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Abstract
In [4] was stated the following conjecture: If a Figueroa’s presemifield P (K,α, β,A,B) admits an auto-
topism of order a p-primitive prime divisor of pn−1, then its autotopism group is isomorphic to a subgroup
of ΓL(K) × ΓL(K). In [5] this conjecture was settled under an additional normality condition. In this
article, we show that the assumption in the hypothesis of the conjecture is necessary in the sense that there
exist a Figueroa’s presemifield, that does not admit such autotopism, for which the conjecture is not met.

Keywords . finite presemifield, finite semifield, autotopism group, Cordero-Figueroa semifield, Figueroa’s pre-
semifield.

Resumen
En [4] se estableció la siguiente conjetura: Si un presemicuerpo de Figueroa P (K,α, β,A,B) admite un
autotopismo de orden un divisor primo p-primitivo de pn−1, entonces su grupo autotopismo es isomórfo a
un subgrupo de ΓL(K)× ΓL(K). En [5] esta conjetura se resolvió bajo una condición adicional de nor-
malidad. En este artı́culo, mostramos que la suposición hecha en la hipótesis de la conjetura es necesaria
en el sentido de que existe un presemicuerpo de Figueroa, que no admite tal autotopismo, para el cual la
conjetura no se cumple.

Palabras clave. presemicuerpo finito, semicuerpo finito, grupo autotopismo, semicuerpo de Cordero-Figueroa,
presemicuerpo de Figueroa.

1. Introduction.
Definition 1.1. A finite presemifield (P,+, ∗) consists of an additive group (P,+) and a multiplication

∗ that satisfies both distributive laws and the condition: if x ∗ y = 0 then x = 0 or y = 0. A finite
presemifield with multiplicative identity is called finite semifield.

Throughout this article, the term presemifield (or semifield) will always be used to refer a finite pre-
semifield (or a finite semifield).

Definition 1.2. Two presemifields (or semifields) (P,+, ∗) and (P ′,+, ◦) are isotopic if there exist a
triple (F,G,H) of bijective functions from P to P ′ which are additives and satisfyG(x∗y) = F (x)◦H(y),
for all x, y ∈ P . The triple (F,G,H) is called an isotopism from P to P ′.

An isotopism from a presemifield (or semifield) P to itself is called an autotopism of P , and the set
of all autotopisms of a presemifield (or semifield) P is known as the autotopism group of P and will be
denoted by A(P ). For more details of our concern about semifields, presemifields, autotopisms, and the
autotopism group A(P ), see [4] and [5].
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In this paper, we will focus our attention on the conjecture stated in [5] about the autotopism group of
the Figueroa’s presemifield of order pn. A Figueroa’s presemifield of order pn is defined in [4] as follows:

Definition 1.3. Let α 6= 1 and β 6= 1, α 6= β, be automorphisms of K = GF (pn), where p > 3
and n > 4, and let A,B ∈ K∗ be constants. (K,+, ∗) is a Figueroa’s presemifield of order pn with the
product:

x ∗ y = xy +Axαyβ +Bxβyα,

if α, β, A, and B are such that x ∗ y = 0 implies x = 0 or y = 0. This presemifield is denoted by
P (K,α, β,A,B).

In [4] we studied the autotopism group of the Cordero-Figueroa semifield of order 36 and we showed
that its autotopism group is isomorphic to a particular subgroup of ΓL(K)× ΓL(K). There in, because of
additional evidence, we also suggested that the same fact should be fulfilled for the general case (i.e. for a
Figueroa’s presemifield of order pn). Thus, in [5], we formally conjecture:

Conjecture 1 (Figueroa’s conjecture). If a Figueroa’s presemifield P (K,α, β,A,B) of order pn

admits an autotopism of order a p-primitive prime divisor, then its autotopism group is isomorphic to a
subgroup of ΓL(K)× ΓL(K).

In [5], this conjecture was proved as true under the additional condition that the subgroup generated by
the autotopism (f0x, f

2
0 y, f0n) ∈ A(P ), of an apropriate order, be a normal subgroup in A(P ).

The goal in this article is to show that the hypothesis of the Figueroa’s conjecture is necessary in the
sense that there exist an example where the hypothesis is not satisfied and the conjecture for this example
is not met.

2. Resolved cases. In this section, we review the main results obtained in [4] and [5] that contribute
to the proof of the stated conjecture.

2.1. The autotopism group of the Cordero-Figueroa semifield of order 36. In [4], we determine
that the full autotopism group of the Cordero-Figueroa semifield of order 36 is isomorphic to a particular
subgroup of ΓL(K)× ΓL(K), where K = GF (36). To be more specific:

Theorem 2.1. Let P = P (K,α, β,A,B) be the Cordero-Figueroa semifield of order 36. The full
autotopism group A(P ) is isomorphic to the subgroup of ΓL(K)× ΓL(K):

〈(γ13x, γ26y)〉o 〈(γx3, γy3)〉,

where 〈(γ13x, γ26y)〉 is normal in the group 〈(γ13x, γ26y)〉〈(γx3, γy3)〉. Furthermore, the order of A(P )
is 672.

Since the Cordero-Figueroa semifield of order 36 is a semifield that admits an autotopism of order a 3–
primitive prime divisor of 36 − 1, it is a presemifield (see [1]), or more properly speaking, it is a Figueroa’s
presemifield of order 36.

2.2. The autotopism group of the Figueroa’s presemifield of order pn. In [5], in order to prove the
Figueroa’s conjecture, we provided a characterization for a Figueroa’s presemifield of order pn to admit a
certain autotopism of order a p-primitive prime divisor of pn − 1, as follows:

Theorem 2.2. Let P = P (K,α, β,A,B) be a Figueroa’s presemifield of order pn. Assume that pn−1
has a p-primitive prime divisor s and α3 6= 1 if αβ = 1. ThenA(P ) admits the autotopism (f0x, f

2
0 y, f0n)

of order s, with f0 ∈ K∗, if and only if s divides (β − 1) + (α− 1).
This characterization allowed us to demonstrate the Figueroa’s conjecture in Theorem 2.3, under the

assumption that the subgroup generated by the autotopism (f0x, f
2
0 y, f0n) ∈ A(P ) is a normal subgroup

in A(P ).
Theorem 2.3. Let P = P (K,α, β,A,B) be a Figueroa’s presemifield of order pn. Assume that A(P )

admits the autotopism of order s (as referred in Theorem 2.2). If the subgroup generated by this autotopism
is normal in A(P ), then

A(P ) = {(uxφ, uvyφ, vnφ) : u, v ∈ K∗, φ ∈ Aut(K)},
and hence, it is isomorphic to a subgroup of ΓL(K)× ΓL(K).

3. On the sufficient condition of the Figueroa’s conjecture. As mentioned at the end of section 1,
in this section we provide a Figueroa presemifield of order 34 and find its autotopism group. We show that
the assumption on the existence of an autotopism of order a p-primitive prime divisor of pn − 1, in the
hypothesis of Figueroa’s conjecture, is required.

Theorem 3.1. Let K = GF (34) and consider α = 31, β = 33, A = γ0 = 1 and B = γ13, with
γ ∈ K a primitive element such that γ4 = 1 + γ. Let P = P (K,α, β,A,B) be the Figueroa’s presemifield
defined by the product
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x ◦ y = xy +Ax3
1

y3
3

+Bx3
3

y3
1

,

for all x, y ∈ K. Then, P does not admit an autotopism of order a 3-primitive prime divisor of 34 − 1 and
A(P ) is not isomorphic to any subgroup of ΓL(K)× ΓL(K).

Proof: Let (f, g, h) ∈ A(P ) be any element. Since f , g and h are additive functions,

f(x) =

3∑
k=0

fkx
3k , g(y) =

3∑
k=0

gky
3k , h(n) =

3∑
k=0

hkn
3k .

Let m = h(n). Then, the condition g(x ◦ n) = f(x) ◦m yields the following equations:

g0n+ (g3 + g1B
3)n3

2

= f0m+ f3
1

3 m33 +Bf3
3

1 m31 ,(3.1)

g1n
31 + (g0 + g2B)n3

3

= f1m+ f3
1

0 m33 +Bf3
3

2 m31 ,(3.2)

(g1 + g3B
3)n+ g2n

32 = f2m+ f3
1

1 m33 +Bf3
3

3 m31 ,(3.3)

(g2 + g0B)n3
1

+ g3n
33 = f3m+ f3

1

2 m33 +Bf3
3

0 m31 .(3.4)

Since the multiplicative group of the middle nucleus of P :

N∗m = {(f, g, h) ∈ A(P ) : f(x) = cx, g(y) = y, h(n) = c−1n}, .

is normal in A(P ) (see [4]), we have that for all (f, g, h) ∈ A(P ) and any (f0, i, h0) ∈ N∗m, where i is the
identity function from P to P , there exists (f̃0, i, h̃0) ∈ N∗m such that

(f, g, h)−1 ◦ (f0, i, h0) ◦ (f, g, h) = (f̃0, i, h̃0).

Then, for all x ∈ K,

(3.5) f0(f(x)) = f(f̃0(x)).

Let f0(x) = c0x and f̃0(x) = c̃0x. Since |N∗m| = 3(4, 3−1)−1 = 8, we get that c̃0 ∈ GF ∗(32) (see Lemma
1 in [4]). Then, from (3.5),

c0f0 = f0c̃0,(3.6)

c0f1 = f1c̃
3
0,(3.7)

c0f2 = f2c̃0,(3.8)

c0f3 = f3c̃
3
0.(3.9)

Since f(x) 6= 0, f(x) has at least one nonzero coefficient. Suppose that f0 6= 0. Then, from (3.6), c0 = c̃0.
Hence, (3.7) and (3.9) imply that f1 = f3 = 0. In the same way, if f2 6= 0 then f1 = f3 = 0, and if f1 6= 0
or f3 6= 0 then f0 = f2 = 0. Therefore, f(x) has at least one nonzero coefficient and at most two nonzero
coefficients (f0 and f2, or f1 and f3). We now analyze each case in order to determine the full autotopism
group of P .
CASE 1: Two coefficients of f(x) are nonzero. For this case, we have the following subcases:
(a) f0 6= 0, f2 6= 0, f1 = 0, f3 = 0.
(b) f1 6= 0, f3 6= 0, f2 = 0, f4 = 0.
If (a) occurs, then (3.1) - (3.4) imply that

m =
g0
f0
n+ (

g3
f0

+
g1
f0
B3)n9,(3.10)

f90m+B3f2m
9 = (g30 + g32B

3)n+ g31n
9,(3.11)

m = (
g1
f2

+
g3
f2
B3)n+

g2
f2
n9,(3.12)

f92m+B3f0m
9 = g33n+ (g32 + g30B

3)n9.(3.13)

From (3.10) and (3.12), we get

g0
f0

=
g1
f2

+
g3
f2
B3,(3.14)

g2
f2

=
g3
f0

+
g1
f0
B3.(3.15)
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Let P =
g2
f2

and Q =
g0
f0

. Then, from equations (3.14) and (3.15) we obtain

f2Q = g1 + g3B
3,

f0P = g3 + g1B
3.

Hence

g1 = −(f0P + f2QB),(3.16)
g3 = −(f2Q+ f0PB).(3.17)

On the other hand, from (3.10) and (3.15) we conclude that

m =
g0
f0
n+

g2
f2
n3

2

,

or

(3.18) m = Qn+ Pn9.

Substituting this into equation (3.11) we obtain

f90 (Qn+ Pn9) +B3f2(Q9n9 + P 9n) = (g30 + g32B
3)n+ g31n

9,

which is equivalent to

(f90Q+B3f2P
9)n+ (f90P +B3f2Q

9)n9 = (g30 + g32B
3)n+ g31n

9,

a polynomial identity in n. Therefore

f90Q+B3f2P
9 = g30 + g32B

3,(3.19)

f90P +B3f2Q
9 = g31 .(3.20)

Since g0 = f0Q and g2 = f2P , the equations (3.19), (3.20) and (3.16) imply that

f90Q+B3f2P
9 = f30Q

3 + f32P
3B3,(3.21)

f90P +B3f2Q
9 = −(f30P

3 + f32Q
3B3).(3.22)

Notice that B4 = −1. Then, multiplying (3.21) and (3.22) by B, and rearranging the resultant equations,
we get

(f90Q− f30Q3)B = f2P
9 − f32P 3,(3.23)

(f90P + f30P
3)B = f2Q

9 + f32Q
3.(3.24)

Similarly, replacing the expression obtained for m (see equation (3.18)) into equation (3.13), we obtain that

(f92Q+ f32Q
3)B = f0P

9 + f30P
3,(3.25)

(f92P − f32P 3)B = f0Q
9 − f30Q3.(3.26)

Now, adding and subtracting side to side (3.23) and (3.24) we find, respectively, that

f90B(P +Q) + f30B(P −Q)3 = f2(P +Q)9 + f32 (Q− P )3,(3.27)

f90B(P −Q) + f30B(P +Q)3 = f2(Q− P )9 + f32 (P +Q)3.(3.28)

Analogously, from (3.25) and (3.26), we get

f92B(P +Q) + f32B(Q− P )3 = f0(P +Q)9 + f30 (P −Q)3,(3.29)

f92B(Q− P ) + f32B(P +Q)3 = f0(P −Q)9 + f30 (P +Q)3.(3.30)

Let R = P +Q and S = P −Q. Then, from (3.27) - (3.30),

f90BR+ f30BS
3 = f2R

9 − f32S3,

f90BS + f30BR
3 = −f2S9 + f32R

3,

f92BR− f32BS3 = f0R
9 + f30S

3,

−f92BS + f32BR
3 = f0S

9 + f30R
3.
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Rearranging terms in each one of these equations, we obtain

(f32 + f30B)S3 = f2R
9 − f90BR,(3.31)

(f32 − f30B)R3 = f2S
9 + f90BS,(3.32)

(f30 + f32B)S3 = f92BR− f0R9,(3.33)

(f32B − f30 )R3 = f0S
9 + f92BS.(3.34)

Multiplying (3.31) by f0 and (3.33) by f2, and adding side to side the resulting equations, we get

(3.35) [(f32 + f30B)f0 + (f30 + f32B)f2]S3 = (f102 − f100 )BR.

In the same way, multiplying (3.31) by f92 and (3.33) by f90 , and adding side to side the resulting equations,
we obtain that

(3.36) [(f32 + f30B)f92 + (f30 + f32B)f90 ]S3 = (f102 − f100 )R9.

Similarly, with (3.32) and (3.34), we have

[(f32 − f30B)f0 − (f32B − f30 )f2]R3 = (f100 − f102 )BS,(3.37)

[(f32 − f30B)f92 − (f32B − f30 )f90 ]R3 = (f102 − f100 )S9.(3.38)

Rearranging terms in (3.35) - (3.38), we obtain

[f0f2(f22 + f20 ) + (f40 + f42 )B]S3 = (f102 − f100 )BR,(3.39)

[(f42 + f40 )3 + f30 f
3
2 (f62 + f60 )B]S3 = (f102 − f100 )R9,(3.40)

[(f42 + f40 )B − f0f2(f22 + f20 )]R3 = (f102 − f100 )BS,(3.41)

[(f42 + f40 )3 − f30 f32 (f62 + f60 )B]R3 = (f102 − f100 )S9.(3.42)

Let V = f0f2(f22 +f20 ),W = f40 +f42 andD = f102 −f100 . We note that, since f(x) is bijective, f100 6= f102 .
Hence, D 6= 0. Furthermore, since D9 = f902 − f900 = f102 − f100 = D, we get D8 = 1. Replacing the
expressions V , W and D in (3.39) - (3.42), we obtain

(V +WB)S3 = DBR,(3.43)

(W 3 + V 3B)S3 = DR9,(3.44)

(WB − V )R3 = DBS,(3.45)

(W 3 − V 3B)R3 = DS9.(3.46)

From (3.43), if S = 0 then R = 0. Since R = P + Q and S = P − Q, we conclude that P = 0 and
Q = 0. Therefore, equation (3.18) implies that m = 0, which is a contradiction. Analogously, from (3.45),
if R = 0 then S = 0. Therefore, m = 0. Hence R 6= 0 and S 6= 0.

Solving (3.43) for R and replacing it in (3.44) - (3.46), we obtain the following equations

B(W 3 + V 3B) = (V 9 +W 9B)S24,(3.47)

(WB − V )(V 3 +W 3B3)S8 = −D4,(3.48)

(W 3 − V 3B)(V 3 +W 3B3) = D4B3.(3.49)

Multiplying the equation (3.49) by B, we get

(3.50) (W 3 − V 3B)2 = D4.

Hence

(3.51) W 3 − V 3B = εD2, (ε = ±1).

On the other hand, multiplying the equation (3.48) by B and using (3.51), we get

(WB − V )εS8 = D2B.

Hence

(W 3B3 − V 3)εS24 = D6B3.
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Multiplying this equation by B, we get

(3.52) (W 3 + V 3B)εS24 = D6.

Solving the equation (3.52) for S24 and replacing into equation (3.47), we get

B(W 3 + V 3B)2 = ε(V 9 +W 9B)D6.

Multiplying each side of this equation by B3, we get

(3.53) −(W 3 + V 3B)2 = ε(V 3B −W 3)3D6.

From (3.51) and (3.53)

(3.54) (W 3 + V 3B)2 = D4.

Thus (3.50) and (3.54) imply that

(W 3 + V 3B)2 = (W 3 − V 3B)2.

Then W = 0 or V = 0. Suppose that W = 0. Then (3.54) imply that V 6B2 = D4. So,

(3.55) V 12B4 = D8.

Since B4 = −1 and D8 = 1, from (3.55), we have that V 12 = −1, which implies that V 4 = −1.
Remember that W = f40 + f42 and V = f0f2(f22 + f20 ). Since W = 0, we have that f42 + f40 = 0. From
where, f42 = −f40 . Thus

V 2 = f20 f
2
2 (f22 + f20 )2 = 2f40 f

4
2 = −f40 (−f40 ) = f80 .

Then

(3.56) f160 = V 4 = −1.

Note that (3.56) implies that f320 = 1. Then f960 = 1. Since f800 = 1, we get

f160 = 1,

which contradicts (3.56). Hence W 6= 0 and V = 0. Since V = 0, (3.50) implies

(3.57) W 6 = D4.

Then, W 12 = D8 = 1. So, W 4 = 1. Thus (3.57) implies W 2 = D4. Therefore

(3.58) W = ε̃D2, (ε̃ = ±1).

Now, equations (3.51) and (3.58) imply that W 3 = W or W 3 = −W . Thus, since W 6= 0, we conclude
that W 2 = 1 or W 2 = −1.

Assume first that W 2 = 1. Since V = 0,

(3.59) f20 + f22 = 0.

Then f42 = f40 . Therefore

W = f40 + f42 = 2f40 = −f40 .

Hence, W 2 = f80 . Thus

(3.60) f80 = 1.

Solving the equation (3.59) for f2 give us

(3.61) f2 = jf0,
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where j ∈ K∗ is such that j2 = −1 (then j = ±B2). Replacing f2 in (3.23) - (3.26), we get

(f90Q− f30Q3)B = jf0P
9 + jf30P

3,(3.62)

(f90P + f30P
3)B = jf0Q

9 − jf30Q3,(3.63)

(jf90Q− jf30Q3)B = f0P
9 + f30P

3,(3.64)

(jf90P + jf30P
3)B = f0Q

9 − f30Q3.(3.65)

Multiplying the equation (3.63) by j, and using (3.65), we get

jf90P + jf30P
3 = −(jf90P + jf30P

3).

Then

(3.66) P 2 = −f60 .

Then, since f80 = 1, from (3.66), we get that P 6 = −f180 = −f20 . Therefore,

f0P
9 + f30P

3 = f0P
6P 3 + f30P

3 = f0(−f20 )P 3 + f30P
3 = −f30P 3 + f30P

3 = 0.

Thus, the right hand side of (3.64) is 0. Then, since B 6= 0, from (3.64), we get that jf90Q − jf30Q3 = 0.
Hence

(3.67) Q2 = f60 .

Since f2 = jf0, we get P =
g2
f2

=
g2
jf0

. Replacing f2 = jf0, P =
g2
jf0

and Q =
g0
f0

in (3.16) and (3.17),

we have

−g1 =
g2
j

+ jBg0,(3.68)

−g3 = jg0 +B
g2
j
.(3.69)

Next, let us find the form of the autotopisms (f, g, h) of the presemifield P for this case:
FORM 1. Solving (3.60) for f0 we obtain f0 = Bk, for k ∈ N, 0 ≤ k ≤ 7. Since g0 = f0Q, we get
g20 = f20Q

2. Then, using (3.67), we find g20 = f20 f
6
0 = f80 = 1. Therefore, g0 = ±1.

Similarly, since g2 = f2P , we get that g22 = f22P
2. Then, since f2 = jf0 (where j2 = −1), using (3.66),

we find that g22 = j2f20 (−f60 ) = f80 = 1. Therefore, g2 = ±1.
(i) Assume that g0 = 1 and g2 = 1. If j = B2, then from equation (3.68),

g1 = −
(

1

B2
+B3

)
= B2 −B3 = −1.

Similarly, from equation (3.69),

g3 = −
(
B2 +B

1

B2

)
= −B2 +B3 = 1.

So, we get autotopisms (f, g, h) where

f(x) = Bkx+Bk+2x9,

g(y) = y − y3 + y9 + y27,

h(n) = B−kn+B−k−2n9,

for 0 ≤ k ≤ 7.
In the same way, if j = −B2 then g1 = 1 and g3 = −1. So, we get autotopisms (f, g, h) where

f(x) = Bkx−Bk+2x9,

g(y) = y + y3 + y9 − y27,
h(n) = B−kn−B−k−2n9,

for 0 ≤ k ≤ 7.
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(ii) If g0 = 1 and g2 = −1, in a similar way to (i), we get autotopisms (f, g, h) where, for 0 ≤ k ≤ 7,

f(x) = Bkx+Bk+2x9

g(y) = y + y3 − y9 − y27

h(n) = B−kn−B−k−2n9
and

f(x) = Bkx−Bk+2x9,

g(y) = y − y3 − y9 − y27,
h(n) = B−kn+B−k−2n9.

(iii) If g0 = −1 and g2 = 1, we get autotopisms (f, g, h) where, for 0 ≤ k ≤ 7,

f(x) = Bkx+Bk+2x9

g(y) = −y − y3 + y9 − y27

h(n) = −B−kn+B−k−2n9
and

f(x) = Bkx−Bk+2x9,

g(y) = −y − y3 + y9 + y27,

h(n) = −B−kn−B−k−2n9.

(iv) If g0 = −1 and g2 = −1, we get autotopisms (f, g, h) where, for 0 ≤ k ≤ 7,

f(x) = Bkx+Bk+2x9

g(y) = −y + y3 − y9 − y27

h(n) = −B−kn−B−k−2n9
and

f(x) = Bkx−Bk+2x9,

g(y) = −y − y3 − y9 + y27,

h(n) = −B−kn+B−k−2n9.

FORM 2. Assume that W 2 = −1. As when W 2 = 1 (see page 272), we get autotopisms (f, g, h) where,
for 0 ≤ k ≤ 7,

(i)
f(x) = γ5Bkx+ γ5Bk+2x9

g(y) = B2y −B2y3 +B2y9 +B2y27

h(n) = γ−5B2−kn+ γ−5B−kn9

and

f(x) = γ5Bkx− γ5Bk+2x9,

g(y) = B2y +B2y3 +B2y9 −B2y27,

h(n) = γ−5B2−kn− γ−5B−kn9.

(ii)
f(x) = γ5Bkx+ γ5Bk+2x9

g(y) = B2y −B3y3 −B2y9 −B3y27

h(n) = γ−5B2−kn− γ−5B−kn9

and

f(x) = γ5Bkx− γ5Bk+2x9,

g(y) = B2y +B3y3 −B2y9 +B3y27,

h(n) = γ−5B2−kn+ γ−5B−kn9.

(iii)
f(x) = γ5Bkx+ γ5Bk+2x9

g(y) = −B2y +B3y3 −+B2y9 +B3y27

h(n) = −γ−5B2−kn+ γ−5B−kn9

and

f(x) = γ5Bkx− γ5Bk+2x9,

g(y) = −B2y −B3y3 +B2y9 −B3y27,

h(n) = −γ−5B2−kn− γ−5B−kn9.

(iv)
f(x) = γ5Bkx+ γ5Bk+2x9

g(y) = −B2y +B2y3 −B2y9 −B2y27

h(n) = −γ−5B2−kn− γ−5B−kn9

and

f(x) = γ5Bkx− γ5Bk+2x9,

g(y) = −B2y −B2y3 −B2y9 +B2y27,

h(n) = −γ−5B2−kn+ γ−5B−kn9.

FORM 3. If the subcase (b) of Case 1 occurs (see page 269), proceeding as in the subcase (a), we get
autotopisms (f, g, h) where, for 0 ≤ k, r ≤ 7,

(i)

f(x) = Bkx3 +Bk+1x27,

g(y) = −(γ5Bk+1 + γ5Br+2)y + γ5Bky3 + (γ5Bk + γ5Br+3)y9 + γ5Bry27,

h(n) = γ5n3 + γ5Br−k−1n27.

(ii)

f(x) = Bkx3 −Bk+1x27,

g(y) = (γ5Bk+1 + γ5Br+2)y + γ5Bky3 − (γ5Bk + γ5Br+3)y9 + γ5Bry27,

h(n) = γ5n3 − γ5Br−k−1n27.

(iii)

f(x) = Bkx3 +Bk+3x27,

g(y) = −(γ5Bk+3 + γ5Br)y + γ5Bky3 + (γ5Bk+2 + γ5Br+1)y9 + γ5Bry27,

h(n) = γ5n3 + γ5Br−k−3n27.



Meléndez FW, Delgado OM.- Selecciones Matemáticas. 2020; Vol. 7(2): 267-275 275

(iv)

f(x) = Bkx3 −Bk+3x27,

g(y) = (γ5Bk+3 + γ5Br)y + γ5Bky3 − (γ5Bk+2 + γ5Br+1)y9 + γ5Bry27,

h(n) = γ5n3 − γ5Br−k−3n27.

CASE 2: One coefficient of f(x) is nonzero. In this case, we get autotopisms (f, g, h) where, for 0 ≤ k ≤ 7,

(i)

f(x) = Bkx f(x) = Bkx f(x) = Bkx f(x) = Bkx,

g(y) = y g(y) = −y g(y) = B2y g(y) = −B2y,

h(n) = B−kn h(n) = −B−kn h(n) = B2−kn h(n) = −B2−kn.

(ii)

f(x) = γ5Bkx f(x) = γ5Bkx f(x) = γ5Bkx f(x) = γ5Bkx,

g(y) = y g(y) = −y g(y) = B2y g(y) = −B2y,

h(n) = γ−5B−kn h(n) = −γ−5B−kn h(n) = γ−5B2−kn h(n) = −γ−5B2−kn.

(iii)

f(x) = Bkx9 f(x) = Bkx9 f(x) = Bkx9 f(x) = Bkx9,

g(y) = y9 g(y) = −y9 g(y) = B2y9 g(y) = −B2y9,

h(n) = B−kn9 h(n) = −B−kn9 h(n) = B2−kn9 h(n) = −B2−kn9.

(iv)

f(x) = γ5Bkx9 f(x) = γ5Bkx9 f(x) = γ5Bkx9 f(x) = γ5Bkx9,

g(y) = y9 g(y) = −y9 g(y) = B2y9 g(y) = −B2y9,

h(n) = γ−5B−kn9 h(n) = −γ−5B−kn9 h(n) = γ−5B2−kn9 h(n) = −γ−5B2−kn9.

Therefore, there exist only 512 autotopisms from P to P and so the order of A(P ) is 512. Moreover, 5 is
the only 3-primitive prime divisor of 34 − 1 and no autotopism in A(P ) has order 5.

Finally, suppose that A(P ) is isomorphic to some subgroup N of ΓL(K) × ΓL(K). Let’s denote
Af (P ), Ag(P ) and Ah(P ) the groups containing the first, second and third components of A(P ). Let’s
denote NF and NG the groups containing the first and second components of N . Then NF and NG are
subgroups de ΓL(K), and the linear parts of NF and NG are normal subgroups in ΓL(K) (see Result
1.21 in [3]), then the linear parts of Af (P ), Ag(P ) and Ah(P ) are normal subgroups as well, which is a
contradiction (see autotopisms in the Case 2, item (i) and item (ii)). Hence, A(P ) is not isomorphic to any
subgroup of ΓL(K)× ΓL(K).

4. Conclusions. Since the order of the autotopism group of the Figueroa’s presemifield of order 81
give in the Theorem 3.1 is 512, we conclude that it is isomorphic to the autotopism group of the semifield
plane P(Σ), where Σ belong to the Knuth class VIII (see [2]).
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