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Abstract
We give more properties and applications to the class of somewhat nearly continuous functions introduced by
Piotrowski. Among the applications, we show that the Baire property is preserved under somewhat nearly
continuous quasiopen injection images and Baire spaces are preserved under somewhat nearly continuous
quasiopen countable fiber complete preimages. The later statement generalizes the results given by Noll,
and Mirmostafaee and Piotrowski.

Keywords . Quasi-continuous, almost quasi-continuous, semi-continuous, β-continuous, somewhat nearly con-
tinuous, Baire space.

Resumen
Damos más propiedades y aplicaciones a la clase de funciones casi continuas introducidas por Piotrowski.
Entre las aplicaciones, mostramos que la propiedad de Baire se conserva bajo imágenes de inyección
casi abiertas casi continuas y los espacios de Baire se conservan bajo preimágenes completas de fibra
contables casi continuas casi continuas. La última declaración generaliza los resultados dados por Noll y
Mirmostafaee y Piotrowski.

Palabras clave. Cuasicontinuo, casi cuasicontinuo, semicontinuo, β-continuo, algo casi continuo, espacio Baire.

1. Introduction. One of the most important tools of all mathematics is the notion of continuity. Be-
ginning from the early stage of modern mathematics, many classes of almost continuity were introduced.
The most well-known classes are: quasicontinuity, near continuity, somewhat continuity, α-continuity and
almost quasicontinuity. In 1932, Kempisty [12] introduced the notion of quasicontinuity for extending
some classical results of Hahn and Baire concerning separately continuous real-valued functions of many
variables. In the same year, Banach considered near continuity while proving Closed Graph Theorem [7,
Theorem 4, p40] under the name of almost continuity. Somewhat continuous functions [10] are given by
Frolik while investigating the invariance of Baire spaces under mappings, see also [11]. In 1965, a stronger
notion to both quasicontinuity and near continuity was introduced by Njastad called α-continuity [18]. It
is known that a function is α-continuous if and only if it is both nearly continuous and quasicontinuous.
Later, Borsik [8] defined the class of almost quasicontinuous functions, this class is implied by near con-
tinuity and quasicontinuity. As a direct generalization of somewhat continuity and almost quasicontinuity,
Piotrowski [22] introduced a new class, named somewhat nearly continuous functions, while working on
separate versus joint continuity problems as well as on the Closed Graph Theorem. Due to the importance
of this class, we continue the work of Piotrowski and give further properties and characterizations.

2. Preliminaries. Throughout this paper, the letters N, Q, P and R, respectively, stand for the set of
natural, rational, irrational and real numbers. The word ”space” means an arbitrary topological space. For
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a subset A of a space (X, τ), the closure and interior of A with respect to X respectively are denoted by
Cl

X
(A) and Int

X
(A) (or simply Cl(A) and Int(A)).

Definition 2.1. A subset A of a space X is said to be
(1) co-dense if Int(A) = ∅,
(2) preopen [15] if A ⊆ Int(Cl(A)),
(3) semiopen [13] if A ⊆ Cl(Int(A)),
(4) α-open [18] if A ⊆ Int(Cl(Int(A))),
(5) β-open [1] or semipreopen [5] if A ⊆ Cl(Int(Cl(A))),
(6) somewhat open (briefly sw-open ) [22] if Int(A) 6= ∅ or A = ∅,

The complement of a preopen (resp. semiopen, α-open, β-open, sw-open) set is preclosed (resp. semi-
closed, α-closed, β-closed, sw-closed).

The intersection of all preclosed (resp. semiclosed, α-closed, β-closed) sets inX containingA is called
the preclosure (resp. semi-closure, α-closure, β-closure) of A, and is denoted by Clp(A) (resp. Cls(A),
Clα(A), Clβ(A)).

The union of all preopen (resp. semiopen, α-open, β-open) sets inX contained inA is called the prein-
terior (resp. semi-interior, α-interior, β-interior) of A, and is denoted by Intp(A) (resp. Ints(A), Intα(A),
Intβ(A)).

The family of all preopen (resp. semiopen, α-open, β-open) subsets of X is denoted by PO(X) (resp.
SO(X), αO(X), βO(X)).

Remark 2.1. It is well-known that for a space X , τ ⊆ αO(X) ⊆ PO(X) ∪ SO(X) ⊆ βO(X).
Definition 2.2. Let X be a space and let A ⊆ X . A point x ∈ X is said to be in the preclosure (resp.

semi-closure, α-closure, β-closure, γ-closure) ofA if U∩A 6= φ for each preopen (resp. semiopen, α-open,
β-open, γ-open) set U containing x.

Lemma 2.1. [6, Proposition 1.1]For a subsetA of a spaceX , we have Clβ(A) = A∪Int(Cl(Int(A))).
Lemma 2.2. [5, Theorem 3.22] For a subsetA of a spaceX , we have Clβ(Int(A)) = Int(Cl(Int(A))).

Lemma 2.3. Let A be a subset of a space X .
(i) A is semiopen if and only if Cl(A) = Cl(Int(A)).

(ii) A is β-open if and only if Cl(A) = Cl(Int(Cl(A))).
Proof: (i) If A is semiopen, then A ⊆ Cl(Int(A)) and so Cl(A) ⊆ Cl(Int(A)). For other side of the

inclusion, we always have Int(A) ⊆ A. Therefore Cl(Int(A)) ⊆ Cl(A). Thus Cl(A) = Cl(Int(A)).
Conversely, assume that Cl(A) = Cl(Int(A)), but A ⊆ Cl(A) always, so A ⊆ Cl(Int(A)). Hence A

is semiopen.
(ii) Theorem 2.4 in [5].
Lemma 2.4. Let A be a nonempty subset of a space X .

(i) If A is semiopen, then Int(A) 6= ∅.
(ii) If A is β-open, then Int(Cl(A)) 6= ∅.

Proof: (i) Suppose otherwise that if A is a semiopen set such that Int(A) = ∅, by Lemma 2.3 (i),
Cl(A) = ∅ which implies that A = ∅. Contradiction!

(ii) Similar to (i).
Lemma 2.5. Let A be a subset of a space X . Then Int(A) 6= ∅ if and only if Ints(A) 6= ∅. Proof:

Given a subset A of X . If Int(A) 6= ∅, then ∅ 6= Int(A) ⊆ Ints(A) and so Ints(A) 6= ∅.
Conversely, if Ints(A) 6= ∅, then for some x ∈ A, there exists a semiopen set G containing x such that

G ⊆ A. By Lemma 2.4 (i), ∅ 6= Int(G) ⊆ Int(A). Therefore Int(A) 6= ∅.
Lemma 2.6. [14, Theorem 2.4] Let Y be a subspace of a space X and let A ⊂ Y . If Y is semiopen in

X , then A is semiopen in Y if and only if A is semiopen in X .
Lemma 2.7. Let A,B be subsets of X . If A is α-open and B is preopen (resp. β-open), then A ∩B is

preopen (resp. β-open) in X .
Proof: Lemma 2.1 in [19] (resp. Theorem 2.7 in [1]).
Lemma 2.8. Let A,B be subsets of X . If A is α-open and B is preopen (resp. β-open), then A ∩B is

preopen (resp. β-open) in A.
Proof: Lemma 2.1 in [16] (resp. Lemma 2.5 in [1]).
Lemma 2.9. Let A,D be subsets of space X .

(i) If A is open and D is dense, then Cl(A ∩D) = Cl(A)
(ii) If D is open dense, then Cl(A) ∩D = ClD(A ∩D).

Proof: Standard.
Lemma 2.10. Let A be a subset of a space X . If A is semiopen, then it has the Baire property.
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Proof: Given a semiopen set A. By [13, Theorem 7], A = O ∪N , where O is open and N is nowhere
dense such that O ∩N = ∅. Therefore A = O∆N . Hence A has the Baire property.

3. Somewhat nearly open sets. This section is committed to studying the main properties of some-
what nearly open sets. This type of open sets was defined by Z. Piotrowski without given many details.

Definition 3.1. [22] A subset A of a space X is said to be somewhat nearly open (briefly swn-open)
if Int(Cl(A)) 6= ∅ or A = ∅. A similar concept appeared in [2] under the name of somewhere dense sets
except the empty set.

The complement of each swn-open set is called swn-closed. That is, a set F is swn-closed if
Cl(Int(F )) 6= X or F = X .

Remark 3.1. Let X be a space.
(a) a nonempty subset A of X is swn-open if and only if Ints(Cl(A)) 6= ∅, see Lemma 2.5.
(b) a nonempty subset A of X is swn-open if and only if there is an open (or a semiopen) set U such that
∅ 6= U ⊆ Cl(A).

(c) a proper subset B of X is swn-closed if and only if there is a closed (or a semiclosed) set F such that
Int(B) ⊆ F ( X .
Proposition 3.1. Any union of swn-open sets is swn-open.
Proof: Let {Aα : α ∈ ∆} be any collection of swn-open subsets of a space X . Now

Int(Cl(
⋃
α∈∆

Aα)) ⊇ Int(
⋃
α∈∆

Cl(Aα))

⊇
⋃
α∈∆

Int(Cl(Aα)) 6= ∅.

Thus
⋃
α∈∆Aα is swn-open.

Remark 3.2. The intersection of two swn-open sets need not be swn-open. For instance, take swn-
open sets A = [0, 1] and B = [1, 2] in R. Then Int(Cl[A ∩B]) = ∅.

We remark that, in general, the family of swn-open subsets of a space X does not from a topology.

Next we put Remark 2.1 and Lemma 2.4 into the following diagram which shows the relation between
swn-open and the most well-known types of open sets.

open

α-open preopen

semiopen β-open

sw-open swn-open

Diagram I:Connections between generalized open sets

In general, none of these implications can be replaced by equivalence as shown below:
Example 3.1. Consider R with the usual topology. Let A = [0, 1] ∩ Q. Then A is swn-open but

not sw-open. If B = C ∪ [2, 3], where C is the ternary Cantor set, then B is swn-open but not β-open.
Examples for other none implications can be found in [4] or the literature.

Remark 3.3. From the above example, one can conclude that the intersection of an swn-open set with
an open, a closed or a dense set may not be swn-open.

Proposition 3.2. Let A,D be subsets of a space X . If A is open and D is dense, then A ∩ D is
swn-open in X .

Proof: If A = ∅, then A ∩ D = ∅ which is swn-open. Let A be nonempty and let D be dense. By
Lemma 2.9 (i), Int(Cl(A ∩D)) = Int(Cl(A)) 6= ∅. That is A ∩D is swn-open.

Proposition 3.3. Let A,D be subsets of a space X . If A is swn-open and D is open dense, then A∩D
is swn-open in D.

Proof: LetA be swn-open and letD be open dense. By using Lemma 2.9 (ii), one can get IntD(ClD(A∩
D)) = Int(ClD(A ∩D)) ∩D = Int[Cl(A) ∩D] ∩D = Int(Cl(A)) ∩D. Since Int(Cl(A)) is nonempty
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open and D is dense, they must have nonempty intersection. Therefore IntD(ClD(A ∩ D)) 6= ∅ and so
A ∩D is swn-open in D.

Proposition 3.4. Let A be a subset of a space X . Then either A is sw-open or swn-closed.
Proof: Given A ⊆ X . If A is not sw-open, then Int(A) = ∅. Therefore Cl(Int(A)) = ∅ 6= X and so

A is swn-closed.
On the other hand, if A is not swn-closed, then Cl(Int(A)) = X . Surely Int(A) 6= ∅. Thus A is

sw-open.
Corollary 3.1. Each subset of a space X is either swn-open or swn-closed.
Remark 3.4.

(i) Each nowhere dense is swn-closed. The converse is false.
(ii) A set is swn-open if and only of its closure is swn-open.

(iii) The interior of an swn-open set need not be swn-open.
Proposition 3.5. Let A be a semiclosed subset of a space X . Then A is swn-open if and only if it is

sw-open.
Proof: By Lemma 2.3 (i), A is semiclosed if and only if Int(Cl(A)) = Int(A). The rest is clear.
Proposition 3.6. Let Y be a semiopen subspace of a space X and let A ⊆ Y . Then A is swn-open in

Y if and only if it is swn-open in X .
Proof: Let A be swn-open in Y . There exist a semiopen subset H in Y such that H ⊆ ClY (A). Now,

H = H ∩ Y ⊆ Cl(A) ∩ Y ⊆ Cl(A). Since Y is semiopen, by Lemma 2.6, H is semiopen in X and
H ⊆ Cl(A). Hence A is swn-open in X .

Conversely, assume that A is swn-open in X . Suppose otherwise that A is not swn-open in Y . Let G
be a semiopen set in X with G ∩ Y 6= ∅. Then there is a nonempty semiopen set H ⊆ G ∩ Y such that
A ∩H = ∅. Since H is semiopen in Y , there is a semiopen set U in X such that H = U ∩ Y . Now, we
have U ⊆ G and A ∩ U = ∅. This means that A is not swn-open in X , which is impossible. Hence the
result.

Proposition 3.7. Let Y be a dense subspace of a space X and let A ⊆ Y . Then A is swn-open in Y if
and only if it is swn-open in X .

Proof: Similar to Proposition 3.6
Proposition 3.8. Let X be a space. A subset A of X is β-open if and only if A ∩ U is swn-open for

each open set U in X .
Proof: Given a β-open set A and an arbitrary open set U . By Lemma 2.7, A ∩ U is β-open and

consequently it is swn-open by Lemma 2.4 (ii).
Conversely, let x ∈ A and assume thatA∩U is swn-open for each open set U inX . That is Int(Cl(A∩

U)) 6= ∅. Now we have ∅ 6= Int(Cl(A∩U)) ⊆ Int(Cl(A))∩Int(Cl(U)) = Int(Cl(A))∩U , which implies
that x ∈ Cl(Int(Cl(A))) and so A ⊆ Cl(Int(Cl(A))). This proves that A is β-open.

Proposition 3.9. Let X be a space. A subset A of X is preopen if and only if A ∩ U is swn-open for
each α-open set U in X .

Proof: Let A be preopen and let U be any α-open. By Lemma 2.8, A ∩ U is preopen and so it is
swn-open, (see Diagram I).

Conversely, let x ∈ A. Suppose thatA∩U is swn-open for each α-open U inX . Then ∅ 6= Int(Cl(A∩
U) ⊆ Int(Cl(A)) ∩ Int(Cl(U)) = Int(Cl(A)) ∩ Int(Cl(Int(U))). Since U is α-open, by Lemma 2.1,
Int(Cl(A)) ∩ Clβ(U) 6= ∅ for each α-open U . This means that Int(Cl(A)) ∩ U ∩ V 6= ∅ for each β-open
set V in X containing x. Therefore x ∈ Clβ(Int(Cl(A)) ∩ U) ⊆ Clβ(Int(Cl(A))) and so, by Lemma 2.2,
x ∈ Int(Cl(Int(Cl(A)))) = Int(Cl(A)). Hence A is preopen.

Definition 3.2. [24] A space X is said to be
(1) irresolvable if any two dense subsets intersect.
(2) strongly irresolvable if each open subspace is irresolvable.

Theorem 3.1. Let X be a space. The following are equivalent:
(1) strongly irresolvable,
(2) each open subspace is irresolvable,
(3) each preopen subset of X is α-open,
(4) each β-open subset of X is semiopen,
(5) each preopen subset of X is semiopen,
(6) each dense subset of X is semiopen,
(7) each dense subset of X has an interior dense,
(8) each co-dense subset of X is nowhere dense,
(9) each swn-open subset of X is sw-open,

(10) each subset of X has a nowhere dense boundary.
(11) each subset is the union of an open set and a nowhere dense set.
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Proof: [24, Theorem 1.7] and [4, Lemma 2.33]
Lemma 3.1. Let X be a space. The following are equivalent:

(1) X is strongly irresolvable,
(2) Int(Cl(A ∩B)) = Int(Cl(A)) ∩ Int(Cl(B)) for each subsets A,B of X .

Proof: (1) =⇒ (2) The first direction is clear. That is Int(Cl(A ∩B)) ⊆ Int(Cl(A)) ∩ Int(Cl(B)).
On the other hand, given any two setsA,B inX . By Theorem 3.1 (1), Int(Cl(A)) = Int(Cl(Int(A))).

Now, we have

Int(Cl(A)) ∩ Int(Cl(B)) = Int(Cl(Int(A))) ∩ Int(Cl(B))

⊆ Cl(Int(A)) ∩ Int(Cl(B))

⊆ Cl[Int(A) ∩ Int(Cl(B))]

⊆ Cl[A ∩B].

Then taking the interior of both sides, we get Int(Cl(A))∩Int(Cl(B)) ⊆ Int(Cl(A∩B)). Thus Int(Cl(A∩
B)) = Int(Cl(A)) ∩ Int(Cl(B)).

(2) =⇒ (1) Assume that (2) is true. Let A be a subset of X . Now

Int(∂(A)) = Int[Cl(A) ∩ Cl(X \A)]

= Int(Cl(A)) ∩ Int(Cl(X \A))

= Int[Cl[A ∩ (X \A)]]

= ∅.

By Theorem 3.1 (10), X is strongly irresolvable.
Theorem 3.2. Let X be a space. If X is strongly irresolvable, the family SN(X) of all swn-open

subsets of X forms a topology.
Proof: By Proposition 3.1, SN(X) is closed under arbitrary unions and it contains the empty set by

definition. Therefore, it is enough to prove that SN(X) is closed under finite intersections. Let A,B ∈
SN(X). By Lemma 3.1, Int(Cl(A∩B)) = Int(Cl(A))∩ Int(Cl(B)). By the choice of A,B, Int(Cl(A))
and Int(Cl(B)) are nonempty open sets inX . SinceX is strongly irresolvable, Int(Cl(A))∩Int(Cl(B)) 6=
∅. Thus Int(Cl(A ∩B)) 6= ∅. Hence the proof.

4. Somewhat near continuity. In this section, we further study the class of somewhat nearly contin-
uous functions.

Definition 4.1. [22] Let X,Y be spaces. A function f : X → Y is said to be somewhat nearly
continuous (briefly swn-continuous) if the inverse image of each open set in Y is swn-open in X . We
remark that an swn-continuous function is an SD-continuous surjection in [3].

The above definition can be stated as:
Remark 4.1. A function f : X → Y is swn-continuous if for each x ∈ X and each open set V in Y

containing f(x), there exists an swn-open set U in X containing x such that f(U) ⊂ V .
Definition 4.2. For a subset A of a space X , we introduce the following:

(i) Clswn(A) =
⋂
{F : F is swn-closed in X and A ⊆ F}.

(ii) Intswn(A) =
⋃
{O : O is swn-open in X and O ⊆ A}.

Proposition 4.1. Let X,Y be spaces. For a function f : X → Y , the following are equivalent:
(1) f is swn-continuous,
(2) f−1(F ) is swn-closed set in X , for each closed set F in Y ,
(3) f(Clswn(A)) ⊂ Cl(f(A)), for each subset A of X ,
(4) Clswn(f−1(B)) ⊂ f−1(Cl(B)), for each subset B of Y ,
(5) f−1(Int(B)) ⊂ Intswn(f−1(B)), for each subset B of Y ,

Proof: Follows from the definition of swn-continuity.
Theorem 4.1. Let X,Y be spaces. For a function f : X → Y , the following are equivalent:

(1) f is swn-continuous,
(2) for each open subset V of Y with f−1(V ) 6= ∅, there exists a nonempty open set U in X such that

U ⊆ Cl(f−1(V )),
(3) for each closed subset F of Y with f−1(F ) 6= X , there exists a proper closed E in X such that

Int(f−1(F )) ⊆ E,
(4) for each open dense subset D of X , then f(D) is dense in f(X).

Proof: (1) =⇒ (2) Remark 3.1 and the definition of swn-continuity.
(2) =⇒ (3) Let F be a closed set in Y such that f−1(F ) 6= X . Then Y \ F is open in Y with

f−1(Y \ F ) 6= ∅. By (2), there exists an open set U in X such that ∅ 6= U ⊆ Cl(f−1(Y \ F )) =
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X \ Int(f−1(F )). This implies that Int(f−1(F )) ⊆ X \U 6= X . If E = X \U , then E is a proper closed
set that satisfies the required property.

(3) =⇒ (4) Let D be open dense in X . We need to prove that f(D) is dense in f(X). Suppose
otherwise that f(D) is not dense in f(X). There exists a proper closed set F such that f(D) ⊆ F ⊂ f(X).
Therefore D ⊆ f−1(F ). By (3), there exist a proper closed set E in X such that D ⊆ Int(f−1(F )) ⊆
E ⊂ X . This contradicts that D is dense in X . Thus (4) holds.

(4) =⇒ (1) W.l.o.g, let H be an open set in Y with f−1(H) 6= ∅, because if f−1(H) = ∅, then it
is trivially swn-open. Suppose that f−1(H) is not swn-open. That is Int(Cl(f−1(H)) = ∅. Therefore
Cl(Int(X \ f−1(H)) = X . This implies that Int(X \ f−1(H)) is dense in X . By (4), f(X \ f−1(H)) is
dense in f(X), i.e., Cl(f(X \ f−1(H))) = f(X). This yields that Cl(f(X) \H) = f(X) \H = f(X)
and so H = ∅. Contradiction to the choice of H . It follows that Int(Cl(f−1(H)) must not be empty. Thus
f−1(H) is swn-open in X .

Theorem 4.2. For a one to one function f from a spaceX onto a space Y , the following are equivalent:

(1) f is swn-continuous,
(2) for each (closed) nowhere dense subset N of X , then f(N) is co-dense in Y .

Proof: (1) =⇒ (2) Let N be a (closed) nowhere dense set in X . We need to show that f(N) is co-
dense in Y . Suppose otherwise, then there is a nonempty open set H in Y such that H ⊆ f(N) and so
f−1(H) ⊆ f−1(f(N)) = N . By (1), ∅ 6= Int(Cl(f−1(H)) ⊆ Int(Cl(N) = Int(N). This proves that is
not (closed) nowhere dense in X , which is contradiction. Hence (2) is established.

(2) =⇒ (1) Let H be an open set in Y . If f−1(H) = ∅, then f−1(H) is swn-open by the definition.
Let f−1(H) 6= ∅. If f−1(H) is not swn-open, then it is nowhere dense in X . By (2), f(f−1(H)) is
co-dense in Y . That is, ∅ = Int(f(f−1(H))) = H . This is impossible. Therefore f is swn-continuous.

Theorem 4.3. A function f from a space X onto a space Y is swn-continuous if and only f−1(A) is
swn-open for each sw-open set A in Y .

Proof: Assume that f is swn-continuous. Let A be sw-open in Y . If A = ∅, then ∅ = f−1(H) is
clearly swn-open. Let A 6= ∅. Then there is a nonempty open set H in Y such that H ⊆ A. Therefore
f−1(H) ⊆ f−1(A). By assumption, ∅ 6= Int(Cl(f−1(H))) ⊆ Int(Cl(f−1(A))). This proves that f−1(A)
is swn-open.

Conversely, if G is an open set in Y , then it is sw-open. By assumption, f−1(G) is swn-open. Hence
f is swn-continuous.

5. Comparison and applications. In this section, we study the connection between swn-continuous
function and other well-known classes of continuity, and then more properties of swn-continuity are given.

Let us first recall the following definition:

Definition 5.1. A function f from a space X into a space Y is called

(1) quasicontinuous [12] or semicontinuous [13] if the inverse image of each open set in Y is semiopen in
X ,

(2) nearly continuous [23] or precontinuous [15] if the inverse image of each open set in Y is preopen in
X ,

(3) α-continuous [18] if the inverse image of each open set in Y is α-open in X ,
(4) almost quasicontinuous [8] or β-continuous [1] if the inverse image of each open set in Y is β-open in

X ,
(5) somewhat continuous [11] (briefly sw-continuous) if the inverse image of each open set in Y is sw-open

in X ,
(6) contra-semicontinuous [9] if the inverse image of each open set in Y is semiclosed in X ,
(7) quasiopen or semiopen [21] if the image of each open set in X is semiopen in Y ,
(8) quasiclosed or semiclosed [21] if the image of each closed set in X is semiclosed in Y .
(9) somewhat open [11] (briefly sw-open) if the image of each open set in X is sw-open in Y ,

The following is the consequence of the Diagram I (see also [22, Diagram I]):
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continuity

α-continuity near continuity

quasicontinuity almost quasicontinuity

sw-continuity swn-continuity

Diagram II:Relations between generalized types of continuity

In general, none of these implications can be replaced by equivalence. We only provide counterexam-
ples for functions directly related to swn-continuity. Other examples are available in the literature.

Example 5.1. Let X = Y = R with usual topology and let f : X → Y be the Dirichlet function. That
is f is defined by

f(x) =

{
0, x 6∈ Q;

1, x ∈ Q.

Then f is swn-continuous but not sw-continuous. The inverse image of any open subset of Y containing
only 1 is Q which is not sw-open in X .

Example 5.2. Let X = Y = R with usual topology. Define the function f : X → Y by

f(x) =


x, if x /∈ {0, 1};
0, if x = 1;

1, if x = 0.

One can easily show f is swn-continuous because the inverse image of any interval always contains some
interval, so the interior of its closure cannot be empty. On the other hand f is not almost quasicontinu-
ous. Take the open set G = (−ε, ε), where ε < 1. Therefore f−1(G) = (−ε, 0) ∪ (0, ε) ∪ {1}. But
Cl(Int(Cl(f−1(G)))) = [−ε, ε] and so f−1(G) * Cl(Int(Cl(f−1(G)))). In conclusion, f cannot be
almost quasicontinuous.

Proposition 5.1. Let X,Y be spaces and let D be an open dense subspace of X . If f : X → Y is
swn-continuous on X , then f |D is swn-continuous on D.

Proof: Follows from Proposition 3.3.
From Remark 3.3 and Propositions 2.21-2.28 in [22], we have
Remark 5.1. The restriction of an swn-continuous function to an open (resp. a dense, a closed)

subspace need not be swn-continuous.
Theorem 5.1. Let X,Y be spaces. A function f : X → Y is almost quasicontinuous if and only if f |U

is swn-continuous for each open subset U ⊆ X .
Proof: Assume that f is almost quasicontinuous. Let H be an open subset of Y and let U be an open

subset of X . By assumption f−1(H) is β-open in X . By Lemma 2.8, f−1(H) ∩ U is β-open in U and
thus, by Lemma 2.4 (ii), f−1(H) ∩ U is an swn-open subset of U . Hence, f |U is swn-continuous.

Conversely, suppose that f |U is swn-continuous for each open subset U of X . Let H be an open set
in Y . Then f−1|U (H) = f−1(H) ∩ U is swn-open in U . Since U is an open subset of X and each open
is semiopen, by Proposition 3.6, f−1(H) ∩ U is swn-open in X for each open U and consequently, by
Proposition 3.8, f−1(H) is β-open in X . Thus f is almost quasicontinuous.

Theorem 5.2. Let X,Y be spaces. A function f : X → Y is nearly continuous if f |U is swn-
continuous for each α-open subset U ⊆ X .

Proof: By the same steps given in the proof of Theorem 5.1 and using Proposition 3.9, one can obtain
the proof.

Theorem 5.3. Let X,Y be spaces and let f : X → Y be a function. If X is strongly irresolvable, then
f swn-continuous if and only if it is sw-continuous

Proof: From Theorem 3.1 (9).
Theorem 5.4. Let X,Y be spaces. For a function f : X → Y , the following are equivalent:

(1) f is swn-continuous and contra-semicontinuous,
(2) f is sw-continuous and contra-semicontinuous,
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Proof: From Lemma 3.5.
Proposition 5.2. Let f be a one to one function from a space X onto a space Y . Then f quasiopen if

and only if it is quasiclosed.
Proof: Obvious.
Theorem 5.5. For a one to one quasiopen function f from a space X onto a space Y , the following

are equivalent:
(1) f is swn-continuous,
(2) for each (closed) nowhere dense subset N of X , then f(N) is nowhere dense in Y ,
(3) for each swn-open subset A of Y , then f−1(A) is swn-open in X ,
(4) f is almost quasicontinuous.

Proof: (1) =⇒ (2) LetN be a closed nowhere dense set inX . By quasiopenness of f , Int(Cl(f(N))) ⊆
f(N) and so Int(Cl(f(N))) = Int(f(N)). By Theorem 4.2, Int(f(N)) = ∅. Thus Int(Cl(f(N))) = ∅.
Hence f(N) is nowhere dense in Y .

(2)⇐⇒(3) Suppose (3) is not true. There exists an swn-open subset A of Y such that f−1(A) is not
swn-open, which means that f−1(A) is a nowhere dense in X . By (2), f(f−1(A)) = A is nowhere dense,
i.e.,A is not swn-open. This is contradiction. Hence (3) must be true. The converse can be proved similarly.

(2) =⇒ (4) Let H be an open set in Y . We want to show that f−1(H) is β-open in X . Let x /∈
Cl(Int(Cl(f−1(H)))). Then there is an open set G in X containing x such that Int(Cl(f−1(H))) ∩ G =
∅ and so ∅ = Int(Cl(f−1(H))) ∩ Int(Cl(G)) ⊇ Int(Cl(f−1(H) ∩ G)). Therefore f−1(H) ∩ G is
nowhere dense in X . By (2), f(f−1(H) ∩ G) = H ∩ f(G) is nowhere dense in Y . This implies that
Int(H ∩ f(G)) = H ∩ Int(f(G)) = ∅ and so H ∩ Cl(Int(f(G))) = ∅. Since f is quasiopen, then
f(G) ⊆ Cl(Int(f(G))). Therefore H ∩ f(G) = ∅ and then f−1(H) ∩ G = ∅. Thus x /∈ f−1(H). This
yields that f−1(H) ⊆ Cl(Int(Cl(f−1(H)))), which establishes that, f is almost quasicontinuous.

(4) =⇒ (1) Let V be an open set in Y . If V = ∅, clearly its inverse is swn-open. Suppose that
V 6= ∅. By (4), f−1(V ) ⊆ Cl(Int(Cl(f−1(V )))). By Lemma 2.4 (ii), Int(Cl(f−1(V ))) 6= ∅. Thus f is
swn-continuous.

Proposition 5.3. Let f be a one to one quasiopen swn-continuous function f from a space X onto a
space Y . If M is a meager set in X , then f(M) is meager in Y .

Proof: Let M be a meager set in X . Then M =
⋃∞
i=1Ni such tat Ni are nowhere set in X for

i = 1, 2, · · · . Therefore

f(M) = f

( ∞⋃
i=1

Ni

)
=

∞⋃
i=1

f(Ni).

By Theorem 5.5 (2), f(Ni) is nowhere dense for each i. Hence f(M) is meager in Y .
Theorem 5.6. Let X,Y be space and let f : X → Y be a function. If f is quasiopen, the following

are equivalent:
(1) f is swn-continuous,
(2) for each open dense set D in X , then Int(f(N)) is dense in f(X).

Proof: (1) =⇒ (2) Let D be open dense in X . By Theorem 4.1 (4), f(D) is dense in f(X). Since f
is quasiopen, then f(D) ⊆ Cl(Int(f(D))) and so f(X) = Cl(f(D)) = Cl(Int(f(D))) by Lemma 2.3 (i).
Thus Int(f(N)) is dense in f(X).

(2) =⇒ (1) Straightforward (from Theorem 4.1 (4) =⇒ (1)).
Theorem 5.7. Let f be a one to one quasiopen swn-continuous function f from a space X onto a

space Y . If A ⊆ X has the Baire property, then f(A) has the Baire property in Y .
Proof: LetA ⊆ X be a set of Baire property. ThenA = G∆N for some openG and meagerN subsets

of X . Now, f(A) = f(G)∆f(N). By Proposition 5.3, f(N) is meager. It is enough to show that f(G)
has the Baire property. Since G in open and f is quasiopen, so f(G) a semiopen set in Y , by Lemma 2.10,
f(G) has the Baire property. Thus f(A) has the Baire property.

Theorem 5.8. Let f be a one to one quasiopen swn-continuous function f from a space X onto a
Baire space Y . Then X is a Baire space.

Proof: Assume that G is an open meager subset of X . By Proposition 5.3, f(G) is meager in Y .
But f is quasiopen, so f(G) is semiopen in Y . By Lemma 2.4 (i), Int(f(G)) 6= ∅. Contradiction to the
assumption that Y is Baire. Hence X is a Baire space.

The above Theorem is a slight generalization of the following result given by Noll:
Corollary 5.1. Let f be a one to one sw-open open sw-continuous function f from a space X onto a

Baire space Y . Then X is a Baire space.
Proof: Corollary of Theorem 1 in [20], (c.f. Theorem 18 in [11]).
We remark that the ”one to one” condition in Theorem 5.8 can be weakened to ”countably fiber-

complete”.
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Definition 5.2. [17] Let X,Y be spaces. A function f : X → Y is called countably fiber-complete
if for each centered sequence {Gn}n∈N of open subsets of X ,

⋂
n∈NGn 6= ∅, if there is y ∈ Y such that

f−1(y) ∩Gn 6= ∅ for each n.
Theorem 5.9. Let f be a quasiopen swn-continuous countably fiber-complete function f from a space

X onto a Baire space Y . Then X is a Baire space.
Proof: Let {Dn}n∈N be a countable collection of dense open subsets of X . We need to show that⋂

n∈NDn is dense in X . Let G be any nonempty open subset of X . Since f is quasiopen, then f(G)
is a semiopen subset of Y . By Lemma 2.4 (i), Int(f(G)) 6= ∅. Set H = Int(f(G)). By Theorem 5.6,
{Int(f(Dn))}n∈N is a countable collection of dense subsets of Y . Since Y is Baire,

⋂
n∈N Int(f(Dn)) is

dense in Y . It follows that
⋂
n∈N Int(f(Dn)) ∩H 6= ∅. Let y ∈

⋂
n∈N Int(f(Dn)) ∩H . This implies that

{y} ∩ f(Dn) ∩H 6= ∅ and therefore f−1{y} ∩Dn ∩G 6= ∅ for each n. By countable fiber-completeness
of f ,

⋂
n∈NDn ∩G 6= ∅, which means that

⋂
n∈NDn is dense in X . This proves that X is a Baire space.

The next example shows that the condition quasiopenness of a function f in Theorems 5.8 and 5.9
cannot be dropped:

Example 5.3. Let X = R with the right order topology, i.e., the topology generated by the basis
Ba = {x : x > a}, let Y = R with the finite complement topology and define f : X → Y to be
the identity function. We claim that f is swn-continuous but not quasiopen. On the other hand Y is a
Baire space but X is not. Clearly f is one to one and onto (consequently f satisfies countable fiber-
completeness). First we want to show that f is swn-continuous. Given any open set G in Y , then it has the
form G = (−∞, x1) ∪ (x1, x2) ∪ · · · ∪ (xn,∞) for x1, x2, . . . , xn ∈ R. It follows that f−1(G) always
contains an open set, and each open set inX is dense, so Int(Cl(f−1(G))) 6= ∅. Thus f is swn-continuous.
Now, take the open set (0,∞) in X , then (0,∞) = f((0,∞)) * Cl(Int(f(0,∞))) = ∅. Therefore f is not
quasiopen. The nowhere sets in Y are only finite. Then Y cannot be written a countable union of finite sets,
so it is a Baire space. While X =

⋃
r∈QNr, where Nr = {x : x < r} is nowhere dense for each r, [25,

p74]. Hence X is not a Baire space.

We shall compare Theorems 5.8 and 5.9 with the following results by Noll and Mirmostafaee and
Piotrowski respectively. We claim that our results are superior and the next example proves our claim.

Theorem 5.10. Let f be a one-to-one sw-open sw-continuous function f from a space X onto a Baire
space Y . Then X is a Baire space.

Proof: Corollary of Theorem 1 in [20], (c.f. Theorem 18 in [11]).
Theorem 5.11. [17, Theorem 1.7] Let f be a sw-open and sw-continuous countably fiber complete

function from a space X onto a Baire space Y . Then X is a Baire space.
Example 5.4. Let r be the usual topology on R and let θ be a topology on R generated by r ∪ {P}.

Suppose that g : (R, r)→ (R, θ) is the identity function. One can easily see that g sends open sets to open,
so g is semiopen and consequently sw-open. We now check that g is swn-continuous. Take any open set H
in θ, its inverse either contains an open interval or a subset of P and in both cases Int(Cl(g−1(H))) 6= ∅.
If we take P as an open set in θ, then Int(g−1(P)) = ∅ and so g cannot be sw-continuous. On the other
hand, by Baire category theorem both (R, r) and (R, θ) are Baire spaces.

In conclusion, we have given two examples which verified that Theorems 5.8 and 5.9 are natural gen-
eralizations of Theorems 5.10 and 5.11.
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