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http://dx.doi.org/10.17268/sel.mat.2020.02.08

Abstract
In this paper we address CLOSEST STRING problem that arises in web searching, coding theory and
computational molecular biology. To solve it is to find a string that minimizes the maximum Hamming
distance from a given set of strings. CLOSEST STRING is an NP-hard problem. This paper proposes two
linear-time algorithms, one for the general case, a kernelization algorithm, and the other for three-strings,
a linear-time algorithm called Minimization First Algorithm (MFA). A formal proof of the correctness and
the computational complexity of the proposed algorithms are given.

Keywords . Closest String Problem, Combinatorial Optimization, Exact Algorithm, Fixed Parameter Algorithm,
Kernelization.

Resumen
En este artı́culo abordamos el problema de la subsecuencia de caracteres más próxima que surge en la
búsqueda web, la teorı́a de la codificación y la biologı́a molecular computacional. Para resolverlo debe se
encontrar una subsecuencia de caracteres que minimice la distancia de Hamming máxima de un conjunto
dado de subsecuencias, dicho problema está en NP-hard. Este artı́culo propone dos algoritmos de tiempo
lineal, uno para el caso general, un algoritmo de kernelización, y el otro para tres subsecuencias de carac-
teres, un algoritmo de tiempo lineal llamado Algoritmo de la primera minimización (MFA). Se expresa una
prueba formal para verificar la corrección y complejidad computacional de los algoritmos propuestos.

Palabras clave. Problema de la subsecuencia de caracteres más próxima, Optimización combinatoria, Algoritmo
exacto, Algoritmo de parámetro fijo, Kernelización.

1. Introduction. Let Γ be an alphabet. CLOSEST STRING or CENTER STRING problem calls for
finding a string x ∈ Γm that better approximates a given set S of strings s1, s2, ..., sk ∈ Γm. Approximation
is measured with the Hamming distance d(x, y), that counts the number of different characters in x and
y. An optimal solution of CLOSEST STRING is an x∗ that, among all strings x ∈ Γm, minimizes the
maximum distance d(x, si) from any si ∈ S. It is NP-complete (Frances and Litman, [5]).

In computational biology, problems related with strings often arise: given strings are compared with
each other and their common part is searched for. In cryptography for data compression, one faces a similar
challenge (Storer, [11]). One of the challenges of web searching is multiple occurrences of the same data,
whether in exact duplicates or with minor changes. For the same reasons there is a greater practical interest
in finding methods to solve it.

Several fixed-parameter solutions were given for CLOSEST STRING, such that, (Gramm et al., [7])
in 2003 proposed the first fixed-parameter algorithm running in O(km + kdd+1) time for finding a string
x such that max1≤i≤k d(x, si) ≤ d. (Ma and Sun, [10]) presented another algorithm running in O(km +
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kd(16|Γ|)d) time, where Γ denotes the alphabet. (Gramm et al., [6]) in 2001 proposed a recursive algorithm
for finding a consensus string x for three strings, but its result is only for theoretical interest. (Liu et al.,
[9]) presented a linear-time algorithm for 3-strings with a binary alphabet, (Boucher et al., [3]) proposed a
linear algorithm for finding a string x such that max1,...,4d(x, si) ≤ d for four binary strings, and (Amir et
al., [1]) in 2016 posed a quadratic time algorithm for 5 strings with a binary alphabet.

Table 1.1: A list of articles that uses exact methods to solve Closest String.

Year #Strings Alphabet Running time References

2003 k q O(km + kdd+1) Gramm et al., [7]

2008 k q O(km + kd(16|Γ|)d) Ma and Sun, [10]

2001 3 q O(m) Gramm et al., [6]

2011 3 2 O(m) Liu et al., [9]

2009 4 2 O(m) Boucher et al., [3]

2016 5 2 O(m2) Amir et al., [1]

(Lenstra, [8]) in 1983 showed that Integer Linear Programming (ILP) with a fixed number of variables
can be solved with O(p9p/2L) arithmetic operations with integers of O(p2pL) bits in size, where p is the
number of ILP variables andL is the number of bits in the input. Using this famous result, in 2011, (Gramm,
Niedermeier, and Rossmanith, [7]) presented an ILP formulation for CLOSEST STRING where the number
of variables isO(k!×k), thus providing a Fixed-Parameter Tractable (FPT) algorithm for CLOSEST STRING
parameterized by k (number of input-strings).

A fundamental and very powerful technique in designing FPT algorithms is kernelization. In a nutshell,
a kernelization algorithm for a parameterized problem is a polynomial-time transformation that transforms
any given instance to an equivalent instance of the same problem, with size and parameter bounded by a
function of the parameter in the input. Typically this is done using so-called reduction rules, which allow
the safe reduction of the instance to an equivalent ’smaller’ instance.

Related to kernelization algorithms, (Gramm et al., [6]) showed that CLOSEST STRING is FPT pa-
rameterized by k (number of strings), they also proved a polynomial time reduction O(k2d log k). Also,
(Basavaraju et al., [2]) presented that CLOSEST STRING is not likely to have polynomial kernels when
parameterized by d (Hamming distance), they arrived at the results by showing a polynomial parameter
transformation from CNF-SAT parameterized by the number of variables.

Notation. Throughout this paper, we will be considering our input-instance as a matrix. If the set S has
k strings, s1, . . . , sk, each of length m, we view S as a k ×m matrix. We can thus refer to columns and
rows. We will say column to denote a column of this matrix, and row to denote a row in the matrix. Thus,
e.g., the element is the second row of column j, is the jth symbol of s2. The distance of a string s′ from S
is maxs∈Sd(s′, s). Given a string s we denote with σj(s) the character in the jth position of s. We refer
to two identical columns as having the same column type also known as tuple. We denote with T (S) the
column types of S. For a column type t ∈ T (S) we denote with #t the number of column types t in S. A
set of column positions I is denoted as I = {p1, . . . , pm} ⊆ {1, . . . ,m} where p ∈ I is a specific column
position. Given a string s we denote with sP a substring of s restricted to a set of indices P .

In the following, the article is divided in sections. Section 2 presents an integer linear programming
(ILP) formulation for CLOSEST STRING. Section 3 poses a kernelization algorithm. Section 4 shows an
ILP formulation for 3-strings, obtained using the ILP presented in Section 2. Section 5 claims a linear-time
algorithm for 3-strings, and at last, the conclusion section concludes the paper.

2. An ILP formulation for CLOSEST STRING. (Gramm et al., [7]) suggested an ILP-formulation
based on column types. This yields Fixed-Parameter Tractable algorithm for CLOSEST STRING parame-
terized by k (number of input strings):

min d;(2.1)

s.t.:
∑

t∈T (S)

∑
σ∈Γ\{σt,i}

xt,σ ≤ d, ∀i ∈ {1, . . . , k},(2.2)

∑
σ∈Γ

xt,σ = #t, ∀t ∈ T (S),(2.3)

xt,σ ∈ {0, 1, . . . ,#t}, ∀σ ∈ Γ,∀t ∈ T (S).(2.4)
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In this formulation, for every t ∈ T (S) and σ ∈ Γ, the variable xt,σ is the number of occurrences that
σ has in the closest string at locations that correspond to column type t. Let si ∈ S and let σt,i be the
character of string si in column type t. The restrictions (2.2) calculate the Hamming distance of si from
the center string. That is, for each column type t we sum the characters in the center string at locations
that correspond to t that are different from the character si has in these locations. Constraints (2.3) impose
the number of column types existed in each tuple, and (2.4) makes xt,σ to have integer values. Finally, the
objective is minimized the value d.

3. Kernelization algorithm for Closest String. A folk theorem in the Parameterized Complexity as-
serts that a decidable problem is fixed-parameter tractable if and only if it admits a kernelization algorithm.
Clearly a kernelizable decidable problem can be solved in FPT-time by applying, after getting the kernel,
an algorithm that proves that the problem is decidable. On the other hand, from an algorithm that runs in at
most f(k)× nc steps (Basavaraju et al., [2]), we can obtain a kernel of size f(k) by applying the first nc+1

steps of the algorithm. If it terminates with an answer, it is done; otherwise, the instance size is bounded by
f(k) and then it is a kernel (Fomin et al., [4]).

We first observe that considering the ILP formulation proposed for CLOSEST STRING and using the
previously described approach (see Section 2), we are able to get a kernel of size O((k!× k)

9(k!×k)/2
) for

the problem. Thus, our goal in this section is present a linear kernelization algorithm which returns a kernel
smaller that the previous one. To do that, we introduce one lemma, then use it to prove that Kernelization
algorithm can find a kernel for the general case in linear time when k (number of input-strings) is fixed.

Theorem 3.1. Closest String admits a linear kernelization algorithm which obtains a kernel of size
O(k!2).
Proof. As in (Gramm et al., [7]), we introduce some preliminary concepts. Given a set of k strings of length
m, we interpret these input strings as a k×m character matrix M . As first observed in (Gramm et al., [7]),
after reordering the columns of a CLOSEST STRING instance, it is easy to obtain solutions for the original
instance from solutions of the reordered instance. In fact, the maximum distance from the optimal solution
to the input-instances in both original and reordered instances are equal. Another observation in (Gramm et
al., [7]) is that the columns are independent from each other in the sense that the distance from the closest
string is measured columnwise. Thus, we can work with only normalized strings. A string is said to be
normalized when ‘a’ denotes the letter that occurs most often in a column, ‘b’ always denotes the letter that
has the second most frequent occurrences and so on. Therefore, the first steps of our kernelization are the
following:

(i) if m ≤ k! then the input strings already form a kernel. Otherwise,
(ii) normalized the input strings;

(iii) sort the columns of the CLOSEST STRING instance.
The second preprocessing can be easily done in linear time. In addition, as m ≥ k!, using a stable

sorting such as counting sort we can also perform the third preprocessing in linear time. Now, the instance
is normalized and has at most k! distinct column types. At this point it is intuitive to imagine that a certain
number of columns from any column type do not make the problem more difficult. So we have to determine
a sufficient number of column types to be added in the kernel to be built.

Definition 3.1. Let s1, s2, . . . , sk be a set of strings forming a k×m character matrix M such that all
columns have the same column type tj . M is said a good block if 0 ≡ m mod cj where cj is the number
of distinct symbols of the column type tj .

Claim 1. Let s1, s2, . . . , sk be a set of strings forming one good block. The closest string for such a set is
a regular solution, i.e., it has m

cj
occurrences of each symbol in tj .

Claim 2. Let s1, s2, . . . , sk be a set of strings forming exactly a set of good blocks. The closest string for
such a set is obtained by concatenation of the regular solution of each block.

Now, we have more rules for our kernelization:
(iv) if the input strings exactly form a set of good blocks then solve the problem in linear time. Other-

wise,
(v) for each column type tj remove m mod cj column types and add them to the kernel Q to be

constructed.
Note that, m mod cj < k, for every column type. Thus, the character matrix Q has at most k!×k−1

columns, and M now exactly forms a set of good blocks. We denote by irregular a solution that is not
regular, and by Q�M the concatenation of Q and M .

Let A and B be two partially filled matrices with the same dimensions and non-overlapping sets of
column-positions, consider two distinct rows s ∈ A and s′ ∈ B we have (if s[p] = , then s′[p] 6= & vice
versa), that is, {s, s′} ∈ (Γ∪ )m, the output of the function A�B is a character matrix, more formally we
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have:

A�B =

 s[p] if s′[p] = p = 1, . . . ,m;

s′[p] if s[p] = ∀s ∈ A,∀s′ ∈ B.
(3.1)

Although counter-intuitive, the optimal solution for Closest String inQ�M is not necessarily obtained
by simple concatenation of the optimal solutions ofQ andM . By fixing a solution toQ that can be extended
in an optimal solution to Q�M , sometimes the local solution to some minimal good block of M may not
be an optimal local solution, since the solution of Q provides different distance to the input strings. In other
words, the irregularity of a solution for a minimal good block can fit in a complementary way with the
irregularity of a solution of Q in order to obtain a solution that minimize the maximum distance. Thus, we
are required to determine an upper bound for the number of minimal good blocks of M since we can have
an irregular solution in the closest string of Q�M .

Lemma 3.1. At most k! × (k3 − 2k2 + k) minimal good blocks of the same column type will have
irregular partial solution in the optimal solution of Q�M .

Proof: In the worst case, the local solution of each good block will differ from a regular solution in just
one symbol. For a fixed solution sQ of Q, let d(sQ, `) be the distance between sQ and the string in row `
of Q. For two distinct rows ` and r let dsQ(`, r) = |d(sq, `) − d(sq, r)|. (a) For a given column type tj , if
column types can be added to Q in order to minimize dsQ(`, r) then by adding to Q some column types (at
most k − 1), it is possible to extend sQ decrementing in one unit dsQ(`, r). Let dmax = max dsQ(`, r). (b)
dmax ≤ k! − k − 1. As Q has k rows then by (a) and (b) we have that at most k! × k3 − 2k2 + k blocks
will have irregular partial solution in the optimal solution of Q�M .

Given Lemma 3.1, we have the following reduction rules:
(vi) for each column type tj in M , remove k!× (k3 − 2k2 + k) minimal good blocks of M and add it

into Q.
As any minimal good block has size at most k,Q is a kernel size at most k!×(k−1)+k!×(k4−2k3+k2)

where the solution of the original instance can be obtained using the closest string ofQ and a regular solution
for each maximal good block that is not in Q, which conclude the proof of Theorem 3.1. 2

Combining this normalized kernel of size O(k!2), with a brute force algorithm we can perform an
algorithm to solve Closest String in O(kk!2 × m) time, which asymptotically already gives us a great
improvement when compared to the ILP approach.

4. An ILP formulation for 3-strings. (Gramm et al., [6]) solved the decision version of this ILP
directly using the algorithm of (Lenstra, [8]) that has an exponential dependency in the number of variables.
Thus, they were not able to solve the ILP for more than four strings. The authors suggested an ILP-
formulation based on column types. This yields fixed-parameter tractability for CLOSEST STRING with
respect to parameter k (number of strings).

Define n0 through n4 as the number of column types v0 through v4. In column type v0, you clearly
always pick α. Otherwise, you need to assign xα,1 of the column type v1 to α (and the rest, xβ,1 =
n1 − xα,1, to β), xα,2 column type v2 to α (and the rest, xβ,2 = n2 − xα,2 to β), xα,3 column type v3 to
α (and the rest, xβ,3 = n3 − xα,3 to β), and xα,4, nβ,4, xγ,4 column type v4 to α, β, γ respectively (with
xα,4 +xβ,4 +xγ,4 = n4). Clearly, given xα,1 through xγ,4, the process of ”normalize the columns, reorder
the strings if necessary, make the selections, un-normalize the columns” takes time O(m)(Gramm et al.,
[7]). The numbers xα,1 through xγ,4 are the solution to the following ILP:

min d

s.t. : xα,1 + xβ,2 + xβ,3 + xβ,4 + xγ,4 ≤ d,
xβ,1 + xα,2 + xβ,3 + xα,4 + xγ,4 ≤ d,(4.1)
xβ,1 + xβ,2 + xα,3 + xα,4 + xβ,4 ≤ d,∑
σ∈vj

xσ,j = nj j = 1, . . . , 4,(4.2)

xσ,j ∈ {0, 1, . . . , nj},(4.3)
d ∈ Z+.(4.4)

In this formulation, for every column position type vj ∈ V (S) where j = 1, . . . , 4 and σ ∈ vj , the
variable xσ,j is the number of occurrences that σ has in the closest string at locations that correspond to
column type vj . Let si ∈ S where i = 1, . . . , 3 be the input-instance, and let σ be the character of string
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si in column-position type vj . The restrictions (4.1) calculate the Hamming distance of si from the center
string, that is, for each column type vj we sum the characters in the center string at locations that correspond
to vj that are different from what the character si has in these locations. Constraints (4.2) impose the number
of column types existed in each tuple, and (4.3) makes xσ,j have integer values. Finally, the objective is to
minimize the value d.

5. Linear-time algorithm for 3-strings. In the Minimization First Algorithm (MFA) (Vilca, [12]),
the identification of column types is needed. The algorithm breaks up into five column types. Finally,
it decides a character for each column type by simple evaluation through the different cases according
to the number of column types presented in the input instance. MFA can find the optimal solution by
traversing all the positions of the input strings only once. With the algorithm we obtain, the optimal value
dmaxi,j=1,2,3d(si, sj)/2e and when the number of all ”mismatches” tuples is greater than the others, its
optimal value is d(n1 + n2 + n3 + 2n4)/3e.

Input: S = {s1, s2, s3}: a 3-strings instance with m the length of strings.
Output: x: optimal solution such that d(x, s) ≤ dopt ∀s ∈ S.
if |S| = 3 then

Sort the pairwise distances of s1, s2 and s3.
Let u1,u2 and u3 satisfy d(su1 , su2) ≥ d(su1 , su3) ≥ d(su2 , su3)
k1 ← d(su1 , su2)− d(su2 , su3)
k2 ← d(su1 , su2)− d(su1 , su3)
k3 ← 0 ; // it iterates over the 3-strings
Let n4 be the number of column positions when all mismatches
if n4 = 0 then

count← b(d(su1 , su3)− d(su2 , su3))/2c ; // Case 1
end
else if k1 + k2 > n4 then

if k2 > n4 then
count← b(k1 − k2 + n4)/2c; k1 ← 0; k2 ← n4 ; // Case 3

end
else

count← b(k1 + k2 − n4)/2c; k1 ← n4 − k2 ; // Case 4
end

end
else

count← 0 ; // Case 2
end
for i=1 to m do

if (su1
i 6= su3

i and su1
i 6= su2

i and su2
i 6= su3

i ) then
if (k1 > 0 or k2 > 0) then

if (k1 > 0) then
xi ← su1

i ; k1 ← k1 − 1
end
else if (k2 > 0) then

xi ← su2
i ; k2 ← k2 − 1

end
end
else

xi ← s
uk3+1

i ; k3 ← (k3 + 1)%3
end

end
else if (su1

i = su2
i or (su1

i 6= su3
i and count > 0)) then

xi ← su1
i

if (su1
i 6= su3

i and su2
i = su3

i ) then
count← count −1

end
end
else

xi ← su3
i

end
end

end
Algorithm 1: MFA pseudo-code.

In this algorithm w.l.o.g. consider the pairwise distances of strings s1, s2 and s3 satisfy d(s1, s2) ≥
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d(s1, s3) ≥ d(s2, s3), that is, string s1 is farthest and s3 is closest to the other two strings. In Algorithm 1,
if the number of ”all mismatches” tuples is zero, we have the binary case, then count is b(d(su1 , su3) −
d(su2 , su3))/2c. Otherwise, if k1 + k2 > n4 and k2 > n4, then k1 is 0, k2 is n4, and count is b(k1 − k2 +
n4)/2c; if k1 + k2 > n4 and k2 ≤ n4, then k1 is n4 − k2, and count is b(k1 + k2 − n4)/2c; finally, if
k1 + k2 < n4, then count is zero.

Algorithm 1 assigns the characters of s1 to the solution x among the positions where (all mismatches
but k1 > 0) or (s1 matches s2 or s1 mismatches s3 but count> 0), and once count is reduced to zero, it fixes
the characters of s3 in the solution x. It assigns the characters of s2 to the solution x among the positions
where all mismatches but k2 > 0. Finally once k1 and k2 are reduced to zero, it fixes the characters of the
set of strings in a round-robin order in the solution x among the positions where all mismatches.

5.1. Running time. The if-then conditional of lines 1-31 is executed when the input-instance has 3-
sequences; this conditional block requires 1 step. Lines 2 and 3 sort the pairwise distances from s1, s2,
and s3, it requires 4m iterations to get the Hamming distances and c1 steps to sort them in non-decreasing
order by its Hamming distances which is constant time. Lines 4 and 5 make arithmetic operations over the
Hamming distances; those operations take a constant time c2. In Line 7, the n4 variable counts the number
of times that the column-position type v4 (all mismatches) are presented in the input-instance, it takes m
steps. The if-then-else conditional of lines 8-16 makes arithmetic operations, it takes a constant time c3.
The for-loop of lines 17-31 iterates in m steps, so it requires 3m iterations. The if-then-else conditional of
lines 18-31 makes arithmetic operations, it takes a constant time c4. Therefore, the running time of MFA is
proven to be O(8m).

5.2. Theoretical analysis. We first introduce three lemmas, then use them to prove that MFA can find
an optimal solution of 3-strings with an arbitrary alphabet.

Lemma 5.1. Let S = {s1, s2, s3} be a CLOSEST STRING instance with 3-strings and length m. If x
a string is an optimal solution of CLOSEST STRING instance and dopt is the corresponding distance, then
d(n1 + n2 + n3 + 2n4)/3e ≤ dopt.

Proof: Independently of whether the character appears in the column position j in the string solution
x, it mismatches with minimum 1 character for v1, v2, v3 and with minimum in 2 characters for v4. The
sum of these values is equal to the Hamming distance between x and si ∈ S; dividing it by 3 we get the
average Hamming distance.

Lemma 5.2 (Liu et al., [9]). Let S be an instance of CLOSEST STRING. If x a string is an optimal solu-
tion of CLOSEST STRING and dopt is the corresponding distance, then dopt ≥ dmaxi,j=1,...,kd(si, sj)/2e.

Lemma 5.3. Let S = {s1, s2, s3} be a CLOSEST STRING instance with 3-strings and length m. The
number of columns satisfies the restriction n1 ≥ n2 ≥ n3.

Proof: From (5.1)-(5.5), we have d(s1, s2) = n1+n2+n4, d(s1, s3) = n1+n3+n4, and d(s2, s3) =
n2 + n3 + n4. Assume without loss of generality that d(s1, s2) ≥ d(s1, s3) ≥ d(s2, s3). After making
arithmetic operations, we have, n2 ≥ n3 and n1 ≥ n2. Finally, we get, n1 ≥ n2 ≥ n3.

Theorem 5.1. Given a CLOSEST STRING instance with 3-strings and an arbitrary alphabet. MFA
always finds an optimal solution value.

Proof: The proof is composed by four cases, it is made by direct method.

v0 s1
j = s2

j = s3
j all matches,(5.1)

v1 s1
j 6= s2

j = s3
j s1

j is the minority,(5.2)

v2 s2
j 6= s1

j = s3
j s2

j is the minority,(5.3)

v3 s3
j 6= s1

j = s2
j s3

j is the minority,(5.4)

v4 s1
j 6= s2

j , s
1
j 6= s3

j , and s2
j 6= s3

j all mismatches.(5.5)

From (5.1)-(5.5), we have the identification of column types, also called tuples. Observe that, some
columns presented in the input instance are repeated, therefore, the number of different tuples presented in
any input-instance is equals to five.

Consider the alignment of the three strings s1, s2, and s3. Note that, from (5.1)-(5.5), we have, in
general, for any input-instance there are five different column types. According to Lemma 5.3, we get
n1 ≥ n2 ≥ n3. It follows that:
Case 1. If n4 = 0, we have the binary case [Liu et al., [9] proved it ]. Then in Algorithm 1, the initial value

of variable count is equal to d(n1 − n2)/2e. Note that |Γ| = 2 and so either s3
j = s1

j or s3
j = s2

j

among the positions where s1 mismatches s2. Hence d(s1, s2) = n1 +n2. The solution x of MFA
is decided by :
(1.1) Among the positions where s1 matches s2, xj = s1

j = s2
j .
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(1.2) Among the positions where s1 mismatches s2:

d(x, s1) ≤ n1 − d(n1 − n2)/2e,

d(x, s2) ≤ n2 + d(n1 − n2)/2e,

d(x, s3) ≤ n3 + d(n1 − n2)/2e ≤ n3 + d(d(s1, s2)− 2n2)/2e

≤ n3 − n2 + dd(s1, s2)/2e ≤ dd(s1, s2)/2e.

(5.6)

Taken together, sub-cases (1.1) and (1.2) give a lower bound (See Figure 5.1(a)), that is,

maxi=1,2,3d(x, si) ≤ d(s1, s2)/2.(5.7)

Case 2. If n1 − n3 + n2 − n3 ≤ n4. Then in Algorithm 1, the initial value of variable count is equal to
0, k1 = n1 − n3, k2 = n2 − n3. Note that |Γ| = 3. The solution x of MFA is decided as:
(2.1) Among the positions where there are at least two different symbols, we have

xj = argmaxσ∈Γ

3∑
i=1

|sij = σ|.(5.8)

(2.2) Among the positions where all characters mismatches:

d(x, s1) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e,

d(x, s2) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e,

d(x, s3) ≤ n3 + k1 + k2 + d2(n4 − k1 − k2)/3e,

≤ n1 + n2 − n3 + d2(n4 − n1 − n2 + 2n3)/3e,

≤ d(n1 + n2 + n3 + 2n4)/3e.

(5.9)

From (2.1) and (2.2), and by the Lemma 5.1 (See Figure 5.1(b)), we obtain,

maxi=1,2,3d(x, si) ≤ d(n1 + n2 + n3 + 2n4)/3e ≤ dopt.(5.10)

(a) Case 1 (b) Case 2

Figure 5.1: Illustration of application of Case 1, CLOSEST STRING instance with 3-strings and a binary
alphabet. There are three column types to be considered v1, v2, and v3. The algorithm fixes 1-mismatch
blocks, in goldenrod orange and green colors, by their majority consensus value; after that, it assigns column
type v1 (in red color), half of them by their majority and for other one by their minority consensus value.
Illustration of application of Case 2, there are four column types to be considered v1, v2, v3, and v4.The
algorithm fixes 1-mismatch blocks, in goldenrod orange color, by their majority consensus value, after that,
it assigns v1 and v4 column types by their majority consensus value and the character of s1; it fixes v2

and v4 column types by their majority consensus value and the character of s2; finally it assigns the rest of
column types v4 in a round-robin order.

Case 3. If n1 − n3 + n2 − n3 > n4 and n2 − n3 > n4. Then in Algorithm 1, the initial value of variable
count is equal to d(n1 − n3 − (n2 − n3 − n4))/2e, k1 = 0, k2 = n4. Note that |Γ| = 3 and so
either s3

j = s1
j or s3

j = s2
j among the positions where s1 mismatches s2, d(s1, s2) = n1 +n2 +n4.

The solution x of MFA is decided as:
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(3.1) Among the positions where s1 matches s2, xj = s1
j = s2

j .

(3.2) Among the positions where s1 mismatches s2:

d(x, s1) ≤ n1 − d(n1 − n3 − (n2 − n3 − n4))/2e+ n4,

d(x, s2) ≤ n2 + d(n1 − n3 − (n2 − n3 − n4))/2e,

d(x, s3) ≤ n3 + d(n1 − n3 − (n2 − n3 − n4))/2e+ n4

≤ n3 + d(n1 − n2 + n4)/2e+ n4

≤ d(n1 + n2 + n4)/2e.

Since k2 = n2 − n3 = n4 we get n3 = n2 − n4.

(5.11)

From (3.1) and (3.2), and by the Lemma 5.2 (See Figure 5.2(a)) we get,

maxi=1,2,3d(x, si) ≤ d(s1, s2)/2 ≤ dopt.(5.12)

Case 4. If n1 − n3 + n2 − n3 > n4 and n2 − n3 ≤ n4. Then in Algorithm 1, the initial value of variable
count is equal to d(n1 − n3 − (n4 − n2 + n3))/2e, k1 = n4 − n2 + n3, k2 = n2 − n3. Note
that |Γ| = 3 and so either s3

p = s1
j or s3

j = s2
j among the positions where s1 mismatches s2,

d(s1, s2) = n1 + n2 + n4. The solution x is decided as:
(4.1) Among the positions where s1 matches s2, xj = s1

j = s2
j .

(4.2) Among the positions where s1 mismatches s2:

d(x, s1) ≤ n1 − d(n1 − n3 − (n4 − n2 + n3))/2e+ n2 − n3,

d(x, s2) ≤ n2 + d(n1 − n3 − (n4 − n2 + n3))/2e+ n4 − n2 + n3,

d(x, s3) ≤ n3 + d(n1 − n3 − (n4 − n2 + n3))/2e+ n4,

≤ d(n1 + n2 + n4)/2e.

(5.13)

Both (4.1) and (4.2), and by the Lemma 5.2 (See Figure 5.2(b)), we obtain,

maxi=1,2,3d(x, si) ≤ d(s1, s2)/2 ≤ dopt.(5.14)

(a) Case 3 (b) Case 4

Figure 5.2: Illustration of application of Case 3. There are four column types to be considered v1, v2, v3, and
v4.The algorithm fixes 1-mismatch blocks, in goldenrod orange color, by their majority consensus value;
after that, it assigns v2 and v4 column types by their majority consensus value and the character of s2; it fixes
column type v1 (in red color), half of them by their majority and for other one by their minority consensus
value. Illustration of application of Case 4, there are four column types to be considered v1, v2, v3, and
v4.The algorithm fixes 1-mismatch blocks, in goldenrod orange color, by their majority consensus value,
after that, it assigns v1 and v4 column types by their majority consensus value and the character of s1;
it fixes v2 and v4 column types by their majority consensus value and the character of s2; finally it fixes
column type v1 (in red color), half of them by their majority and for other one by their minority consensus
value.

Altogether Cases 1, 3, and 4 prove that the solution x of MFA is an optimal one and the optimal solution
is dmaxi,l=1,2,3d(si, sl)/2e. Also, the optimal solution for Case 2 is d(n1 + n2 + n3 + 2n4)/3e. Thus the
theorem holds.
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Example 5.1. Let S be a CLOSEST STRING instance with 3-strings and each string of length 10, S ′
is obtained from S where the set of strings was ordered in a pairwise manner by their Hamming distances,
we get:

S =


AGTATTGGTG

CCCTTTGAGA

TAGTGGGTCT

, S ′ =


TAGTGGGTCT

AGTATTGGTG

CCCTTTGAGA

,

S ′ =



v4 v4 v4 v2 v1 v1 v0 v4 v4 v4

T A G T G G G T C T

A G T A T T G G T G

C C C T T T G A G A

T A T T T T G T T A

.

The number of columns of ”all mismatches” column type is n4 = 6. The three counters have the following
values k1 = n1−n3 = 2, k2 = n2−n3 = 1, and count = 0. With these values, MFA identifies the Case 2,
thus the optimal solution for S′ or S is x = TATTTTGTTA with Hamming distance d(x, s) ≤ 5, ∀s ∈ S.
Note that the optimal solution value for the Case 2 is d(n1+n2+n3+2n4)/3e = d(2+1+0+2(6))/3e = 5.

6. Conclusions.
1. In this work we show a Kernelization algorithm for the general case and its proof of correctness;

we can reduce an initial kernel of size O((k!× k)
9(k!×k)/2

) to a lesser kernel of size O(k!2).
Furthermore our proposed algorithm finds a kernel in linear time, meanwhile the ILP approach
runs in polynomial time, that is, O(k2d log k).

2. We pose a linear-time algorithm for CLOSEST STRING with three strings for an arbitrary al-
phabet; it is mainly a column type characterization. This is an important contribution since there
was only proof of polynomiality, without a polynomial algorithm actually being presented in the
literature. Our approach can be extended to a major instances for example for k > 3 with a binary
alphabet.

3. For future works, it remains an open problem to find a consensus for k ≥ 4 strings. This problem
does not look easy even for four strings.
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