij\/§+ Cij\/§+ dij\/és flg1,01)" = a1 — b11V2 + c11V3 — d11V/6. From
f(91,91)" = f(g1,91). it follows that f(g1,91) = a1y + c11v/3. Similarly from f(g2, g2)” = f(g2, 92)
and f(g3, g3)? = f(gs, g3) itis obtained f(ga, g2) = a2z +b22v/2, f(gs, gs) = as3 + ds3/6 respectively.
We note that the equations (27) with (59), (32) with (48) & (38) with (54) are the same. Then we must
resolve a system of 24 equations.

By the condition of normality 1) of f, exist 9 variables f(g;, g;) for ¢, j : 1,2, 3. Furthermore, each of these
variables depends on 4 variables. Thus, exist 36 variables. That is, one has a system of 24 equations in 36
variables.

Since f(g1,92)"" = a2 —b12v/2 + c12V3 — d12V6; f(g1,93) = a13 +b13v2 + c13v/3 + d131/6, and
(a+bV2+cV/3+dV6)(a'+b v/ 24-¢'V/3+d'V6) = (aa’'+2b0' +3cc’ +6dd’ )+ (ab +ba’ +3cd' +3dc’)v/2+
(ac’ 4 2bd’ + ca’ + 2db')\/3 + (ad’ + bc’ + cb’ + da’)/6 , the equation f(g1,92)?" f(g1,93) = f(91,91)
is written as

a12013 — 2b12b13 + 3c12¢13 — 6d12diz = aq
a12b13 — bi2a13 + 3c12d13 — 3di2c13 = 0
a12¢13 — 2b12d13 + c12a13 — 2d12b13 = cnq

a12d13 — biaciz + ciabi3 — diga13 = 0.
Since f(g1,93)?* = a13 — b13v/2 + c13v/3 — d13V6 and f(g1, g2) = a2 + b12v/2 + c12v/3 + d12V/6, the
equation f(g1,93)" f(g1,92) = f(g1, g1) is written as

a13a12 — 2b13b12 + 3cizci2 — 6dizdiz = any

a13b12 — bizaiz + 3ci3di2 — 3dizci2 = 0

a13c12 — 2b13d12 + ci3a12 — 2d13bi2 = e

a13d12 — bizcia + ci3bia — dizaiz = 0.

Therefore the equations (23) with (24) are the same. Similarly, the equations (42) with (44) & (62) with
(63) are the same. So, the system is reduced to one of 21 equations in 36 variables.

If a11, a13 and ase € QF, then the matrix

fla,91)  flo1,92) f(g1,93)
f(g2,91) [f(g2,92) [f(g2,93)
f(g3,91) [f(g3.92) [f(g3,93)
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can be written as

a1 aii

ail a1s ais a1l a3 ais
ai a13a22 ai a13a22
=L a e or — =11 a — 13722
a3 22 ail ai13 22 a1
2 2
a a13a22 a;3022 —a ai3a22 __ Q33022
13 ail ail 13 ail ail

This matrix presents a solution of the above system of 21 equations with 36 variables.
If a11 = a13 = 1 & a9y = 4, it is obtained the matrix

1 1 1
-1 4 —4
-1 4 —4

Consequently, the rational bilinear form f such that

11 1 1
11 1 1
[f]s =
1 —1 4 —4
1 —1 4 —4

is a nontrivial 2—cocycle such that % X ¢ G4 is a crossed product, where
P =X*—-5X?+6and G, is the Galois group of P over Q .

4.3.1. Computing Nonrational 2—cocycles. From (22) f(g1,91)?" = f(91,91), one has
flg1,91) = a11 + c11V3.If £(g1,93) = bi3V2 where bz € Q*, thenaj3 = ¢13 = di3 =0.

Since f(g1,92)" f(91,93) = (a12 — b12V2 + c12V3 — d12V6)b13V2
= —2b19b13 + a12b13V2 — 2d12b13V3 + c12b135V6 ;

flg1,91) = a11 + c11V/3, from (23) f(g1,92)" f(91,93) = f(g1,91) one obtains
—2b12b13 =ai, a12 = 0, —2d12b13 = C11 and Clg2 = 0.If C11 = O, then f(gl,gl) = ail and

flg1,92) = all \[

Since f(g2,91)" f(g1,93) = (az1 — ba1 V2 + c21V3 — d21V6)b13V2
= —2by1by1z + ag1b13V2 — 2da1b13V3 + ca1b13V6 ;
a
191,92 (93,91) = =5 V2(ag1 + b2+ e V3 + da V6)

_ 7(111531 . a11a31\[7 alld?)l\[i a11€31 \[
o b]_3 2b13 b 2b13

from (26) f(g2,91)" f(g1,93) = f(91,92)f (g3, 1) it follows that

b- ) d- .
4.5) 2bo1b13 = duivst , Q21b13 = s , 2d21b13 = BB and co1b13 = _aicst
b3 2b13 b3 2b13

From (43) f(g2,92)”> = f(g2. g2), one obtains f(g2, g2) = aza + baav/2. If bay = 0, f(g2, g2) = aso.

. a
Since f(g1,92)f(93,92) = —Wi’\/ﬁ(agg + b32V/2 + c32V3 + d32V6)
_ a11b32 11032 ai1dsz a11€32
 bis 2013 V2- bis V3- 2b13 S0, VO
b
from (27) f(g2,92)"" = f(91,92)f (g3, g2) one obtains that bsy = 7612;71113’

Q22b1:
a3g = C32 — d32 = 0 ThllS f(gg,gg) == —%ﬂ

109
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From (64) f(g3,93)" = f(g3,9s), one has f(gs,gs) = ass + d33V/6.
Since f(g2,93)" (g1, 91) = (a3 — bazV/2 + c23V'3 — dazV6)any
= ag3a11 — baza11V2 + ca3a11V3 — dazay 1 V6 ;
a
F(91,92) (g3, 93) = (—5—V/2) (az3 + ds3V/6)

2b13
__Gudss o a11dss3 V3:
2b13 bis
from (28) f(g2,93)"" (J; (91,91) = f(91,92)f(g3,93) onedobtains that ags = dog = 0,
ass 33 ass 33
bog = —33 py = — 93 Tp Lg3) = 38 /5 U85
2 = gy o 028 bs us f(g2,93) b1 V2 bis
. 1 a22b
Since f(g3,92)” f(g1,91) = (—227113\/5)91&11
1
= &22513\[%

f(91.93)f(92,92) = (bi3v2)azs from (31) f(gs,92)" f(91,91) = f(91,93)f(g2,92) one obtains the
identity aggblgﬁ = agzblgﬁ .

Since f(g3,93)" = (a3 + d33V6)?" = azz — ds3V6 ;

a d
f(91,93)f(92,93) = blsﬁ(ﬁ\f* ﬁﬁ) = ags — dz3V/6;

from (32) f(g3,93)”" = f(g1,93)f (g2, g3) it is obtained the identity
aszs — d33v/6 = asz — d33\/6.

Since £(g1,92)% F(g2, 95) = (— L v/2) (L3 5 938 )

_2b31 2b13 b13
aiiazz | a11dss
= 6 -
202, + 202, VG
a22b
f(92,91)f(g3,92) = (ag1 +ba1V2 + V3 + d21\/6)(—%\@)
11
2b b b 2d b
_ 21022013 _ 21422 13\/5_ 21022 13\/5
ail arl a1l
_ C21a22b13\/6
a1

from (39) f(91,92)" f (92, 93) = f(g2.91)f (g3, g2) one obtains that

afyas;
(46) a1 = dgl =0 s b21 = and Co1 = —

Thus f(ga,91) = b21V2 + c21V/3. From (4.5) az; = d3; = 0, so that flgs,91) = b31V2 + c31V/3.

Since f(gl,91)g1 =an;
f(g2,91) f(g3,91) = (b21V2 + €21V3) (b31V2 + ¢31V3)
= (202131 + 3carcar) + (barcar + ca1bs1)V6;

from (38) f(g1,91)”" = f(g2,91)f(g3,g1) one obtains the system

2bo1b31 + 3c21031 = a
@7 21031 21C31 11

baics1 + c21b31 = 0.

Since f(g1,93)" f(g2, 92) = bizaz V2 ;
f(92:91) (g3, 93) = (b21V2 + c21V3) (azs + d33V/6)
= (ba1azs + 3ca1d33) V2 + (2021d33 + c21a33)V/3;
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from (40) f(g1,93)" f (92, 92) = f(g2.91)f (g3, g3) one obtains the system

barass + 3ca1dsz = bizags

2bo1dsz + cg1a33 = 0.

Since f(g3»91)g2f(92»92) = (b31\/§ - 031\[)022 = b31a22\/§ - 631a22\['
a d: assa dssa
(02:95)(01,01) = (a2 /3 00 By = 500 5 Bt g

bi3

from (46) f(gs,91)% f(g2.92) = f(92,93)f (g1, g1) one obtains that

a33a11 d3zais
(4.8) by = , _ 2831l
T 209013 T PN agabis

Since f(g1,93)" f(gs, g2) = (—b13\/§)( a22b13 \[) a22b13 ;

ai1 ai1
a d
f(93,91)f(g92,93) = (b31\f+031\[)(2;33\[ 33\[)
b31ass c31dss3 b31d33 €31033
= -3 + (- V6;
( bi3 b13 )+ b13 2b13 )

from (56) f(g1,93)" f(g3,92) = f(g3,91)f (g2, g3) one obtains

b
barazz — 3cz1da = 275218

—b31dss + 76312(133 =0.

2
atydss

. a%1a33
Recalling (4.6) : by = 3 ,Col = —
4b13a22

a33aiy - d33a11

2b:{’3a22 '
From (4.8) b3 =

, C3 . If one replaces these values in the system (4.7)
2a22b13 a22b13

2b1b31 + 3c21031 = aqy
ba1cs1 + ca1b31 =0,
one obtains the main equation

2 2
a11033 3 a11d33 _

4b‘113a%2 2 b 3%2

202.a
If d33 = 0, agz = i%%, co1 = c31 = 0.
11
. 202.a a
By taking azz = —2 2 by = —-, b31 = bi3 .
a1y 2b13

Thus, the matrix

flg1,91) flg1,92) f(91,93)
fl92,91) f(g2,92) f(g2,93)
fg3,91) f(g3,92) [f(93,93)

is
a
ai —V2 0 b2
ai bizaz
2b13 2 a22 ail f

b 202 a0

aii
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If a11 = b3 = a9 = 1, one obtains the matrix

SNV, N
Wi o1 B
V2 V2 2
Therefore, the bilinear map f such that
1 1 1 1
Uls=|1 1 —4v2 V2
L 3v2 1 V2
1 V2 V2 2
Qx]

is a nontrivial 2—cocycle such that By Xf G is a crossed product, where P = X* — 5X?2 + 6 and G4 is
the Galois group of P over Q .

4.3.2. Cocycles for a crossed product % XypCh Let M = Q(v/2,v/3) and K = Q. According to
Fraleigh [8, Example 53.3] it is known that M is Galois extension of Q. Thus M* = M\{0}.
Since M = {a; + aav/2 + a3V/3 + asV/6 | a1, a2, a3,a4 € Q}, Co = {1, g} = (g) is described by

1 9
1] 1 1
4.9) V2 V2 V2
V3| V3 -3
V6 | V6 —V6

It is considered o : Cy — Aut(M), g* + o(g") : M — M defined by
U(gi)(al + az\@Jr (13\/§+ a4\/6) = (a1 + az\ﬁJr 113\/§+ (14\/6)gl~
Recalls that Cz x Cz = {(1,1), (1, 9), (9:1), (9, 9)}-
If (9,¢7) € Cy x Ca, then o(g'g?) = o(g")o(g”).
In fact, if a1 + a2v/2 + a3V3 + a4V/6 € M, then by (4.9):
o(g9)(a1 + azVv2 + azV3 + agV6) = o(1) (a1 + aaV2 + azV3 + a4V6)
=a +a2\/§+a3\/§+a4\/6,
o(9)o(g)(a1 + aavV2 + asV3 + asV6) = o(g) (a1 + aaV2 — asV3 — asV/6)
=a; + az\/i—i— a3\/§+ a4\/6.

The others equalities are verified easily.
The map o(g) is a K —algebra automorphism of M.
If A€ K, a1 4+ azv2 + asv3 + a6 and by + bav/2 + b3v/3 + by/6 € M, then :
1) o(g)(May + aaV'2 + az V'3 + CL4\/6)) = Mo(g)(a1 + aaV'2 + az V3 + a4\/6),
2) o(g9)((a1 + a2\/§+ a3\/§ + a4\/6) + (b1 + bg\@-l- b3\/§+ b4\/6))
= o(g)(a1 + aav2 + azV3 + agV6) + o (g) (b1 + bavV'2 + b3V/3 + by V6),
3) o(g)((a1 + az\@+ (lg\/§+ a4\/6)(b1 + bzﬁJr bs\/§+ b4\/6))
= 0(g)(a1 +a2\/§+a3\/§+a4\/6)a(g)(b1 +b2\/§+b3\/§+b4\/6)-

Therefore, C'5 acts (weakly) on M.
Example 4.1. Find the value of o € M* such that

1 ifit+j<2
o ifiti>2,

(4.10) flg'g) =
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where 0 < i,j < 2;, g, g7 € Co = {1,g9} = (g9) and f : C3 x Cy — M* is a 2—cocycle of the crossed
product M x ¢ Cy .
Since v € M*, then a = a + bv/2 + ¢V/3 + dv/6 where a® + b? + ¢ + d? # 0. From the definition of
crossed product, the following three conditions are satisfied :

1) f(lagi) :_f(giv 1)=1,

2) f(e9")" J(g'.97") = (9", 9)) (9", 6"

3) (b1 +baV2 + b3V3 4+ baV6)7 )9 f(g', ¢7) = f

where by + bov/2 + b3f+ by V6 € M.

(gzag])(bl+b2\/§+b3\/§+b4\/6)g“w’

Cy x Cyx Cy={l,g} x{1,9} x {1,g}
={(1,1,1),(1,1,9),(1,9,1),(1,9,9),(9,1,1),(9,1,9),(9,9,1), (9,9, 9) }-

Considering this set the assertion 2) for f, f(gj,gk’)glf(g",gﬁk) = f(g*,¢")f(g"t7, g*), is expanded to
the following 8 equalities

(1) 1=f£(1, 1)1f(1 (1) = F(L D (D)), 1),
(2) 1= f(l,g)lf(l, ()(9)) = F(L,1)F((1)(1),9)
(3) 1=1f(g,1) 1f(1, (9)(1)) = f(L,9)f((1)(9),1),
(4) a=f(g,9) f(1,(9)(9)) = f(L,9)f((1)(9),9) s
(5) 1= f(1,1)?f(g,(1)(1) = f(g: D f((9)(1), 1),
(6) a= f(1,9)"f(g,(1)(9) = flg, 1) f((9)(1),9),
(7) a= f(g, 1)’ f(g,(9)(1)) = f(g,9)f((9)(9);1) ,
(8) a? = f(g9,9)" f(9,9%) = f(9,9) (g%, 9) = e,

where o = a + bv/2 + ¢vV/3 + dvV6, o = a + b2 — /3 — d/6.
From the equality (8), it is deduced that o = a 4 bv/2 O

Setting a = 3 & b = 5 is obtained the matrix

( 3+5v2 ) :
Therefore, the bilinear map f such that
As={ .
B =
1 3+5/2
X
is a nontrivial 2—cocycle such that A x C is a crossed product, where A = ()(4@5[)(]2+6> and Cs is

the subgroup (g) of the Galois group of X* — 5X2 + 6 over Q .

4.4. Cocycles for a crossed product (%[ ¢ Geg. Let ( = (3 = —% + @z be the primitive 3—th

root of the unity in the field of complex numbers C. Let be M = Q(+/2,(3), K = Q and G(M/K) is the
Galois group of M over K. According to [8, Example 50.9] it is known that M is Galois extension of Q.
The proof of [8, Theorem 31.4] then shows that {1, 2,3/22, ¢, CV2, CW} is a basis for M over Q. Thus

M = {a1+a2¥/2+a3 V22 +asl+asCV2+agC V22 | a; € Q). Then G(M/K) = {go, 91,92, 93, G4, g5 }
is described as follows

9o g1 g2 g3 g4 95
1 1 1 1 1 1

1
AR NS R RN RS RN eE
2| YR QYR B VR VR P
¢ ¢ ¢ ¢ ¢? ¢ ¢?
V2
22

@11 3

V2o V2 V2 V2 V2 (2
WEVE QYR VR B UE

¢
<3
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Hence, the group table for G(M/K) is given by

dgo 91 92 93 g4 Gs

go | 90 91 92 g3 94 G5
g1 | 91 92 Go 94 Ggs G3
(4.12) g2 |92 9o 91 95 93 Ga
g3 | 93 95 94 Go G2 41
94 | 94 93 95 g1 go G2

gs | 95 94 g3 g2 g1 go-

Itis considered o : G(M/K) — Aut(M), g; — o(g;) : M — M defined by

o(g:)(a1+a2V2+a3 V22 +as(+asCV2+agV2%) = (a1+a2V2+a3 V22 +as(+as( V2 +ag( V22)%
Recalls that

G(M/K) X G(M/K) = {(gOagO)a (g()agl)a (90792)7 (90793)a (gOag4)a (gOa95)7 vy

(95, 90), (955 91), (95, 92) (95, 93) (95, 9a), (95, 95) }-

If (gi. 95) € GIM/K) x G(M/K), then 0(gig;) = o(gi)o(g;)-

In fact, if a = a1 + a2 /2 + a3 V22 4 a4 + a5CY/2 + ag(V/22 € M, then by (4.11) & (4.12):

o(g192)(a) = (go)(a) = a,
o(g1)o(g2)(a) = o(g1) (a1 + a2 V2 4 asC V22 + asC + a5 V2 + ag(?V22) = a..

The others equalities are checked similarly.
Since G(M/K) is the Galois group of M over K, the map o(g;) is a K —algebra automorphism of M.

Thatis; if A € K, b= by + by /2 + by /22 + baC + bs (/2 + b( /22 € M, then :

Da(gi)(Aa) = Ao(gi)(a),
2)o(gi)(a+b) = o(gi)(a) + o(g:) (b),
3)o(gi)(ab) = o(gi)(a)o(gi)(b) .
Therefore, G(M/K) acts (weakly) on M.
K[X]

By the primitive element theorem [2, p 74] exists v € M such that M = K[y] = W
rr(7y,

so the group of units of M is M* = M\{0}.

is a field;

Let f : G(M/K) x G(M/K) — M* be a function such that £ = M x; G(M/K) is a crossed
product. Then the following three conditions are satisfied according to Blattner, Cohen, and Montgomery
[3, Corollary 4.6] :

1) f(g0,9:) = f(gi-90) =1,

2) f(g5,96)" f (95, 959) = f(9i,9).f (9595, 9%) -

3) (b9)% f(gi, 9;) = f(9i,9;)b%, whereb € M .
The set G(M/K) x G(M/K) x G(M/K) has 63 = 216 elements .
The assertion 3) for f, (%)% f(g:,9;) = f(9:,9;)b99, is satisfied due to that the K —algebra M is com-
mutative and G(M/K) x M — M, (g;,a) — a% is an action of G(M/K) on M.
Using the group table (4.12), f(g;,91)" f(9i»9591) = f(9i,95)f(9:9j, gx) is expanded to 216 equali-
ties. Since f(g;,9x)" f(90,959%) = f(90,95)f (95, 9%)s f(g0:9x)" f(gisgk) = f(9i90)f(gi,gr) and
1(95,90)% f(9:i,95) = f(9i»95)f(9i9j, 90); the following 125 equalities hold :

(44) f(g1,91)" f(91,92) = f(g1,91) (92, 91)s (54) f(g2,95)" f(g1,94) = fg1,92),

(45) f(g1,92)"" = f(91,91)f (92, 92), (56) f(g3,91)" f(91,95) = f(g1,gs)f(g4,gl),
(46) f(g1,93)" f(g91,94) = f(gugl)f(gz,gs), (57) f(93792)glf(91»g4) f(91,93)f (94, 92)-
(47) f(g91,94)" f(91,95) = f(91,91)f (92, 94), (58) f(g3,93)"" = f(g1,93)f (94, 93),

(48) f(g1,95)"" f(91,93) = f91,91)f (92, 95), (59) f(g3,94)" f(91,92) = f(91,93)f (94, 94).
(50) f(g2,91)"" = f(g1,92), (60) f(g3,95)" f(g1,91) = f(g1,93)f (94, 95),
(51) f(g2,92)"" flg1,91) = f(91.92), (62) f(94,91)? f(91,93) = f(91,94) [ (95, 91),
(52) f(g2,93)" f(91,95) = fg1,92)- (63) f(947g2)glf(91,95) f(91,94)f(g5792)7
(53) f(g2,94)" f(91,93) = fg1,92)- (64) f(94,93)" f(91,91) = f(91,94)f (g5, 93).



Ccolque Felipe C.- Selecciones Matematicas. 2021; Vol. 8(1): 100-119 115

(65) f(94,94)"" = f(g1,94)f(95,94)
(66) f(94,95)glf(91,g2) (91794)f(95795 s
(68) f(g5,91)" f(g1,94) = f(91,95) (93, 91),
(69) f(g5,92)" fg1,93) = f(91,95)f (g3, 92),
(70) f(g5,93)"" f(91,92) = f(91,95)f (g3, 93),
(71) f(g5,94)" f(91,91) = f(91,95)f (93, 94),
(72) f(g5,95)"" = f(91,95)f(93,95),
2803 ;Egl,glgzzf(gz,(gz) )f(g%gl)f(QOagl),
81) f(g1,92)" = f(92, 3
(82) f(g1,93)" f(92,94) = fg2,91)s
(83) f(g1,94)” f(92,95) = f(92,91).
(84) f(g1,95)% f(92,93) = f(g2,91)-
(86) f(g2,91)” = f(92,92)f(91, 1),
(87) f(g2,92)” f(g92,91) = f(g2,92)f (91, 92),
(88) f(g92,93)" f(92,95) = f(g2,92)f (91, 93),
(89) f(g2,94)” f(92,93) = f(g2,92)f(91,94)s
(90) f(g2,95)" f(92,94) = f(92,92)f (91, 95),
(92) f(g3,91)% f(92,95) = f(92,93)f (95, 91),
(93) f(93,92)” f(92,94) = f(92,93) (95, 92),
(94) f(g3,93)" = f(g2,93)f(95,93)
(95) f(g3,94)" f(92,92) = f(92,93)f (g5, 94),
(96) f(g3,95)% f(92,91) = f(92,93) (95, 95),
(98) f(94,91)" f(92,93) = f(92,94) f (93, 91),
(99) f(94,92)" f(92,95) = f(92,94) f (93, 92),
800; ;294793§sz(927(91) Z);Egz,%;f(g&gs ,
01) f(94,94)" = f(92,94)f (93,94
(102) f(94,95)" f(g2.92) = f(92,94) [ (93, 95)
(104) f(g5,91)” f(g2:94) = f(92,95)f (94, 91)s
(105) f(g5,92)" f (g2, 93) = f(92, 95)f (9. g2),
(106) f(9g5,93)” f (g2, 92) = f(92,95)f (9. 93)s
E107§ ;Egmgzxgng(gz,(gl) =)§Egz,g5§f(g4,g4 ,
108) f(95.95)" = f(92:95)f (94,95
(116) f(g1,91)” f(g3.92) = f(93,91) (g5, 91)s
(117) f(g91,92)" = f(g3,91)f (95, 92)>
(118) f(gl,gg)g3f(g3,g4) f(93,91)f(95793),
(119) f(91,94)" f(g3,95) = f(93,91)f(g5,94)s
(120) f(g1,95)" f(gs,93) = f(g3,91)f(95,95)
(122) f(g2,91)" = f(93,92)f (94, 91),
(123) f(92,92)" f(g3.91) = f(93,92)f (94, g2)s
(124) f(g2,93)" f(g3,95) = f(93,92) f (9. 93)s
(125) f(92,94)" f (g3, 93) = f(93,92)f (94, 94)s
(126) f(g2,95)" f(g3,94) = f(93,92)f(94,95)s
(128) f(g3,91)" f(g3,95) = f(9g3.93).
8;3; ;Egs, 92§z:f(93,(94) Z)f(g37g3)
93,93 3,93
(131) f(93794)ggf(93792) = f(93,93)
(132) f(9g3,95)" f(g3,91) = f(g3,93),
(134) f(g4’91)%f(93,93) = f(g37g4)f(92,91)»
(135) f(94,92)" f(g3,95) = f(g3,94)f (g2, 92).
gg% %94, 93%2?(93,(91) :)§EQ37g4gf(92, g3)s
94, g4 f(g3,94) (92,94
(138) f(94,95)" f (g3, 92) = f(93,94)f(92,95)
(140) f(g5,91)” f(g3,94) = f(93,95)f(91,91).
(141) f(g5,92)" f(g3,93) = f(g3.95)f(91,92).

If f(gi,95) = aij +bij V2+ cij V22 + dijC + €, C V2 + ki CV/22, f(gs, g3)*
e33) V2 + (33 — k33) V22 — ds3C — e33¢V/2 — k33 V/22. From f(gs, g3)%

f(g3,93) = ass + baz /2 + c33V/22.

(142) f(gs,93)” “"f(93792) = f(93,95)f(91,93)s
(143) f(95,94)" f(92,91) = f(93.95)f (91, 94).
(144) f(g5,95)" = f(93,95)f(91,95)

(152) f(g1,g1)g4f(g4,gz) f(94,91) f (93, 1),
(153) f(91,92)" = f(94,91)f (g3, 92),

(154) f(91,93)"" f(94,94) = f(94,91)f (g3, 93)-
(155) f(91,94)" f(94,95) = f(94,91)f (g3, 94)-
(156) f(g1,95)"" f(94,93) = f(94,91)f (g3, 95)-
(158) f(92,91)"" = f(9a,92)f (g5, 1),

(159) f(g2:92)" f(94,91) = f(94,92) f (g5, 92)>
(160) f(g2,93)" f(94,95) = f(94,92)f (95, 93)-
(161) f(g2,94)" f(94,93) = f(94,92)f (g5, 94)-
(162) f(g2,95)"" f(94,94) = [(94,92)f (g5, 95)-
(164) f(93,91)" (94, 95) = f(94,93) f(91,91)-
(165) f(gs7gz)g4f(g4,g4) = f(94,93)f(91,92)s
(166) f(g3,93)" = f(g4,93)f(91,93).

(167) f(g3,94)"" f(94,92) = f(94,93)f (g1, 94)-
(168) f(9g3,95)" f(94,91) = f(94,93)f(g1,95)
(170) f(94,91)" f(94,93) = f(9g4,94)s

(171) f(94,92)" f(94,95) = f(9g4,94)s

(172) f(94,93)" f(94,91) = f(g4,9a),

(173) f(94,94)"" = f(ga, 94)s

(174) f(94,95)"" f (94, 92) = f(94,9a)

(176) f(g5,91)"" f(94:94) = f(94,95)f (g2, 91)-
(177) f(95,92)" (94, 93) = f(94,95)f (92, 92)-
(178) f(9s,93)"* f(94, 92) = f(94,95)f (92, 93)
(179) f(95,94)" f(94,91) = f(94,95)f (92, 94).
(180) f(g5,95)" = f(9a,95)f(92,95),

(188) f(ghgl)g f(95,92) f(95a91)f(94,91),
(189) f(91>92)g5 f(g5,91)f(94,92)s

(190) f(g1,93)” f(gs5,94) = f(go,gl)f(g47gs)a
(191) f(g1,94)" f(95,95) = f(95,91)f (94, 94).
(192) f(91,95)” f(g5,93) = f(95,91)f (94, 95)
(194) f(g2,91)” = f(95,92)f(g3,91),

(195) f(92,92)g5f(95»91) = f(95a92)f(93,92),
(196) f(g2,93)” f(g5,95) = f(g5,92)f(g3,93)
(197) f(92,94)” f(95,93) = f(95,92) f (g3, 94)-
(198) f(g2,95)” f(g5,94) = f(g5,92)f (93, 95)-
(200) f(g?ngl)g f(g5,95) = f(95,93)f (92, 91)s
(201) f(g3,92)” f(95,94) = f(95,93)f (92, g2)-
(202) f(g3,93)" = f(95,93)f(92,93),

(203) f(93,94)" f(95,92) = f(95,93) f(92,94)s
(204) f(g3,95)" f(g5,91) = f(95,93)f (92, 95)-
(206) f(g4,91)" f(95,93) = f(g5,94) f (91, 91),
(207) f(94792)g f(95,95) = f(95394)f(91 92),
(208) f(94,93)” f(95,91) = f(95,94) f(91,93)-
(209) f(g4,94)" = f(95,94)f(g1,94),

(210) f(94,95)" f(95,92) = f(95,94)f (91, 95)-
(212) f(9g5,91)% f(g5,94) = f(95,95),

(213) f(gs,92)” f(g5,93) = f(g5,95)s

(214) f(95,93)” f(95,92) = f(95,95)

(215) f(g5,94)" f(95,91) = f(95,95)s

(216) f(g5,95)" = f(g5,95),

= (ags —d3z3) + (b3z —
= f(g3,93), it follows that

Of course, by applying the condition of normality 1) of f, one may know that exist 25 variables f(g;, g;)
fori,j:1,2,3,4,5. Furthermore, each of these variables depends on 6 variables. Thus, exist 150 variables.



116 Ccolque Felipe C.- Selecciones Matemdticas. 2021; Vol. 8(1): 100-119

That is, one has a system of 125 equations in 150 variables. It is noted that the equations (128) with (132),
(129) with (131), (170) with (172), (171) with (174), (212) with (215) & (213) with (214) are the same.
So, the system is reduced to one of 119 equations in 150 variables.

By following the procedure applied in computing nonrational 2—cocycles, recalling that (a + by/2 +
V22 4+ dC + eCV2 + fCV22) (' + VY24 V22 + A+ €/C2 + f1¢V22) = (ad’ + 2bc 4 2¢b —
dd' —2ef —2fe') + (ab’ +ba’' +2cc —de’ —ed —2ff')/2+ (ac’ + bV +ca’ — df’ —ee’ — fd')v/22 +
(ad +2bf" +2ce’ +d(a’ —d')+2e(c" — fY+2f (V) —e))C+ (ae’ +bd' + 2¢cf' +d(b —€') +e(d —
d)+2f(c — f)NCY2+ (af 4+ be' +cd +d(c — f)+ et/ —¢)+ f(a' —d'))¢V/22 and resolving the
system of equations, one can obtain the cocycles f .

Then the matrix on Q

flg,91) flg1.92) fl91,93) fl(91,94) f(91,95)
f(92’91) f(92792) f(92793) f(g2vg4) f(gg,g5)
f(g3,91) f(g3,92) flg3,93) flg3,94) f(93,95)
f(91,91) f(94,92) [(94,93) [f(9a,94) f(94,95)
flgs,91) f(g5,92) [f(g5.93) [f(g5.94) [f(g5.95)
can be written as
2
ai anazg  ay e ars
aila aila ai13a1s5
a11a22 a22 1(111522 1;1322 1;111
a%l“%#’*gz 11022033 a a13a44 a15a§3
afza1sag, 13044 33 aiiasz a2,a44
a13aaq afiajsass ass a M
ass afia15a44 a13 44 afja3,a3s
a§3a15a44 a‘113a15a1214 a15a33 a13a15044 a‘113af5ai4
a%la22a33 a?laggag?) a11a22 a%la22 a‘lllagzagg

where a$;a3, = af,a3,a3; (from of (56) and (200)) .
This matrix presents a solution of the above system of 119 equations in 150 variables.
By setting a3zs = aqq4 = 3, a11 = a13 = a2 = 2 & a15 = 2, one obtains the matrix

2 4 2 2 2
4 2 2 2 2
2 2 3 % 2
2 2 3 3 %
2 2 3 2 3
Therefore, the rational bilinear form f such that
1111 11
12 4 2 2 2
142 2 2 2
(4.13) [fls =
122 3 3 3
122 3 3 3
122 3 33

is a required nontrivial 2—cocycle such that A x; G is a crossed product, where

Q[X]

A= m and G = Ss is the Galois group of X3 — 2 over Q.
4.5. Cocycle for a crossed product % x¢ Gg. Let ¢ = (4 = 14 be the primitive 4—th root of the

unity in the field of complex numbers C. Let be M = Q(v/2,¢4), K = Q and G(M/K) is the Galois
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group of M over K. According to [8, Example 50.9] it is known that M is Galois extension of Q.
The proof of [8, Theorem 31.4] then shows that {1, v/2, v/22, v/23, ¢, (V/2, (V/22,(v/23} is a basis for M

over Q. Thus M = {a; + aaVv/2 4+ a3 V22 4+ a4 V23 + asC + agC V2 + a7( V22 + ag¢ V23 | a; € Q}.
Then G(M/K) = {90, 91, 92, 93, 94, g5, g6, g7 } is described as follows

go g1 g2 g3 94 9gs ge g7
1 1 1 I 1 1 1 1 I
vz | V2o V2 V2 vz V2 (V2 ¢z ¢z
vz | VeE o 2VRE VR (PveE VR ¢2VeE V22 2V2E
“.14) VB | VB BVE BV vl o5 ¢3vas VR V2B
¢ ¢ ¢ ¢ ¢ —< —< —< —<¢
V2| ¢cvz 2Vz Y2 V2 V2 =¢tV2 =32 -3
CV2Z | (VR (YRR (VR (BV2E (VR 3R (V2 -3V
¢V | ¢vE VB 3V (2R (v V28 VR PR
Hence, the group table for G(M/K) is given by
g0 91 92 93 94 95 Gs gt
o1 90 91 92 93 94 95 YGe g7
g1 |91 92 93 9go G5 Y9 g7 9G4
92 192 93 9o 91 9o 9gr G4 G5
(4.15) gs | 95 9 91 92 g1 94 95 o
94 194 97 96 95 9JGo 93 G2 G1
95 1 95 94 97 9o 91 Go g3 G2
96 | 96 95 94 97 92 g1 Go G3
gr 197 96 95 94 93 g2 g1 Yo -
Since G(M/K) is the Galois group of M over K, G(M/K) acts (weakly) on M.
o . K[X] .
By the primitive element theorem exists v € M such that M = K[y] = m is a field; so the
s

group of units of M is M* = M\{0}.

Let f : G(M/K) x G(M/K) — M* be a function such that £ = M x; G(M/K) is a crossed

product. Then the following three conditions are satisfied :

1) f(90,9:) = f(9i,90) =1,

2) f(95:98)" (9ir959%) = f(9i95) 1 (9:95: 9r) -

3) (b%)% f(9i, 95) = f(9i,95)b9%, whereb € M .
The set G(M/K) x G(M/K) x G(M/K) has 8 = 512 elements. Using the group table (4.15),
I (95,9)" f(9i,9598) = f(9i,95) f(9i9;, gr) is expanded to 512 equalities.
Since the assertion 3) is satisfied clearly, assuming that the assertions 1) and 2) are satisfied, and applying
the procedure developed in Subsection 4.3 one can obtain the family of 2—cocycles f for the crossed pro-
duct % x5 Gs.

Thus, the matrix on Q

flgr,91)  flo1,92) f(91,93) flg91,94) [f(91.95) [f(91.96) [f(91,97)
fl92,91) f(92,92) f(g2:93) [f(92,94) [(92,95) flg2:96) [(g2,97)
f(93.91) f(g3,92) f(93.93) [f(93,9a) f(93.95) [f(93,96) f(g3:97)
f(94,91) f(94,92) [f(91,93) [f(91,94) [f(94,95) f(9a:96) f(9a.97)
flgs, 1) f(95,92) f(95,93) f(95,9a) [f(g5.95) [f(95.96) [(9g5,97)
f(g6:91) [f(g6,92) f(96:93) [f(96,9a) f(96:95) [f(96,96) f(g6:97)
flgr, 1) flg7,92) f(g97,93) f(97,94) [f(g7.95) [f(g7.96) [f(g7,97)
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can be written as

1 1

4 L1111

1101 1 1 1 1

2 16 8 4 4 4 4

11 7 1 1 1 1

2 8 2 2 2 2
1 1

1 L1y 2 40
1 1

1L 111 2 4
1 1

1L lg 11 2
1 1

1 L1241 1

Consequently, the rational bilinear form f such that

11 1 1 1 1 1 1
11
14 5 5 1 1 11
11 1 1 1 1 1 1
2 16 8 4 4 4 4
11 11 1 1
(s = L3 5 1335 35 3
11
11 32 112 41
11
11 3 5 1 1 2 4
11
11 3 5 41 1 2
11
11 3 32411
: - . _ _QIx] -
is a nontrivial 2—cocycle such that A x ¢ Gg is a crossed product, where A = Xi_2) and Gy is the
Galois group of X* — 2 over Q .
5. Conclusions.
1. The cocycle f of the crossed product % x ¢ G4 can take values outside of QQ because
V2 € Q(v/2,v/3)\Q (Subsubsection 4.3.1).

2. The cocycle f of the crossed product % x ¢ Cy can take values outside of Q because

3 +5v2 € Q(v/2)\Q, where Cy = (g) is a subgroup of G4 (Example 4.1).
3. Considering G = S3 as Galois group of the polynomial X3 — 2 over Q, A as the Q—algebra
X
O;Q;[]%, one can find a nontrivial 2—cocycle f (see (4.13)) so that A x ¢ G is a crossed product.
4. The problem of to find the family of rational 2—cocycles in order that E = M x5 G(M/Q) to be
crossed product, it is reduced to the resolution of the system of algebraic equations with several
variables over the field Q, which is determined with the condition of normality and the condition

of 2—cocycle (Subsection 4.4).
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