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Abstract

In this paper we study a class of oriented hypersurfaces in Euclidean space, namely, the hypersurfaces
of the spherical type, this class of hypersurfaces includes the surfaces of the spherical type (Laguerre
minimal surfaces) studied in [8]. We show that for n = 2, the classes of surfaces of the spherical type and
the Weingarten surfaces of the spherical type coincide, more for larger dimensions this is not true and we
give explicit examples. We also introduced a class of hypersurfaces associated to a biharmonic map and
we show that the hypersurfaces of the spherical type are associated to a biharmonic map. Moreover, we
classify the hypersurfaces of the spherical type of rotation.

Keywords . Weingarten hypersurfaces of the spherical type, Laguerre minimal surfaces, biharmonic map, rth
mean curvature.

1. Introduction. The surfaces M2 satisfying a functional relation of the form W (H,K) = 0, where
H and K are the mean and Gaussian curvatures of the surface M2, respectively, are called Weingarten
surfaces. Examples of Weingarten surfaces are the surfaces of revolution and the surfaces of constant mean
or Gaussian curvature. In [7], the authors study an important class of surfaces satisfying a linear relation of
the form

aH + bK + c = 0,

where a, b, c ∈ R and a2 + b2 6= 0. These surfaces are called linear Weingarten surfaces.
In [5], Corro presented a way of parameterizing surfaces as envelopes of a congruence of spheres in

which an envelope is contained in a plane and with radius function h associated with a hydrodynamic type
system. As an application, it studies the surfaces in hyperbolic space H3 satisfying the equality

2ach
2(c−1)

c (H − 1) + (a+ b− ach
2(c−1)

c )K = 0,

where a, b, c ∈ R, a+ b 6= 0, c 6= 0, H is the mean curvature and K is the Gaussian curvature. This class of
surfaces includes the Bryant surfaces and the flat surfaces of the hyperbolic space and are called generalized
Weingarten surfaces of Bryant type.

An oriented surface ψ : M2 → R3 with non-zero Gaussian curvature K and mean curvature H is
called a Laguerre minimal surface if

∆III

(
H

K

)
= 0,

where ∆III is the Laplacian with respect to the third fundamental form III of ψ. The study of these
surfaces was done by W. Blaschke [1, 2, 3, 4], where such surfaces appear as critical points of the functional

L(Ψ) =

∫
H2 −K
K

dM,
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where dM is the area element.
In [8], the authors study Laguerre’s minimal surfaces as graphs of biharmonic functions in the isotropic

model of Laguerre Geometry. In particular, they study the surfaces of the spherical type (Laguerre minimal
surfaces), namely the surfaces M2 of R3 such that the set of spheres with center p + H(p)

K(p)N(p), p ∈ M2

are tangent to a fixed oriented plane. In [11] the authors show that the projection of the surface associated
to a Laguerre minimal surface is biharmonic.

In [10], the authors present a way to parameterize hypersurfaces as congruence of spheres in which
an envelope is contained in a hyperplane. Using this parametrization, they present a generalization of the
surfaces of the spherical type (Laguerre minimal surfaces) studied in [8], namely the Weingarten hypersur-
faces of the spherical type, i.e. the oriented hypersurfaces of the Euclidean space Mn ⊂ Rn+1 satisfying a
Weingarten relation of the form

n∑
r=1

(−1)r+1rfr−1
(
n

r

)
Hr = 0,

where f ∈ C∞(Mn;R) andHr is the rth mean curvature ofMn. A characterization of these hypersurfaces
is obtained using harmonic functions. Also, they classify the Weingarten hypersurfaces of the spherical type
of rotation and give explicit examples.

In [12], the authors generalize the parametrization obtained by Machado in [9] in the n-dimensional
Euclidean space for hypersurfaces Mn in space forms Mn+1(c), c = −1, 0, 1. Using this parametrization
they generalize the results and definitions of Weingarten hypersurfaces of the spherical type and classify
the Weingarten hypersurfaces of the spherical type of rotation in space forms. In [6], the authors study the
hypersurfaces of the spherical type degenerated (in short DST-hypersurfaces), these hypersurfaces has the
geometric property that the middle spheres pass through the origin of the Euclidean space.

In this paper we study a class of oriented hypersurfaces Mn, n ≥ 2, in Euclidean space. If there exist

a hyperplane Π such that for all point p ∈ Mn the set of spheres with center in p +
Hn−1(p)

Hn(p)
N(p) and

radius h =
Hn−1

Hn
(middle spheres) are tangent to Π, where Hn, Hn−1 are the rth mean curvature these

hypersurfaces are called hypersurfaces of the spherical type, this class of hypersurfaces includes the surfaces
of the spherical type (Laguerre minimal surfaces) studied in [8]. We show that for n = 2, the classes of
surfaces of the spherical type and the Weingarten surfaces of the spherical type coincide, more for larger
dimensions this is not true and we give explicit examples. We also introduced a class of hypersurfaces
associated to a biharmonic map and we show that the hypersurfaces of the spherical type are associated to
a biharmonic map. Finally, we classify the hypersurfaces of the spherical type of rotation.

2. Preliminaries. In this section we give some definitions and results that will serve to show our
results.
Let Ω be an open subset of Rn and u = (u1, u2, . . . , un) ∈ Ω. LetMn ⊂ Rn+1 be an oriented hypersurface
with n distinct principal curvatures ki, if X : Ω ⊂ Rn → Rn+1, n ≥ 2, is a local parametrization of Mn

and N : Ω ⊂ Rn → Rn+1 the Gauss map of Mn. Then if X is parametrized by lines of curvature we have

〈X,i, X,j〉 = δijgii, 1 ≤ i, j ≤ n,(2.1)
N,i = −kiX,i,(2.2)

(2.3) Γk
ij = 0, Γi

ii =
gii,i
2gii

, Γj
ii = − gii,j

2gjj
, Γi

ij =
gii,j
2gii

,

where i, j, k are distinct, here the subscript , i denotes the derivative with respect to ui.

Definition 2.1. The Mean curvature and the Gauss-Kronecker curvature of Mn are given by

H =
1

n

n∑
i=1

ki , K =

n∏
i=1

ki.

Definition 2.2. The rth-mean curvature Hr of Mn is defined by

Hr =
Sr(W )(

n
r

) ,
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where, for intergers 0 ≤ r ≤ n, Sr(W ) is defined by

S0(W ) = 1,

Sr(W ) =
∑

1≤i1<...<ir≤n

ki1 . . . kir .

We observe that H = H1 and K = Hn.

Definition 2.3. A sphere congruence in Rn+1 is a n-parameter family of spheres, with a differentiable
radius function, whose centers lie on a hypersurface Mn ⊂ Rn+1.
An envelope of a sphere congruence is a hypersurface Mn such that each point of the hypersurface Mn is
tangent to a sphere of the sphere congruence.
If there exist a diffeomorphism φ : Mn → M̃n , a differentiable function h : Mn → R, unit normal vector
fields N , Ñ of Mn and M̃n respectively, such that:

a) q + h(q)N(q) = φ(q) + h(q)Ñ(φ(q)), ∀ q ∈Mn.

b) The subset q + h(q)N(q), q ∈Mn is a n-dimensional hypersurface.
We say that Mn and M̃n are locally associated by a sphere congruence.

Definition 2.4. An oriented surface M2 ⊂ R3 is called surface of the spherical type if the spheres with
center in p + H(p)

K(p)N(p) and radius H(p)
K(p) are tangents to a fixed oriented plane, where N is the Gauss map

of M2.
The following definition was given in [6].

Definition 2.5. An oriented hypersurface Mn ⊂ Rn+1 is a hypersurface of the spherical type degen-
erated (in short DST-hypersurface) if for all p ∈M the middle spheres pass through the origin, that is, they
satisfy the following relation

2ΨHn−1 + ΛHn = 0,

where Ψ and Λ are the support function and the quadratic distance function given by Ψ(p) = 〈p,N(p)〉, Λ(p) =
〈p, p〉, p ∈Mn.
The following results were obtained in [10].

Theorem 2.1. An oriented hypersurface Mn in Rn+1, n ≥ 2 is an envelope of sphere congruence,
whose other envelope is contained in the hyperplane Π = {(x1, x2, ..., xn+1) ∈ Rn+1 : xn+1 = 0} if, and
only if, exist an orthogonal local parametrization of Π, Y : U ⊂ Rn → Π and a differentiable function
h : U ⊂ Rn → R, such that X : U ⊂ Rn →Mn, given by

(2.4) X(u) = Y (u)− 2h(u)

S

 n∑
j=1

h,j
Ljj

Y,j − en+1

 ,
is a parametrization of Mn, with en+1 = (0, 0, ..., 0, 1), Lij = 〈Y,i, Y,j〉 1 ≤ i, j ≤ n and

(2.5) S =

n∑
j=1

(h,j)
2

Ljj
+ 1.

Moreover, the Gauss map is given by

(2.6) N(u) = en+1 +
2

S

 n∑
j=1

h,j
Ljj

Y,j − en+1

 ,
and the Weingarten matrix is given by

(2.7) W = 2V (SI − 2hV )−1,

where the matrix V = (Vij) is given by

(2.8) Vij =
1

Ljj

(
h,ij −

n∑
l=1

Γ̃l
ijh,l

)
, 1 ≤ i, j ≤ n,
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where Γ̃l
ki are the Christoffel symbols of the metric Lij .

The regularity condition of X is given by

(2.9) P = det (SI − 2hV ) 6= 0.

Corollary 2.1. With the conditions of the Theorem 2.1, we have that the first, second and third funda-
mental forms are given by

I = L− 2h

S
((V L)T + V L) +

(
2h

S

)2

V LV T ,

II = − 2

S
(V L)T +

4h

S2
V LV T ,

III =
4

S2
V LV T ,

where L is the matrix of the metric (Lij) and T denotes the transpose.

Remark 2.1. Let X : U ⊂ Rn →Mn ⊂ Rn+1 be a parametrization of the hypersurface Mn given by
(2.4). Then from (2.7), the principal curvatures are given by (see [10])

(2.10) ki =
2Vii

2hVii − S
, 1 ≤ i ≤ n,

where Vii are the eigenvalues of the matrix V .
The following results obtained in [10], characterize the Weingarten hypersurfaces of the spherical type and
the hypersurfaces of rotation in Rn+1, respectively.

Theorem 2.2. Let Mn ⊂ Rn+1 n ≥ 2, be a hypersurface as in Theorem 2.1.
Mn is a Weingarten hypersurface of the spherical type if, and only if, tr(V ) = 0.

Theorem 2.3. Let Y : U → Π be a parametrization of the hyperplane Π given by Y (u) = (u, 0),
u ∈ U , h : U → R a differentiable function and X : U → Rn+1 the immersion given by (2.4) with Gauss
map N given by (2.6). Under these conditions X(U) is a hypersurface of rotation if, and only if, h is a
radial function.

3. Hypersurfaces of the spherical type. In this section we will define and characterize the hypersur-
faces of the spherical type.

Definition 3.1. An oriented hypersurface Mn ⊂ Rn+1, n ≥ 2, is called hypersurface of the spher-
ical type, if there exist a hyperplane Π such that for all point p ∈ Mn the set of spheres with center in

p+
Hn−1(p)

Hn(p)
N(p) and radius h =

Hn−1

Hn
are tangent to Π, where Hn, Hn−1 are the rth mean curvature.

The following result characterizes the hypersurfaces of the spherical type.

Theorem 3.1. Let Mn ⊂ Rn+1 n ≥ 2, be a hypersurface as in Theorem 2.1.
Mn is a hypersurface of the spherical type if, and only if, tr(V −1) = 0.

Proof: Let Vii be the eigenvalues of the matrix V and ki the principal curvatures of Mn, 1 ≤ i ≤ n.
By equation (2.10), we get

Vii =
Ski

2hki − 2
.

Thus, the trace of V −1 is given by

tr(V −1) =
1

V11
+

1

V22
+ . . .+

1

Vnn

=
2hk1 − 2

Sk1
+

2hk2 − 2

Sk2
+ . . .+

2hkn − 2

Skn

=
(2hk1 − 2)k2 . . . kn + . . .+ (2hkn − 2)k1k2 . . . kn−1

S(k1k2 . . . kn)

=
2nhHn − 2(k2 . . . kn + . . .+ k1k2 . . . kn−1)

SHn

=
2n

S

(
h− Hn−1

Hn

)
.
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From definition 3.1, it follows the result.
Corollary 3.1. Let M2 ⊂ R3, be a surface as in Theorem 2.1. Then X is a surface of the spherical

type if, and only if, X is a Weingarten surface of the spherical type.
Proof: Observe that as V is a matrix the order 2, then tr(V ) = 0 if, and only if, tr(V −1) = 0.

Therefore, from Theorems 2.2 and 3.1, we obtain the result.

Remark 3.1. From corollary 3.1, we obtain that for n = 2, the classes of surfaces of the spherical type
and the Weingarten surfaces of the spherical type coincide, more for larger dimensions this is not true, as
we can see in the following example.

Example 3.1. Consider the function h : Rn → R, given by

h(u1, . . . , un) =

n∑
i=1

aiu
2
i + biui + ci, such that

n∑
i=1

1

ai
= 0 and

n∑
i=1

ai 6= 0,

where ai 6= 0, bi and ci, 1 ≤ i ≤ n, are real constants.
Considering Y (u) = (u, 0), we obtain from (2.4) that

X(u) = (u, 0)−
2

n∑
i=1

aiu
2
i + biui + ci

1 +

n∑
i=1

(2aiui + bi)
2

(2a1u1 + b1, 2a2u2 + b2, · · · , 2anun + bn,−1) ,

is a hypersurface of the spherical type that is not a Weingarten hypersurface of the spherical type.
In fact, since h,i = 2aiui + bi, h,ij = 2aiδij and Lij = δij , from (2.8) we get that the matrix V = (Vij) =
(h,ij) is diagonal.

On the other hand,

tr(V −1) =

n∑
i=1

1

2ai
= 0 and tr(V ) =

n∑
i=1

2ai 6= 0, from theorems 2.2 and 3.1, it follows the result.

Remark 3.2. For n = 2, considering Y = (g(u), 0) in theorem 2.1, where g(u) is a holomorphic
function, we obtain that the surface of the spherical type is locally parametrized by

X(u) = (g, 0)− 2h

S

(
g′.∇h
|g′|2

,−1

)
.

Moreover, this representation provides examples of Laguerre minimal surfaces.

In the following result we present a class of hypersurfaces that are hypersurfaces of the spherical type
and Weingarten hypersurfaces of the spherical type.

Proposition 3.1. Let Y : Rn → Π ⊂ Rn+1, n = 2k, be a parametrization of hyperplane Π
given by Y (u) = (g1(z1), g2(z2), . . . , gk(zk), 0), where gr : Ur ⊂ C → C are holomorphic functions,
hr : Ur ⊂ C → R are differentiable functions, Ur open set, u = (z1, . . . , zr, . . . , zk), zr = (u2r−1, u2r),
1 ≤ r ≤ k.
If h : U ⊂ Rn → R is given by

h(u) =

k∑
r=1

hr(zr),

such that hr satisfy

(3.1) hr,2r−12r − Γ̃2r
2r−12rh

r
,2r − Γ̃2r−1

2r−12rh
r
,2r−1 = 0.

Then X given by (2.4) is a hypersurface parametrized by lines of curvature.
Moreover, X is a hypersurface of the spherical type if, and only if, hr is a harmonic function.

Proof: Differentiating Y with relation to u2r−1 and u2r, we have

Y,2r−1 = (0, 0, . . . , g′r, . . . , 0),

Y,2r = (0, 0, . . . , ig′r, . . . , 0).
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Thus, Lij = 〈Y,i, Y,j〉 = 0, 1 ≤ i 6= j ≤ 2k.
Putting Lii = Li, for 1 ≤ r ≤ k, we get

L2r = L2r−1 = ||g′r||2.

From (2.3) we obtain

Γ̃2r−1
2r−12r =

L2r−1,2r

2L2r−1
=
||g′r||2,2r
2||g′r||2

=
〈ig′′r , g′r〉
||g′r||2

,

Γ̃2r
2r−12r−1 =

−L2r−1,2r

2L2r
= −〈ig

′′
r , g
′
r〉

||g′r||2
,

Γ̃2r
2r2r−1 =

L2r,2r−1

2L2r
=
〈g′′r , g′r〉
||g′r||2

,(3.2)

Γ̃2r−1
2r2r = −L2r,2r−1

2L2r−1
= −〈g

′′
r , g
′
r〉

||g′r||2
,

Γ̃2r−1
2r−12r−1 =

L2r−1,2r−1

2L2r−1
=
〈g′′r , g′r〉
||g′r||2

,

Γ̃2r
2r2r =

L2r,2r

2L2r
=
〈ig′′r , g′r〉
||g′r||2

,

and Γ̃l
ij = 0, for i, j and l distinct, 1 ≤ i, j, l ≤ 2k.

Using (2.8) and (3.2) we get that for 1 ≤ r ≤ k,

V2r−12r =
1

L2r

(
h,2r−12r − Γ̃2r−1

2r−12rh,2r−1 − Γ̃2r
2r−12rh,2r

)
=

1

||g′r||2

(
hr,2r−12r −

〈ig′′r , g′r〉
||g′r||2

hr,2r−1 −
〈g′′r , g′r〉
||g′r||2

hr,2r

)
= V2r2r−1.(3.3)

From (3.1) it follows that

(3.4) V2r−12r = 0.

On the other hand

V2r−1j = Vj2r−1 = 0, se j 6= 2r − 1, 2r,(3.5)
V2rj = Vj2r = 0, se j 6= 2r − 1, 2r.

From (3.4), (3.5) and the corollary 2 in [10] we obtain that X is parametrized by lines of curvature.

Also,

V2r−12r−1 =
1

L2r−1

(
h,2r−12r−1 − Γ̃2r−1

2r−12r−1h,2r−1 − Γ̃2r
2r−12r−1h,2r

)
=

1

||g′r||2

(
hr,2r−12r−1 −

〈g′′r , g′r〉
||g′r||2

hr,2r−1 +
〈ig′r, g′r〉
||g′r||2

hr,2r

)
,(3.6)

and

V2r2r =
1

||g′r||2
(
h,2r2r − Γ̃2r−1

2r2r h,2r−1 − Γ̃2r
2r2rh,2r

)
=

1

||g′r||2

(
hr,2r2r +

〈g′′r , g′r〉
||g′r||2

hr,2r−1 −
〈ig′′r , g′r〉
||g′r||2

hr,2r

)
.(3.7)

Therefore

(3.8)
k∑

r=1

(V2r−12r−1 + V2r2r) =

k∑
r=1

1

||g′r||2
(
hr,2r−12r−1 + hr,2r2r

)
=

k∑
r=1

∆hr

||g′r||2
.

Thus, the diagonal matrix V is given by
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V =



 V11 0

0 V22

 · · · · · ·

· · · · · ·

0 0

0 0
...

...
...

...

. . . 0

0
. . .

...
...

...
...

0 0

0 0

· · · · · ·

· · · · · ·

 V2k−12k−1 0

0 V2k2k




.

Also, the matrix inverse V −1 is given by

V −1 =



 1
V11

0

0 1
V22

 · · · · · ·

· · · · · ·

0 0

0 0
...

...
...

...

. . . 0

0
. . .

...
...

...
...

0 0

0 0

· · · · · ·

· · · · · ·

 1
V2k−12k−1

0

0 1
V2k2k




.

Hence,

tr(V −1) =

k∑
r=1

(
1

V2r−12r−1
+

1

V2r2r

)

=

k∑
r=1

(
V2r−12r−1 + V2r2r
V2r−12r−1V2r2r

)

=

k∑
r=1

(
∆hr

||g′r||2V2r−12r−1V2r2r

)
.

Therefore,

tr(V −1) = 0 if, and only if, ∆hr = 0,

i.e. hr is a harmonic function. From theorem 3.1, it follows the result.

Remark 3.3.
• From (3.8) we obtain that tr(V ) = 0 if, and only if, hr is a harmonic function, thus by theorem

2.2, X is a Weingarten hypersurface of the spherical type.
• The hypersurfaces of the spherical type given by theorem 2.1 are not degenerated, in fact, suposse

that Mn is degenerated, from (2.4), (2.6) and definition 2.5, we obtain that

Ψ =
2

S

〈Y, n∑
j=1

h,j
Ljj

Y,j

〉
− h

 , Λ = |Y |2 − 4h

S

〈Y, n∑
j=1

h,j
Ljj

Y,j

〉
− h

 .

Thus

2ΨHn−1 + ΛHn = 0⇐⇒ Y = 0,

which cannot occur because Y is a parameterization of the hyperplane Π.
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Definition 3.2. An oriented hypersurface Mn ⊂ Rn+1 is called a hypersurface associated to a bihar-
monic map if there exist a hyperplane Π such the radius function h determined by Π, the heigth function d
(d(p) mesures the distance from p ∈Mn to Π) and the rth-mean curvatures Hn−1, Hn satisfy

∆III

(
d

h

Hn−1

Hn
− d
)

= 0,

where ∆III is the Laplacian operator with respect to the third fundamental form of Mn.

Theorem 3.2. Let Mn ⊂ Rn+1 n ≥ 2, be an oriented hypersurface as in theorem 2.1 . Mn is a
hypersurface associated to a biharmonic map if, and only if, ∆III

(
tr(V −1)

)
= 0.

Proof: From (2.10) we have

(3.9)
1

ki
= h− S

2Vii
.

From definition 2.2 and (3.9) we get

Hn−1

Hn
=

1

n

n∑
i=1

1

ki
= h− S

2n

n∑
i=1

1

Vii
= h− S

2n
tr(V −1).

Also, from (2.4) we obtain that xn+1 = 2h
S = d, using this expression in the above equation we get

tr(V −1) = −n
(
d

h

Hn−1

Hn
− d
)
.

Therefore

∆III(tr(V −1)) = −n∆III

(
d

h

Hn−1

Hn
− d
)
.

Thus, the proof is complete.
Corollary 3.2. Let Mn ⊂ Rn+1 n ≥ 2, be an oriented hypersurface as in theorem 2.1. If Mn is a

hypersurface of the spherical type. Then Mn is a hypersurface associated to a biharmonic map.
Proof: The proof follows from theorem 3.2 and the fact that tr(V −1) = 0.

4. Hypersurfaces of the spherical type of rotation. The following result classifies the hypersurfaces
of the spherical type of rotation.

Theorem 4.1. Let Y : U ⊂ Rn → Π be a parametrization of the hyperplane Π given by Y (u) = (u, 0),
u ∈ U , h : U → R a differentiable function and X : U → Rn+1 an immersion given by (2.4) with Gauss
map N given by (2.6). Under these conditions X(U) is a hypersurface of the spherical type of rotation if,
and only if, h(u) is given by

h(u) =

 C ln(u21 + u22) +D, if n = 2,

2(n− 1)C

n− 2
(u21 + . . .+ u2n)

n−2
2(n−1) +D, if n 6= 2,

where C and D are constants, C > 0.
Proof: If X(U) is a hypersurface of rotation, then from Theorem 2.3 h(u) is a radial function, i.e.

h(u) = J(t), where u = (u1, . . . , un) and t = |u|2.
Therefore,

(4.1) h,i = 2J ′(t)ui, h,ij = 4J ′′(t)uiuj + 2J ′(t)δij , 1 ≤ i, j ≤ n.

Thus, the matrix V is given by

V = (h,ij),

is a simetric matrix.
After straightforward calculations we obtain that the elements on the main diagonal ∆ii of the inverse
matrix V −1 are given by

(4.2) ∆ii =
J ′(t) + 2(u21 + u22 + · · ·+ û2i + · · ·+ u2n)J ′′(t)

2J ′(t)(J ′(t) + 2tJ ′′(t))
, i = 1, 2, · · · , n,
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where ̂ means that the term is absent in the expression.

Hence, using (4.2) we get

(4.3) tr(V −1) = 0⇐⇒
n∑

i=1

∆ii = 0⇐⇒ nJ ′(t) + 2(n− 1)tJ ′′(t) = 0.

Therefore

J ′′(t)

J ′(t)
= − n

2(n− 1)t
.

Integrating the above equation

(4.4) ln J ′(t) = − n

2(n− 1)
ln t+A⇐⇒ ln

J ′(t)t n

2(n− 1)

 = A.

Form (4.4) we obtain

(4.5) J ′(t) = Ct
−

n

2(n− 1) , C = eA.

Now, for n = 2 integrating (4.5) we obtain

J(t) = C ln t+D.

Finally, for n 6= 2, integrating (4.5)

J(t) =
2(n− 1)C

n− 2
t

n−2
2(n−1) +D.

This complete the proof.

Remark 4.1. From Remark 3.1, the results obtained in [10] for Weingarten surfaces of the spherical
type of rotation continue to be valid for surfaces of the spherical type of rotation.

5. Conclusions. From the results obtained in this work we can make the following conclusions:
The hypersurfaces of the spherical type generalize the surfaces of the spherical type (Laguerre mini-
mal surfaces), these hypersurfaces has the geometric property that the set of spheres with center in p +
Hn−1(p)

Hn(p)
N(p) and radius h =

Hn−1

Hn
(middle spheres) are tangent to the hyperplane Π, we observe that

the middle spheres do not pass through the origin of Rn+1, therefore, these hypersurfaces are not degen-
erated. We present a characterization of the hypersurfaces of the spherical type using o trace of a matrix.
Also, we show that for n = 2, the classes of surfaces of the spherical type and the Weingarten surfaces
of the spherical type coincide, more for larger dimensions this is not true. We also introduced a class of
hypersurfaces associated to a biharmonic map and we show that the hypersurfaces of the spherical type are
associated to a biharmonic map. Finally, we classify the hypersurfaces of the spherical type of rotation.
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[5] Corro AV. Generalized Weingarten surfaces of bryant type in hyperbolic 3-space. Matemática Comtemporânea. 2006; 30:71-89.
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