
Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS
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Abstract
The SARS-CoV-2 pandemic had taken the world by surprise since its discovery on December 2019, causing
major losses worldwide. In this work, a deep learning model was developed to predict and forecast the daily
SARS-CoV-2 cases on the Peruvian regions. The data used belongs to the open covid–19 data set, sourced
by the Health Ministry of Peru (MINSA). The data set includes the periods from March 03, 2020 to March
16, 2021. A holdout approach was used, creating a training and validation data splits. Using the validation
set, a temporal convolution neural network (TCN) composed by five layers was developed. The model was
design to predict a mean tendency alongside with a prediction interval. To find the best hyper parameter
configuration, a Bayesian approach was applied over the validation set. The TCN model was trained using
the optimal configuration. Once trained, the model was able to predict the different SARS-CoV-2 trends
present in the regions. Next, a forecast was performed beyond the available data, using a window of 15
days ahead (March 17 to March 31, 2021) for each region. Forecast results suggested a continued trend
for all the regions, except Lima. The model performance was evaluated using the MAE, MAD, MSLE and
RMSLE metrics on the test period, showing training to validation metrics improvements of 14.534, 3.123,
0.042, 0.047 respectively.
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1. Introduction. SARS-CoV-2 is a novel virus, which was first reported in December 2019, in Wuhan
city, Hubei province, China. It belongs to a family of seven known coronavirus strains, which cause severe
acute respiratory syndrome [1]. The initial symptoms are similar to the flu, with presence of fever during
three to four days. Unlike the flu, it can cause major damages to different organs including the lungs.
Furthermore, the existence of comorbidities such as chronic pulmonary disease and diabetes mellitus could
result in severe complications [2]. SARS-CoV-2 also presents a high infection rate [3]. SARS-CoV-
2 can be transmitted between people through direct, indirect or close contact. The primary transmission
is contained in the secretions or secretion droplets of an infected patient. These are released into the air

∗Department of Mathematics, National University of Piura, Urb. Miraflores s/n, Castilla Apartado Postal 295, Piura, Perú.
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when the patient coughs, sneezes, speaks, sings or make any activity which liberate those particles. People
wearing no protection which are in close contact with those particles can be infected with SARS-CoV-2,
since the particles can enter the body through the mouth, nose or eyes. Symptoms can appear between 1
to 14 days after the first contact. At this point it is recommended to isolate the patient, since it can spread
the infection without any visible symptom (asymptomatic). SARS-CoV-2 can be classified in four clinical
phases: asymptomatic, mild, moderate and severe. Acute respiratory infections (ARI’s) are present in all
cases (except the asymptomatic). An ARI is a clinical state which can present the following symptoms:
cough, throat pain, congestion (nasal sinuses or lungs), fever, fatigue, body aches; these symptoms can
affect the upper or lower respiratory system.

An asymptomatic case presents no visible symptoms during the infection. A mild case includes any
patient which develop any symptom presented in ARI’s. For a moderate case, it is observed a respira-
tory insufficiency, which is manifested with a respiratory rate greater than 22. Patients also experiment
disorientation, confusion, hypotension. In this state there is a high risk of developing pneumonia, also the
lymphocyte count is less than 1000 cell/pL. In a severe case the respiratory insufficiency condition is critical,
the PaFi index is less than 300, meanwhile the PaC02 and Pa02 levels are below 32mm/Hg and 60mmHg
respectively. The systolic blood pressure is below 100mm/Hg, having a risk of septic shock (PAM < 65
mmHg). An increase in serum lactate is present (> 2 mOsm/L). Since the difficulty in breathing is critical,
artificial respirators are used [4]. Patients in a severe case, need to be treated with extreme care.

In Peru, the clinic behavior of SARS-CoV-2 had been very similar with the observed in other countries.
Patients with comorbidities and over 60 years old are considered to be more in danger. The first Peruvian
SARS-CoV-2 case was reported on March 03, 2020 in Lima, two months after the first known case on
Wuhan, China. In order to slow down the infection, on March 16, 2020, the government declared a national
sanitary emergency state. The Peruvian government adopted a set of policies, such as: quarantine, close of
borders, travel restrictions (local and international), social distancing and closing schools and universities.
These policies were later accompanied with economic incentives, which were present in the form of bonuses
and the early withdrawal of funds from private pension systems [5].

In August 13, 2020, the healthcare capacity was heavily affected. This was evidenced nationwide in the
full use of intensive care units (ICU), artificial respirators and oxygen tanks. In the following four months
a slow decrease in cases and fatalities were observed. However, at the beginning of January 2021, a sudden
increase in cases was present nationwide, been Lima among the most affected regions. This sudden increase
could be the result of the festivities and other social activities which were present at the end of December
2020 [6].

In South America, until March 21, 2021, Peru was the country with more cumulative deceases per
million. It also ranked fifth in infected cases by million behind other countries such as: Brazil, Argentina,
Chile and Colombia. Regarding vaccination, until March 20, 2021, 478 925 vaccines were applied with
Sinopharm and 217 000 with Pfizer, all those applied to the elderly (> 85 years) and National Police and
Armed Forces personnel [7]. Perú is far from ideal on vaccinations, since in South America it is in the 7th
position and representing, proportionally to the population, approximately 4 % of those vaccinated in Chile,
which is leading this measure followed by Uruguay [8]. Factors such as the new Brazilian variant [9], labor
informality alongside with a fragile healthcare system may be contributing to worsen the situation.

Estimate SARS-CoV-2 cases trend is a crucial task, since it can help in build and adapt better policies
faster. However, this task is a challenging one, since SARS-CoV-2 cases vary in nature. As such different
approaches have been proposed. For example, parametric models such as SIR, SEIR, SIRD, and its variants
were used on the pandemic early stage for better understand the spreading dynamics of SARS-CoV-2. Such
models were ideal, since they were able to operate with relatively small data sets. A SIR model is composed
by a system of differential equations which models the relationship between three epidemiological param-
eters: susceptible (S), infectious (I) and removed (R) cases [10]. In [11] a SIR model was used to analyze
the evolution of cases in six worldwide representative countries. The results shown the tendencies in cases
per each country alongside with their estimated peaks. After analyzing the results, it was concluded that
the use of adequate restrictions alongside with strong policies will have a positive effect in decreasing the
infection rates.

A SEIR model, on the other hand, includes one additional parameter: exposed (E), that accounts the
people exposition during a pandemic event. In [12] a SEIR model was applied on the Hubei province in
China. In order to find a set of suitable parameters, the PSO algorithm was used. This results in a good
accuracy for the model. Also, if seasonality and stochastic infections were present, they could generate
chaos in the system. The study also shown that the system behavior can change in the presence of a
different set of parameters.

Unlike the SIR and SEIR models, which treat the recovered and deceased cases as removed (R), a SIRD
model treats them independently. This allows a SIRD model to include the susceptible (S), infectious (I),
recovered (R) and deceased (D) cases. [13] implement a SIRD model using data for the Hubei province in
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China. The model was applied to two scenarios. The first used the provided data, whereas the second added
an estimate of x20 to the number of infected (I) and x40 to the number of recovered (R) cases. The second
scenario was created to consider the possibility of cases which could not be reported. Analysis of the first
scenario, shown that quarantine policies have an impact in reducing the cumulative cases. Whereas in the
second one, the case fatality ratio was around 0.15% of the total population. All estimations were perform
using a three week ahead window.

As the pandemic progressed, more data became available. In particular, the efforts provided by the
Johns Hopkins University with a global data set repository [14], which is continuously updated, giving
support for developing models more quickly. Particularly the application of deep learning models was
possible, since they require substantial among of data. Also, using the information of previous models
like SIR and its variants, forecasting deep learning models focused on one or more of the epidemiological
parameters: susceptible (S), infectious (I), recovered (R) and deceased (D) cases.

There are different approaches which can be used to forecast SARS-CoV-2 cases. SARS-CoV-2 cases
are a phenomenon which is affected by several factors including: social behaviors, quarantine policies,
economic status, etc. Among these factors, a time dependency is present. This dependency is reflected in
the changes in infections over time. This means, this phenomenon is continuously changing. In this context,
a time series approach can be used.

Once the data is treated as a time series, a wide variety of recurrent models can be applied. Recurrent
neural networks (RNN) such as long short term memory (LSTM) [15] and its variants are able to include
a memory mechanism, which can learn time dependency relationships. Such models and its variants have
shown promising results. In [16] a LSTM model was used to forecast SARS-CoV-2 cases in Canada. A
data set provided by the Canadian health authority and the COVID-19 data repository [14] were used.
An 80%-20% split strategy was implemented for train and test respectively. The RMSE metric was used
to evaluate the model performance. Once trained, the LSMT model was able to estimate a peak in cases
within 2 weeks.

Although recurrent models are preferred for time series data, other models could also be used, out-
performing recurrent ones [17]. For forecasting the daily, confirmed and recovered SARS-CoV-2 cases in
Italy, Spain, France, China, USA and Australia; the variational auto encoder (VAE) model obtained bet-
ter results than four recurrent models (RNN, GRU, LSTM and Bi-LSTM). This was reflected on the VAE
scores reported by the RMSE, MAE, MAPE, EV and RMSLE metrics. VAE’s are networks which belong
to the category of generative models. These models are able to learn an approximation to the data distribu-
tion. Once trained, they are able to draw new data points from the learned approximation. Deep VAE’s are
usually composed by convolutional layers.

Models such as convolutional neural networks (CNN), which are usually applied to image data, have
also be used to forecast SARS-CoV-2 cases. An example of such application is presented in [18], where
a CNN model was applied to forecasting daily, cumulative, recoveries and deceased SARS-CoV-2 cases.
Also, the CNN model was able to forecast the hospitalizations cases (with and without artificial ventila-
tion). The study was executed on France at regional and national levels. The data was collected from
diverse sources. The results shown a good performance in forecasting, which was evaluated using the
MAE, RMSE, and R2 metrics. Besides the CNN model, the study in [18] also used a variation called
temporal convolutional neural networks (TCN). A TCN model is composed by dilated casual convolutional
layers. These layers implement different mechanism which allow a TCN to process time series data more
naturally. The TCN model was trained with a quantile loss, allowing the model to estimate prediction inter-
vals with a multi output setting. The TCN was evaluated using the same metrics as the CNN. However, the
TCN obtained better results than the CNN model.

Another important factor for forecasting is the desired horizon (short or long). [20] presented a multi-
head attention, LSTM and CNN models which were developed to predict the SARS-CoV-2 confirmed cases.
This study was applied to a short and long horizon using two data sets. These data sets contained records
of confirmed cases in several countries including Peru and Brazil. Results on the CNN model in the short
horizon were superior than the LSTM model according the SMAPE, MAPE and RMSE metrics. For long
horizon, the CNN model was superior in Peru and Brazil.

Lasty, comparing CNN’s models against diverse architectures such as GRU, LSTM and MPL, CNN’s
ones showed better results for forecasting cumulative SARS-CoV-2 cases in seven chinese cities [19]. This
study was conducted at an early stage in the pandemic. The forecasting was performed with one day ahead
using the previous five days of total and new cases as information. This information involve: confirmed,
recovered and deceased cases. The models were evaluated using the MAE and RMSE metrics. The CNN
model reports the best scores in forecasting for both metrics in the seven cities.

As seen, each study has focused on one or more components of SARS-CoV-2 cases (daily, regional,
cumulative, etc.). As such, this works aims to build a single model, which is capable of predict and forecast
the daily cases for the 25 different Peruvian regions using a window of 15 days ahead. To address this task
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a TCN model, composed by casual dilations and residual connections is presented. A Bayesian approach
was used to estimate the best hyper parameters. The structure of the following sections are as follows:
Section 2 describes the theory used to build the TCN model. Section 3 shown the proposed methodology.
Section 4 shows the proposed TCN model. Section 5 presents the prediction and forecasting results, which
are evaluated using the MAE, MAD, RMSE and RMSLE metrics. Finally, in Section 6 are presented the
study conclusions.

2. Temporal Convolutional Neural Networks (TCN). TCN are models which apply the convolution
operation throughout time. TCN are composed by convolutions (casual and dilated) and residual connec-
tions. TCN’s are able to process sequences, from which a set of features are extracted with the use of a
kernel.

In a casual convolution, the kernel is applied (convolve) maintaining the natural order of the input
sequence. This process is illustrated in Figure 2.1a, where instead of applying the convolution directly over
the sequence, the kernel is moved from left to right. This process forces the model to only relay on past data
to make its predictions, this also prevents any data leaking from the future. A casual convolution is generally
composed by a 1D convolution. However, a casual convolution is unable to maintain a long horizon history,
which is essential in order to capture past patterns. Therefore, another variation called dilated convolutions
are applied. Dilated convolution relay on dilatations to increase the receptive field [21]. This effect can be
observed in Figure 2.1b, where an increasing dilation allows next layers to expand the input information.

Figure 2.1: Three mechanisms in a TCN: (a) casual convolutions, (b) dilated convolutions and (c) skip
residual connections.

Formally for an input sequence s = {x0, ..., xT }, where T denotes the sequence length; a casual dilated
convolution F(s), is defined as:

(2.1) F(s) = (x ∗d f)(s) =
k∑

i=1

f(i) ∗ xs−d∗i,

where the dilation factor d express the amount of variation over the receptive field. Next, a set of kernels f
of size k are convolved over the sequence elements in s, such that xs − d ∗ i constrain the sequence to only
considered past information.

The last component of a TCN is a skip residual connection. This mechanism was introduced by [22]
in the Residual Network architecture. Skip residual connections create a shortcut in the information flow
(gradient). The residual is skipped over a certain number of layers. Then it is combined in the main
information flow. This operation allows to create deeper models and deal with the gradient vanish problem.
Figure 2.1c., shows a vanilla residual connection scheme.

3. Methods.

3.1. Feature Engineering. In its raw format, the open covid–19 data set [23] contained 9 features and
137336 samples which were registered from March 03, 2020 to March 16, 2021 (accessed on 20.03.2021).
The daily SARS-CoV-2 cases were represented as observations at the lowest administrative division (dis-
trict), without a column name. Therefore, a new feature named cases was created, allowing to represent the
daily SARS-CoV-2 cases per each district. Also, missing values were imputed accordingly. Next, a total of
5 features (Table 3.1) were selected.

From the 5 features described in Table 3.1 a set of 9 new ones were created. First, using the date
feature a total of 6 features were designed to capture time dependencies which are present in the dynamics
of SARS-CoV-2 cases (Table 3.2).
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Features Description

Date Day information, in the format: year–month–day.

Region Region name.

Province Province name.

District District name.

Cases Total cases per day.

Table 3.1: An initial subset of 5 selected features from the raw open covid–19 data set [23].

Features Description

Month Actual month, values from 1 to 12.

Day of year Ongoing day in the year, values from 1 to 365.

Week Week day, which values correspond to 0 for Monday and 6 to Sunday.

Weekday Week of the year, values from 1 to 52.

Quarter Current quarter.

Month day Day of the current month.

Table 3.2: Engineering time dependent features to represent the dynamics of daily SARS-CoV-2 cases.

Features Description

W5 A five-day window of previous cases.

Ip Number of infected provinces in a region.

Id Number of infected districts in a region.

Table 3.3: Engineering five day feature alongside provinces and districts statistics.

Next, from the cases, province and district features a total of 3 new features: W5, Ip and Id were
created respectively. These features represented a window of 5 past days containing information about
SARS-CoV-2 cases alongside with statistics about the infection in provinces and districts (Table 3.3).

Finally, since the aim of this study was focused on regional level, data from Table 3.1, alongside with
the features from Table 3.2 and Table 3.3 were represented per each region (included the constitutional
province of Callao). This new data set was used by the TCN model for validation and training, which
contained a total of 10 features (Table 3.4).

Task Data source Total features

Forecasting and Modeling Table 3.1 (region name), Table 3.2 and Table 3.3 10

Table 3.4: Final data set built from previous features. This data set was used by the TCN model for
validation and training.

3.2. Data preparation. The combine set of features described in Table 3.4 (forecasting and modeling
task) were used to train the TCN model. First, the daily cases in each region were arranged into a fix
sequence W5 of length 5 (previous days); where the six day was used as target (Figure 3.1a). To obtain a fix
sequence, all samples were padding with zeros to match the length of the longest sequence (first registered
case) in Lima on March 06, 2020. The length of the sequence was determined empirically, by a trade-off
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between the available data and the window length. Missing values in W5 were filled with its corresponding
monthly mean per each region. Finally, W5 was sorted by date, allowing to have a k unique instance of
each region at each time step, where k represent the total regions (Figure 3.1b).

Figure 3.1: A sequence window W5 containing previous five days are represented in (a). This arrangement
was combined with nine features, resulting in a 3D input volume (b). This volume was used as training data
by the model.

Since the initial feature size W5 was limited, it was combined with the remaining 9 features from Table
3.4 into a 3D input tensor as shown in Figure 3.1b. This allowed to set a horizon of five days in the current
bath size using: k ∗ 5. Also, all features in the tensor were scaled individually, such that the maximal
absolute value of each one was set to 1.0. After completing this process, the data was divided into two data
sets: validation and training. Then, each set was further divided into two partitions: train and test. The train
partition was used for model learning, whereas the test one for model evaluation. This process, conditioned
the model to not relay on leaked information from any partition.

Partition Features Samples Data range Days

Train 10 8650 Mar. 06, 2020 – Feb. 14, 2021 346

Test 10 375 Feb. 15, 2021 – Mar. 01, 2021 15

Table 3.5: Validation data set partition used to build the TCN. Values presented in the training data set were
not leaked to avoid any overfitting.

Partition Features Samples Data range Days

Train 10 9025 Mar. 06, 2020 – Mar. 01, 2021 361

Test 10 375 Mar. 02, 2021 – Mar. 16, 2021 15

Table 3.6: Training data set partition used to train the TCN model.

The validation data set was used to build the model. This included the design of the optimal network
architecture. Also, the validation set served as an initial search point to find the best hyper-parameter
configuration. This was achieved through the use of a Bayesian optimization approach. As such, the model
learn from the train partition, meanwhile it was evaluated against the test one. Table 3.5 described the
partitions in detail.

On the other hand, the training data set was used to create the final model. Thus, the model was fitted
on the train partition using the best hyper-parameter configuration found on the validation data set. Then,
the model was evaluated using the test partition. Table 3.6 shows the partition details used.

4. Proposed Model. A TCN model was developed to predict and forecast the daily SARS-CoV-2
cases in the 25 Peruvian regions. This model, was build using the validation data set described in Table 3.5.
During this process a set of optimal hyper-parameters were found. Then, the final model was build using the
training data set described in Table 3.6. The model architecture was designed entirely with dilated casual
convolutions (DC-Conv) layers, which applied convolutions according to Eq 2.1. These layers showed
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better validation set performance in contrast with other architectures, such as LSMT or pure CNN’s. In
order to normalize the variance between layers, a batch normalization layer BN [24] was applied using the
following equation:

(4.1) BN (x) =
x− E[x]√
V ar[x] + ε

∗ γ + β

Where x represents the outputs from a DC-Conv layer, meanwhile γ and β are learnable parameters.
The value ε was set to 1 × 10−5 to avoid possible computation overflows. Also, during training, the
batch layer keeps running estimates of its mean and variance, which are then used for normalization during
inference. Next, as an activation function between DC-Conv layers, the Rectified Linear Unit (ReLU) [25]
was selected. This function allowed to normalize the outputs according with:

(4.2) ReLU(x) = max(0, x)

Where x represent the output layer. Finally, a dropout layer [26], which acted as a regularization during
training was implemented. This layer allowed to randomly turn off some elements in the in the inputs
according with a probability p, which was sampled from a Bernoulli distribution. Then, the outputs are
scaled as follows:

(4.3) Dropout(x) =
1

1− p

Figure 4.1: Proposed forecasting Temporal Convolutional Neural Network (TCN) model. Each blue block
denotes a casual dilated convolution. A sequence of batch normalization (green), relu activation (orange)
and dropout (gray) is applied after each block. Finally, each output layer learns a prediction interval.

Due to the randomness present in Eq 4.3, this layer was deactivated when performing predictions.
Using these components a TCN model was designed. This model was composed by a set of five DC-Conv
layers (Eq 2.1), which are followed by a batch normalization layer (Eq 4.1). As an activation function ReLU
(Eq 4.2) was used. In order to regularize the model, a dropout layer (Eq 4.3) was applied at the end of each
DC-Conv layer, except the output layer. The output block was composed by three independent DC-Conv
layers. In order to avoid negative predictions, a ReLU activation was applied in the output. Also a set of
two residual connections were implemented according with the scheme in Figure 2.1c. Figure 4.1 show the
complete architecture. Each configuration of the components of the DC-Conv layers are detailed in Table
4.1.

Casual convolutions were achieved when removing the extra padding present in the output of the
blocks. The amount of padding was determined as follows: (k − 1) ∗ d, where k and d, represent the
kernel and dilatation size. As observed in Figure 4.1, at the end of each output block a single prediction was
computed. Then, using a quantile loss, each block was trained to learn a prediction interval. Concretely,
each output block was specialized in learn the 5%, 50% and 95% quantile, which correspond to Q1, Q2,
and Q3 respectively. During training, each quantile q was computed using Eq. (4.4):

(4.4) L(ξi|q) =

 qξi, ξi ≥ 0

(q − 1)ξi, ξi < 0
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Block Input ch. Output ch. Kernel size Padding Dilation Dropout ratio

DC-conv1 5 32 3x3 8 4 0.407

DC-conv2 32 32 3x3 16 8 0.581

DC-conv3 32 32 3x3 16 8 0.478

DC-conv4 32 32 3x3 20 10 0.354

DC-conv5 32 1 2x2 5 14 –

Table 4.1: Detailed information about the internal configuration of each DC-Conv layers.

Where q ∈ [0, 1] and ξi is defined as the difference between the real values y and predictions ŷ for a
mini batch b, such that: ξi = yi − ŷi . Finally, the total quantile error is averaged during training over the
total samples m using:

(4.5) L(y, ŷ|q) = 1

m

m∑
i=1

L(ξi|q)

The loss defined in Eq 4.5 was optimized using the mini batch stochastic gradient descent with mo-
mentum (SGD) [27] optimizer with the hyper-parameter configuration found in the validation set. The
hyper-parameters were obtained through Bayesian optimization using the BoTorch [28] library. Table 4.2
describe the optimal configuration found, which was used to built the final model on the training data set.
The cycle learning [29] strategy was used during training, since it helped the model to better converge. The
hyper-parameters were initialized using Xavier [30] with a normal distribution.

Hyper-parameter Value

Base learning rate 0.0057

Maximum learning rate 0.0067

Momentum 0.832

Weight decay 5.43E-06

Optimizer SGD

Cycle learning step size 2000

Training epochs 5781

Batch size 125

Initializer Xavier

Shuffle during training Yes

Table 4.2: Optimal hyper-parameter configuration obtained with Bayesian optimization on the validation
data set.

Because the disperse magnitude of the target variable y, it was normalized during training with the
natural logarithmic log(y + 1). Then, at inference, the inverse operation e(ŷ + 1) was applied over the
mean prediction ŷ. The TCN model was build to predict and forecast using a multi step strategy of one day
ahead. This allow one to estimate beyond the available data feeding the continuous ŷt+1 as W5 features,
which were combined with the other features described in Table 3.4.

Once the model was trained, a set of metric were applied to evaluate the model. These metrics used
the partitions described by Tables 3.5 and 3.6 respectively. The train partitions were used to determined the
learning capabilities of the model, whereas the test partitions were used to measure the model generalization
to new unseen data, which offer an estimated error for the forecasting as well.

Then, each region was evaluated independently using the test partition (Table 3.6) which include data
points from March 02, 2021 to March 16, 2021. The metrics are defined in terms of the mean predictions ŷm
and real data points ym, such that m represents the total samples presented in each partition (train or test).
These metrics are the mean absolute error (MAE), median absolute error (MAD), mean squared logarithmic
error (MSLE) and root mean squared logarithmic (RMSLE). The following equations describe each one in
more detail:

(4.6) MAE =
1

m

m∑
i=1

|yi − ŷi|

(4.7) MAD = median(|yi − ŷi|)



20 Aguilar L. et al.- Selecciones Matemáticas. 2021; Vol. 8(1): 12-26

(4.8) MSLE =
1

m

m∑
i=1

[log(ŷi + 1)− log(yi + 1)]2

(4.9) RMSLE =

√√√√ 1

m

m∑
i=1

[log(ŷi + 1)− log(yi + 1)]2

Also, to measure the prediction intervals robustness, an estimate of the percentage of real data points y
which are captured by the lower (L) and upper (U) interval area is used, such that: L ≤ y ≤ U

(4.10) P (y, L, U) =
1

m

m∑
i=1

ui, u(y) =

{
0 if L ≥ y ≥ U
1 if L ≤ y ≤ U

5. Results.

5.1. Prediction. Predictions were computed using the training data set described in Table 3.6. The
train partition was used for model learning, meanwhile the test one for generalization on new unseen data.
Date periods included March 06, 2021 to March 01, 2021 for the train partition and March 02, 2021 to
March 16, 2021 for test. Results were reported for the 25 peruvian regions.

The TCN model computed a mean prediction ŷ, alongside with a prediction interval area. Blue points
represent the actual daily cases reported by MINSA in each region. The orange line represent the mean pre-
diction ŷ for the daily SARS-CoV-2 cases. Meanwhile, the light blue areas denote the prediction intervals.
This means that, for a certain data point y, the model is able to estimate its mean tendency (ŷ) alongside
with a prediction interval area, giving the model more flexibility to address the problem of uncertainty pre-
sented in the dynamics of the daily SARS-CoV-2 cases. Figure 5.1 shown the mean predictions ŷ alongside
the prediction intervals generated by the model for the train and test partitions.

As observed in Figure 5.1, the diverse daily SARS-CoV-2 tendencies were well captured by the model
in all regions. The predictions ŷ allowed the model to drawn a mean estimation of the daily SARS-CoV-2
tendency in each region. Whereas the prediction intervals captured the variation in tendencies. The model
is able to categorized some data points as outliers. This can be observed in the regions of Huanuco, Madre
de Dios, Cajamarca, Puno, Apurimac and Ucayali, which have anomalies with higher points. On the other
hand, in Lima the prediction interval area indicates a bigger number of cases than the reported. This could
suggest that the tendency in Lima is higher than the actual reported.

5.2. Forecasting. Forecasting was applied from March 17, 2021 to March 31, 2021, with a total
window of 15 days. This period was not present in the original data set (accessed on 20.03.2021), which
only included from March 06, 2020 to March 16, 2021. Forecasting tendencies were automatically adjusted
by the TCN model per each region, despite the variations in SARS-CoV-2 cases. Daily SARS-CoV-2
tendencies were captured by the mean predictions ŷ while the interval prediction areas shown the possible
variations. Observing the mean predictions ŷ, all the regions suggest a continuous trend until March 31,
2021, with the exception of Lima. Although for Lima, the mean tendency ŷ seems to slightly decrease, the
interval areas shown a wide number of cases. In fact, this decrease tendency have been observed before
for almost all regions. However, instead of a continuous decrease in cases, it was almost followed by a
considerable or sudden increment. On the other hand, according with the prediction interval areas, almost
all regions will be subjected to possible peaks until the end of March 2021. Figure 5.2 shown these results
for all regions.

To obtain an estimate over the forecast behavior during the 15 day window, an average over the max-
imum, mean and minimum predictions were computed. These averages correspond with the upper, mean
and lower intervals obtained by the model. As observed, according with the maximum average, the top
five regions are: Lima (8026), Callo (394), Cusco (393), Ancash (367) and La Libertad (364). Mean and
minimum tendencies across regions present slightly variations with some identical values due to numeric
rounding. Observing the variations in regions, it is noted how the average tendencies could drastically
change in such a short window (15 days). This dynamic tendency was present in all regions. Figure 5.3
show the detail averages for all regions.
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Figure 5.1: Daily SARS-CoV-2 predictions from March 03, 2020 to March 31, 2021. The orange lines
represent the mean predictions ŷ, while the light blue area shown the 95% prediction interval. The green
dashed line indicates the beginning of the test (March 02, 2021 to March 16, 2021). Meanwhile, the purple
dashed line denotes the start of forecasting using a 15 day ahead window (March 17, 2021 to March 31,
2021).

Figure 5.2: A more detailed view of the daily SARS-CoV-2 forecast tendency per each regions. The orange
line indicates the mean prediction ŷ. Meanwhile the light blue area shown the 95% prediction interval.
Forecasting was estimated from March 17, 2021 to March 31, 2021 (purple dashed line).
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Figure 5.3: Computed averages per each region over the 15 day forecasting window (March 17, 2021 to
March 31, 2021). In orange are shown the average estimated ŷ, whereas the blue and green bars represent
the average maximum and minimum cases respectively.

5.3. Evaluation Metrics. In order to evaluate the model performance, an evaluation strategy was
implemented. This strategy evaluated the mean and interval predictions estimated by the model. First
MAE, MSLE, RMSLE and MAD were used to measure the mean predictions ŷ (orange lines in Figure 5.1
and Figure 5.2). MAE and MAD allowed to measure how far away are the estimations from the mean.
Meanwhile, MSLE measured the model underestimation and RMSLE its robustness against outliers. Next
to address the uncertainty presented in the dynamics of SARS-CoV-2 Eq. 4.10 was used. This allowed us
to estimate the percentage of real data y which were captured by the model (area between the lower and
upper intervals).

The evaluation strategy was applied to the training and validation data sets. Results on the train parti-
tions (training and validation) reported how well the model learn, whereas the test partitions measured the
model generalization to new unseen data. This allowed us to obtaining a global error estimation. Next, the
metrics were applied per each region considering the test partition period from March 02, 2021 – March 16,
2021.

First, it was analyzed the model learning capabilities. According with the results reported on Table
5.1 the final model shown an improved from the validation set for MAE of 2.185, MAD report a slightly
decrease of 0.287, whereas MSLE and RMSLE improved 0.021 and 0.017 respectively. Results from the
train partition are as an estimate to the expected errors in the predictions reported in Figure 5.1 which were
computed from March 06, 2020 to March 01, 2021.

Next, evaluating the model generalization ability to new unseen data, Table 5.1 shown an improvement
in all metrics as follows: MAE (14.534), MAD (3.123), MSLE (0.042), RMSLE (0.047). Furthermore,
results from the test partition are an estimate to the expected errors in the prediction and forecasting reported
in Figure 5.1 and Figure 5.2 respectively. From the results on Table 5.1, for the train and test partitions
(training data set), one can conclude that the model have learning correctly and is able to generalize to new
unseen data.

In order to evaluate the model at regional level, the metrics were computed per each region using the
test partition from the training data set described in Table 3.6. Results at this level shown variations per each
region. As such, the regions which obtained the lowest metrics were: Huancavelica (MAE: 7.740, MAD:
7.045) and Ayacucho (MSLE: 0.038, RMSLE: 0.195). Meanwhile the highest errors were reported for
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Data set

Data partition

Train Test

MAE MAD MSLE RMLSE MAE MAD MSLE RMSLE

Validation 50.298 13.986 0.422 0.650 74.015 22.026 0.222 0.471

Training 48.113 14.274 0.401 0.633 59.482 18.903 0.179 0.423

Improvement ↑2.185 ↓0.287 0.021 ↑0.017 ↑14.534 ↑3.123 ↑0.042 ↑0.047

Table 5.1: Evaluation metrics for training and validation sets. In bold are shown the improvements from the
final TCN model.

Lima (MAE: 719.096, MAD: 691.845) and Tumbes (MSLE: 0.531, RMSLE: 0.729). However it is noted
that, despite these large errors, the majority of regions fall far below as noted in Table 5.2. This means, the
model was able to learn individual trends presented in each region.

REGION MAE MAD MSLE RMSLE

LIMA 719.096 691.845 0.098 0.313

AREQUIPA 28.092 24.026 0.104 0.323

HUANUCO 14.159 9.848 0.139 0.372

ICA 16.776 15.016 0.077 0.277

CUSCO 59.207 50.106 0.092 0.304

PIURA 50.232 39.245 0.111 0.334

CALLAO 72.981 67.914 0.119 0.345

LAMBAYEQUE 31.721 21.268 0.236 0.486

ANCASH 87.521 30.341 0.192 0.438

LA LIBERTAD 48.217 52.57 0.133 0.365

LORETO 42.876 42.825 0.376 0.613

MADRE DE DIOS 12.782 9.715 0.452 0.673

JUNIN 41.463 30.606 0.059 0.242

TUMBES 23.217 17.837 0.531 0.729

CAJAMARCA 63.542 54.592 0.234 0.483

PASCO 11.381 7.253 0.099 0.315

SAN MARTIN 20.532 22.367 0.066 0.256

TACNA 14.181 8.717 0.13 0.361

AYACUCHO 18.657 10.017 0.038 0.195

PUNO 14.112 12.692 0.059 0.243

HUANCAVELICA 7.74 7.045 0.083 0.289

APURIMAC 14.559 11.067 0.092 0.303

UCAYALI 31.769 28.281 0.249 0.499

MOQUEGUA 19.074 13.179 0.263 0.513

AMAZONAS 23.153 20.014 0.45 0.671

Table 5.2: MAE, MAD, MSLE and RMSLE evaluation metrics per each region. Results were computed
using the test partition from the training data set, with a window of 15 days (Mar. 02, 2021 – Mar. 16,
2021).
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Finally, the prediction intervals were evaluated per each region according with the metric defined in
Eq. 4.10. Table 5.3 shown the percentage of real data points y which were captured by the model. This
evaluation considered the data from the train and test partitions from Table 3.6. Results indicated that the
prediction interval area produced by the TCN model was able to capture the 96.1% for train and 97.3% for
test respectively. This shown the model robustness when addressing variations in the SARS-CoV-2 cases
among regions.

REGION Pi − Train(%) Pi − Test(%)

LIMA 100 100

AREQUIPA 94.737 100

HUANUCO 96.122 93.333

ICA 96.953 100

CUSCO 92.798 100

PIURA 94.46 100

CALLAO 94.46 100

LAMBAYEQUE 95.014 100

ANCASH 95.845 93.333

LA LIBERTAD 95.845 100

LORETO 95.291 100

MADRE DE DIOS 95.845 93.333

JUNIN 95.845 100

TUMBES 96.953 86.667

CAJAMARCA 97.23 86.667

PASCO 96.399 100

SAN MARTIN 98.061 100

TACNA 96.399 100

AYACUCHO 98.892 100

PUNO 96.122 100

HUANCAVELICA 96.676 100

APURIMAC 96.676 100

UCAYALI 95.291 100

MOQUEGUA 96.122 86.667

AMAZONAS 94.737 93.333

AVERAGE 96.11 97.333

Table 5.3: Percentage of real data points y which are captured by the TCN model. Results are shown per
each region according with the train and test partitions (training data set).

6. Conclusions. A deep learning model to predict and forecast the daily SARS-CoV-2 cases in the
Peruvian regions was proposed. As such, a TCN model was trained using the open data set provided by the
Health Ministry of Peru (MINSA). The study comprehend data from March 06, 2020 to March 16, 2021
and was able to predict and forecast using a window of 15 days ahead.
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The model was trained with a total of 10 features, which were engineering to better capture the daily
dynamics of SARS-CoV-2 cases per each region. Since a TCN model was used, the features were combined
into a 3D-volume, which was used to feed the model.

To obtain a robust model, the TCN was optimized using a Bayesian approach, which was computed on
the validation set. This process was designed to avoid any data leaking from future points into the model
hyper-parameters estimation. Empirical evidence on the validation data set shown that a five-layer model
was more suitable to learn the daily SARS-CoV-2 tendencies across regions.

Predictions using the train and test partition described in Table 3.6 shown that the model was able to
capture the diverse tendencies presented across the regions. To do so, the model used its mean prediction ŷ
to model the main tendencies. Also, in order to capture variations, the model used its prediction intervals.
Forecasting results shown a constant tendency with indications of peaks until the end of the forecasting
window (March 17, to March 31, 2021) for all regions.

Results from the average tendencies (minimum, mean and maximum) shown that the five regions with
the highest peaks during the forecasting were: Lima (8026) followed by Callo (394), Cusco (393), Ancash
(367) and La Libertad (364).

According with the reported results in the training and validation sets (Table 5.1), the model was suc-
cessfully able to learn from the train partition. Concretely, the model shown an improvement in all metrics,
with the exception of MAD, which presented a slightly decrease of 0.287. On the other hand, the model
generalization capabilities shown an improvement in all metrics for the test partition.

Results on each regions shown variations per each metric, where Huancavelica (MAE: 7.740, MAD:
7.045) and Ayacucho (MSLE: 0.038, RMSLE) obtained the lowest results. Meanwhile Lima (MAE:
719.096, MAD: 691.845) and Tumbes (MSLE: 0.531, RMSLE: 0.729) shown the highest ones.

Prediction intervals shown that the model was able to capture the real data points y in the train partition
with an average of 96.11% and 97.33% for the test, showing a robust estimated for the possible variations.

The presented model can be used by any region as a tool to evaluate the dynamic tendencies in the daily
SARS-CoV-2 cases. Moreover, the model can be applied as part of the decision making of policies. As such,
it is recommended to continuously training the model, especially when more data became available. This
will assure more accurate estimates.

Finally, the presented model did not address any information of the ongoing vaccine campaign on Peru.
At the moment of finish this study, people with high risk were under vaccination. Also the new SARS-CoV-
2 P.1 variant (20J/501Y.V3) detected in Lima was not consider into this study, due to its apparition in the
last 3 days of data. In order to include those variance, a new model with update data must be developed.
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