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Abstract
In this paper, we consider a method of constructing flat surfaces based on Ribaucour transformations in
S3. By applying the theory to the flat torus, we obtain a family of complete flat surfaces in S3 which is
determined by several parameters. We provide explicit examples.
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1. Introduction. Ribaucour transformations for hypersurfaces, parametrized by lines of curvature,
were classically studied by Bianchi [2]. They can be applied to obtain surfaces of constant Gaussian cur-
vature and surfaces of constant mean curvature, from a given such surface, respectively, with constant
Gaussian curvature and constant mean curvature. The first application of this method to minimal and cmc
surfaces in R3 was obtained by Corro, Ferreira, and Tenenblat in [3]-[5]. In [24], Tenenblat and Wang ex-
tended such transformations to surfaces in space forms. For more applications of this method, see [6]-[8],
[10], [12], [22], [23] and [25].

Using Ribaucour transformations and applying the theory to the rotational flat surfaces in H3, in [9]
the authors obtained families of new such surfaces.

The study of flat surfaces in S3 goes back to Bianchi’s works in the 19th century, and it has a very
rich global theory, as evidenced by the existence of a large classes of flat torus in S3, see [13], [19], [20]
and [26]. Indeed, these flat torus constitute the only examples of compact surfaces of constant curvature in
space forms that are not totally umbilical round spheres. Flat surfaces in S3 admit a more explicit treatment
than other surfaces of constant curvature. Moreover, there are still important open problems regarding flat
surfaces in S3, some of them unanswered for more than 40 years. For instance, it remains unknown if there
exists an isometric embedding of R2 into S3. These facts show that the geometry of flat surfaces in S3 is a
worth studying topic, although the number of contributions to the theory is not too large. Some important
references of the theory are [11], [13]-[17], [19], [20] and [26].

In [18], the authors give a complete classification of helicoidal flat surfaces in S3 by means of asymp-
totic coordinates lines.

In [1], the authors characterized the flat surfaces in the unit 3-sphere that pass through a given regular
curve of S3 with a prescribed tangent plane distribution along this curve.

In this paper, motivated by [9] we use the Ribaucour transformations to get a family of complete flat
surfaces in S3 from a given such surface in S3. As an application of the theory, we obtain a family of
complete flat surfaces in S3 associated to the flat torus. The obtained family depend on four parameters.
One of these parameters is given by parameterization of the flat torus. The other parameters, appear from
integrating the Ribaucour transformation. We show explicit examples of these surfaces. This work is
organized as follows. In Section 1, we give a brief description of Ribaucour transformations in space forms.
In Section 2, we give an additional condition for the transformed surface to be flat. In Section 3, we describe
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all flat surfaces of the sphere 3-space obtained by applying the Ribaucour transformation to the flat torus.
We prove that such surfaces are complete and provide explicit examples.

2. Preliminary. This section contains the definitions and the basic theory of Ribaucour transforma-
tions for surfaces in S3 ( for more details see [24]).

Let M be an orientable surface in S3 without umbilic points, with Gauss map denoted by N . Suppose
that there exist 2 orthonormal principal vector fields e1 and e2 defined on M . We say that M̃ ⊂ S3 is
associated to M by a Ribaucour transformation with respect to e1 and e2, if there exist a differentiable
function h defined on M and a diffeomorphism ψ : M → M̃ such that:

(a) for all p ∈M , expph(p)N(p) = expψ(p)h(p)Ñ(ψ(p)), where Ñ is the Gauss map of M̃ and exp
is the exponential map of S3.

(b) The subset {expph(p)N(p), p ∈M}, is a two-dimensional submanifold of S3.
(c) dψ(ei) 1 ≤ i ≤ 2 are orthogonal principal directions of M̃ .

The following result gives a characterization of Ribaucour transformation( see [24] for a proof and
more details).

Theorem 2.1. Let M be an orientable surface of S3 parametrized by X : U ⊆ R2 → M , without
umbilic points. Assume ei = X,i

ai
, 1 ≤ i ≤ 2 where ai =

√
gii, are orthogonal principal directions,

−λi the corresponding principal curvatures, and N is a unit normal vector field to M . A surface M̃ is
locally associated to M by a Ribaucour transformation, if and only if, there exist differentiable functions
W,Ω,Ωi : V ⊆ U → R which satisfy

Ωi,j = Ωj
aj,i
ai
, for i 6= j,

Ω,i = aiΩi,(2.1)
W,i = −aiΩiλi.

W (W + λiΩ) 6= 0 and X̃ : V ⊆ U → M̃ , is a parametrization of M̃ given by

X̃ =

(
1− 2Ω2

S

)
X − 2Ω

S

( 2∑
i=1

Ωiei −WN

)
,(2.2)

where

S =

2∑
i=1

(
Ωi
)2

+W 2 + Ω2.(2.3)

Moreover, the normal map of X̃ is given by

Ñ = N +
2W

S

( 2∑
i=1

Ωiei −WN + ΩX

)
,(2.4)

and the principal curvatures and coefficients of the first fundamental form of X̃ , are given, respectively, by

λ̃i =
WTi + λiS

S − ΩTi
, g̃ii =

(
S − ΩTi

S

)2

gii(2.5)

where Ωi, Ω and W satisfy (2.1), S is given by (2.3), gii, 1 ≤ i ≤ 2 are coefficients of the first fundamental
form of X , and

T1 = 2

(
Ω1,1

a1
+
a1,2

a1a2
Ω2 −Wλ1 + Ω

)
, T2 = 2

(
Ω2,2

a2
+
a2,1

a1a2
Ω1 −Wλ2 + Ω

)
.(2.6)

3. Ribaucour transformation for flat surfaces in S3. In this section we provides a sufficient condi-
tion for a Ribaucour transformation to transform a flat surface into another such surface.

Theorem 3.1. Let M be a surface of S3 parametrized by X : U ⊆ R2 →M , without umbilic points
and let M̃ be associated to M by a Ribaucour transformation, such that the normal lines intersect at a
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distance function h. Assume that h = Ω
W is not constant along the lines of curvature and the function Ω,

Ωi and W satisfy one of the additional relation

Ω2
1 + Ω2

2 = c
(
Ω2 +W 2

)
,(3.1)

where c > 0, S is given by (2.3) and W , Ωi, 1 ≤ i ≤ 2 satisfies (2.1). Then M̃ is a flat surface, if and only
if, M is a flat surface.

Proof: See [24] Theorem 2.1, with α = γ = 1 and β = 0. 2

Remark 3.1. Let X be as in the previous theorem. Then the parameterization X̃ of M̃ , locally
associated to X by a Ribaucour transformation, given by (2.2), is defined on

V = {(u1, u2) ∈ U ; (ΩT1 − S)(ΩT2 − S) 6= 0}.

4. Family of flat surfaces associated to the flat torus in S3. In this section, by applying Theorem
3.1 to the flat torus in S3, we obtain a four parameter family of complete flat surfaces in S3.

Theorem 4.1. Consider the flat torus in S3 parametrized by

X(u1, u2) = (r1 cos(r2u1), r1 sin(r2u1), r2 cos(r1u2), r2 sin(r1u2)), (u1, u2) ∈ R2,(4.1)

ri, 1 ≤ i ≤ 2 are positive constants satisfying r2
1 + r2

2 = 1, where the first fundamental form is I =

r2
1r

2
2

(
du2

1+du2
2

)
. A parametrized surface X̃(u1, u2) is a flat surface locally associated toX by a Ribaucour

transformation as in Theorem 2, if and only if, up to an isometry of S3, it is given by

X̃ =
1

S



(
r1S − 2r1Ω2 − 2r2ΩW

)
cos(r2u1) + 2f ′Ω sin(r2u1),(

r1S − 2r1Ω2 − 2r2ΩW
)

sin(r2u1)− 2f ′Ω cos(r2u1),(
r2S − 2r2Ω2 + 2r1ΩW

)
cos(r1u2) + 2g′Ω sin(r1u2),(

r2S − 2r2Ω2 + 2r1ΩW
)

sin(r1u2)− 2g′Ω cos(r1u2)

 .(4.2)

X̃ is defined on

V = {(u1, u2) ∈ R2; (r2
1g

2 − r2
2f

2 − 2r2
2fg)(r2

2f
2 − r2

1g
2 + 2r2

1fg) 6= 0},

where

Ω = r1r2

(
f(u1) + g(u2)

)
, W = r2

2f(u1)− r2
1g(u2), S = (1 + c)

(
Ω2 +W 2

)
6= 0,(4.3)

c > 0, and the functions f and g are given by

i) f(u1) = cosh(r2

√
c u1), g(u2) =

r2

r1
sinh(r1

√
c u2),(4.4)

or

ii) f(u1) = sinh(r2

√
c u1), g(u2) =

r2

r1
cosh(r1

√
c u2),(4.5)

or

iii) f(u1) = a1e
ε1r2
√
c u1 , g(u2) = b1e

ε2r1
√
c u2 , ε2i = 1, 1 ≤ i ≤ 2.(4.6)

Moreover, the normal map of X̃ is given by

Ñ =
1

S



(
− r2S − 2r2W

2 + 2r1ΩW
)

cos(r2u1) + 2f ′Ω sin(r2u1),(
− r2S − 2r2W

2 + 2r1ΩW
)

sin(r2u1)− 2f ′Ω cos(r2u1),(
r1S + 2r1W

2 − 2r2ΩW
)

cos(r1u2) + 2g′Ω sin(r1u2),(
r1S + 2r1W

2 − 2r2ΩW
)

sin(r1u2)− 2g′Ω cos(r1u2)

 .(4.7)

Proof: Consider the first fundamental form of the flat torus ds2 = r2
1r

2
2(du2

1 + du2
2) and the prin-

cipal curvatures −λi 1 ≤ i ≤ 2 given by λ1 = −r2
r1

, λ2 = r1
r2

. Using (2.1), to obtain the Ribaucour
transformations, we need to solve the following equations

Ωi,j = 0, Ω,i = r1r2Ωi, W,i = −r1r2Ωiλi, 1 ≤ i 6= j ≤ 2.(4.8)
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Therefore we obtain

Ω = r1r2

(
f1(u1) + f2(u2)

)
, W = −r1r2

(
λ1f1 + λ2f2

)
+ c, Ωi = f ′i , 1 ≤ i 6= j ≤ 2,(4.9)

where c is a real constant. Using (3.1) the associated surface will be flat when

Ω2
1 + Ω2

2 = c(Ω2 +W 2).

Therefore, we obtain that c > 0 and the functions f1 and f2 satisfy

(f ′1)2 + (f ′2)2 = c(Ω2 +W 2).(4.10)

Differentiating this last equation with respect to x1 and x2, using (4.8) and (4.9) we get

f ′′1 = cr2
2f1 + cr2

2c,

f ′′2 = cr2
1f2 − cr2

1c.

Defining f(u1) = f1(u1) + c and g(u2) = f2(u2)− c, we have

f ′′ − cr2
2f = 0, g′′ − cr2

1g = 0,(4.11)
Ω = r1r2

(
f(u1) + g(u2)

)
, W = r2

2f(u1)− r2
1g(u2).(4.12)

By Theorem 2.1, we have that X̃ and Ñ are given by (4.2) and (4.7). Using (2.6) and (4.12), we get

T1 =
2r2(1 + c)f

r1
, T2 =

2r1(1 + c)g

r2
.

Thus, from Remark 3.1 , X̃ is defined in

V = {(u1, u2) ∈ R2; (r2
1g

2 − r2
2f

2 − 2r2
2fg)(r2

2f
2 − r2

1g
2 + 2r2

1fg) 6= 0}.

From (4.11), we get

f(u1) = a1 cosh(r2

√
cu1) + a2 sinh(r2

√
cu1),(4.13)

g(u2) = b1 cosh(r1

√
cu2) + b2 sinh(r1

√
cu2).(4.14)

Substituting (4.13), (4.14) and (4.12) in (4.10), we have(
a2

1 − a2
2

)
r2
2 =

(
b22 − b21

)
r2
1.(4.15)

Let A1 = a2
1 − a2

2. If A1 > 0, then from (4.15) b22 > b21. Hence, (4.13) and (4.14) can be rewritten as

f(u1) =
√
A1 cosh(r2

√
cu1 +A2),(4.16)

g(u2) =
√
A1

r2

r1
sinh(r1

√
cu2 +B2),(4.17)

where

cosh(A2) =
a1√
a2

1 − a2
2

, sinh(A2) =
a2√
a2

1 − a2
2

,

sinh(B2) =
b2√
b22 − b21

, cosh(B2) =
b1√
b22 − b21

.

The constants A2 and B2, without loss of generality, may be considered to be zero. One can verify that
the surfaces with different values of A2 and B2 are congruent. In fact, using the notation X̃A2B2

for the
surface X̃ with fixed constants A2 and B2, we have

X̃A2B2
= R

(
−A2
r2
√

c
,
−B2
r1
√

c
)
X̃00 ◦ h,

where h(u1, u2) =

(
u1 +

A2

r2
√
c
, u1 +

B2

r1
√
c

)
with

R(θ,φ)(x1, x2, x3, x4) = (x1 cos θ− x2 sin θ, x1 sin θ+ x2 cos θ, x3 cosφ− x4 sinφ, x3 sinφ+ x4 cosφ).
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Now substituting (4.16) with A2 = 0, (4.17) with B2 = 0 and (4.12) in (4.2) we obtain that X̃ does not
depend on A1. Thus without loss of generality, we can consider A1 = 1. Therefore we conclude that f and
g are given by (4.4).

On the other hand, if A1 < 0, then from (4.15) b22 < b21. Hence, (4.13) and (4.14) can be rewritten as

f(u1) =
√
−A1 sinh(r2

√
cu1 +A2),(4.18)

g(u2) =
√
−A1

r2

r1
cosh(r1

√
cu2 +B2).(4.19)

Proceeding in a similar way to the previous case, we obtain that f and g are given by (4.5).
If A1 = 0, then a2 = ε1a1, and from (4.15) b2 = ε2b1, with ε2i = 1, 1 ≤ i ≤ 2. Thus, substituting this

in (4.13) and (4.14), we obtain (4.6). 2

Remark 4.1. As Ribaucour transformation preserves lines of curvature, then each flat surface associ-
ated to the flat torus as in Theorem 4.1, is parametrized by lines of curvature and from (2.5), the metric is
given by

ds2 = ψ2
1du

2
1 + ψ2

2du
2
2,

where

ψ1 =
(−r2

2f
2 + r2

1g
2 − 2r2

2fg)r1r2

r2
1g

2 + r2
2f

2
, ψ2 =

(r2
2f

2 − r2
1g

2 − 2r2
1fg)r1r2

r2
1g

2 + r2
2f

2
.(4.20)

Moreover, from (2.5), the principal curvatures of the X̃ are given by

λ̃1 =
−r2ψ2

r1ψ1
, λ̃2 =

r1ψ1

r2ψ2
.(4.21)

Theorem 4.2. All the flat surfaces associated to the flat torus X̃ , given by Theorem 4.1 are complete
surfaces.

Proof: For all divergent curves γ(t) = (u1(t), u2(t)), such that lim
t→∞

(
u2

1 + u2
2

)
=∞, we have l(X̃ ◦

γ) =∞.
In fact, the functions f and g are given by (4.4) or (4.5) or (4.6) and the coefficients of the first funda-

mental form ψi, 1 ≤ i ≤ 2, of X̃ are given by (4.20). Therefore lim
|u1|→∞

|ψi| = r1r2, 1 ≤ i ≤ 2, uniformly

in u2 and lim
|u2|→∞

|ψi| = r1r2, 1 ≤ i ≤ 2, uniformly in u1. Hence, there exist k1 > 0 and k2 > 0 such that

|ψi(u1, u2)| > r1r2
2 , 1 ≤ i ≤ 2, for all (u1, u2) ∈ R2 with |u1| > k1 and |u2| > k2.

Let

mi = min{|ψi(u1, u2)|; (u1, u2) ∈ [−k1, k1]× [−k2, k2]}.

Therefore |ψi(u1, u2)| ≥ mi in [−k1, k1] × [−k2, k2]. Now consider m0 = min{m1,m2,
r1r2

2 }, then
|ψi(u1, u2)| ≥ m0 in R2. We conclude that X̃ is a complete surface. �

In the following, we provide some examples.

Example 4.1. Consider stereographic projection π : S3 → R3

π(x1, x2, x3, x4) =
1

1− x4

(
x1, x2, x3

)
,

where x2
1 + x2

2 + x2
3 + x2

4 = 1.
1. In Figure 4.1, we provide the surface parametrized by π ◦ X̃ , where X̃ given by (4.2) is locally

associated to the flat torus in S3 by a Ribaucour transformation. In this case to obtain this surface
we have considered

f(u1) = cosh

(
8u1

5

)
and g(u2) =

4

3
sinh

(
6u2

5

)
.
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Figure 4.1: In the figure above we have r1 = 3
5 , r2 = 4

5 , c = 4.

Figure 4.2: In the figure above we have r1 = 3
5 , r2 = 4

5 , c = 4.

2. In Figure 4.2, we provide the surface parametrized by π ◦ X̃ , where X̃ given by (4.2) is locally
associated to the flat torus in S3 by a Ribaucour transformation. In this case to obtain this surface
we have considered

f(u1) = sinh

(
8u1

5

)
and g(u2) =

4

3
cosh

(
6u2

5

)
.

3. In Figure 4.3, we provide the surface parametrized by π ◦ X̃ , where X̃ given by (4.2) is locally
associated to the flat torus in S3 by a Ribaucour transformation. In this case to obtain this surface
we have considered

Figure 4.3: In the figure above we have r1 = 3
5 , r2 = 4

5 , c = 1
1000 .

f(u1) = cosh

(
2u1

25
√

10

)
and g(u2) =

4

3
sinh

(
3u2

50
√

10

)
,

in the first surface and

f(u1) = sinh

(
2u1

25
√

10

)
and g(u2) =

4

3
cosh

(
3u2

50
√

10

)
,

in the second one.

4. In Figure 4.4, we provide the surface parametrized by π ◦ X̃ , where X̃ given by (4.2) is locally
associated to the flat torus in S3 by a Ribaucour transformation. In this case to obtain this surface
we have considered

f(u1) = e
2u1

25
√

10 and g(u2) = e
3u2

50
√

10 .
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Figure 4.4: In the figure above we have r1 = 3
5 , r2 = 4

5 , c = 1
1000 .

5. In Figure 4.5, we provide the surface parametrized by π ◦ X̃ , where X̃ given by (4.2) is locally
associated to the flat torus in S3 by a Ribaucour transformation. In this case to obtain this surface
we have considered

f(u1) = cosh

(
2u1

65
√

10

)
and g(u2) =

5

12
sinh

(
6u2

65
√

10

)
.

Figure 4.5: In the figure above we have r1 = 12
13 , r2 = 5

13 , c = 1
1000 .

5. Conclusions. From the results obtained in this work we can make the following conclusions:
All flat surfaces in S3 locally associated to the flat torus by a Ribaucour transformation are complete sur-
faces. Moreover, these surfaces has no umbilic points. The geometry of flat surfaces in S3 is a worth
studying topic, although the number of contributions to the theory is not too large.
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