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Abstract
In this note we prove some variants of Lagrange’s mean value theorem. The main tools to prove these results
are some elementary auxiliary functions.
Keywords . Flett’s theorem, Myers’ theorem, Sahoo-Riedel’s theorem, Cakmak-Tiryaki’s theorem.

Resumen
En esta nota demostramos algunas variaciones del Teorema de valor medio de Lagrange. Las herramientas
principales para provar estos resultados son algunas funciones auxiliares elementares.
Palabras clave. Teorema de Flett, Teorema de Myers, Teorema de Sahoo-Riedel, Teorema de Cakmak-Tiryaki.

1. Introduction. We know that mean value theorems are important tools in real analysis. The first
one that we learn is the famous Lagrange’s mean value theorem ([3, Theorem 2.3] or [7, Theorem 4.12]
e.g.) and it asserts that a function f continuous on [a, b] and differentiable on (a, b) ensures the existence of
n € (a,b) such that

f®) = fa) = f'(n)(b - a).

If f(a) = f(b), then the Lagrange’s mean value theorem reduces to Rolle’s theorem (see [3, Lemma 2.2]
or [7, Theorem 4.11] e.g.), which is another important result in real analysis.

Many authors generalized the Lagrange’s mean value theorem. The first variant of Lagrange’s mean
value theorem was given by T.M. Flett [2] in 1958.

Theorem 1.1 (Flett’s Theorem). Let f : [a,b] — R be a differentiable function on [a,b] and f'(a) =
[/ (D). Then there exists n € (a,b) such that

(1.1) f(n) = fla) = f'(n)(n— a).

In 1977, R.E. Myers [6] proved a slight variant of Flett’s theorem.

Theorem 1.2 (Myers’ Theorem). Let f : [a,b] — R be a differentiable function on [a,b] and f'(a) =
1/ (D). Then there exists n € (a,b) such that

(1.2) fb) = f(n) = f'(n)(b—n).

In this note we prove some variants of Lagrange’s mean value theorem (Theorems 2.2 and 2.4 in Section
2 and Theorems 3.3 and 3.4 in Section 3). To do this we use some simple auxiliary functions.

*Departamento de Matematica, Instituto de Biociéncias, Letras e Ciéncias Exatas (IBILCE) - Universidade Estadual Paulista
(UNESP), 15054-000 Sdo José do Rio Preto, Sdo Paulo, Brazil (german.lozada@unesp.br).

144


http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0003-2860-954X
https://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.17268/sel.mat.2020.01.13

Lozada-Cruz G.- Selecciones Matematicas. 2020; Vol. 7(1): 144-150 145

2. Some variants of Lagrange’s Theorem. P.K. Sahoo and T. Riedel (see [8, Theorem 5.2]) gave a
generalization of Flett’s theorem where they removed the boundary condition on the derivative of f, that is,

f'(a) = f'(b).
Theorem 2.1 (Sahoo-Riedel’s Theorem). Let f : [a,b] — R be a differentiable function on |a, b).
Then there exists ) € (a,b) such that

_110) = ()

_ 2
5 b4 (n—a)”.

2.1 f(m) = fla) = f'(n)(n—a)

Now we prove our first result, which is, a variant of Sahoo-Riedel’s Theorem.

Theorem 2.2. Let f : [a,b] — R be a differentiable function on [a,b]. Then there exists ) € (a,b) such
that

(n—1) f'(b) = f'(a)

n (b—a)r1

(2.2) fm) = fla)=f'(n)(n—a)-

m—a)", neN.

Proof: Letn € N and consider the auxiliary function ¢ : [a,b] — R given by ¢ (z) = f(z)+A(z—a)",
where A € R. We choose A in such a way to satisfy the condition ¢ (a) = ¢’ (b).
We can see that 1) is differentiable on [a, b] and ¥ (x) = f'(x) + nA(x — a)"~!. Then

Y'(a) =¢'(b) & f'(a) = f'(b) + nA(b—a)"
1f(b) = f'(a)

(:)/\:_n (b—a)—1 -~

Thus, we have the simple auxiliary function ¢ (z) = f(z) — %%?a;){_(f)(x — a)™ which satisfy the condi-

tions of Flett’s theorem (Theorem 1.1). Then there exists ) € (a, b) such that

P(n) —b(a) =¢'(n)(n — a),
which implies,

IO =@, o PO @
- g -t = f@ = {1 - s e - a)

L f'(b) — f'(a) n_ g f'(b) — f'(a) n
- EW(TI*G) =f'(mn—a)— W(ﬁ*a)

) = @) = P - ) - (1 - 1) LR

) = fl@) = Pt - @) - () EE L -0

fn) = f(a)

(n—a)”

Remark 1. Note that:

Ifn = 1in (2.2), we get the Flett’s theorem ( Theorem 1.1).

Ifn = 2in (2.2), we get the Sahoo-Riedel’s theorem (Theorem 2.1). In this case the auxiliary function
takes the form

_1/(0) = f'(a)

2 (b—a) (v — a)2 ([8, Theorem 5.2]).

¥(z) = f(x)
Ifn = 3in (2.2), we get a slight variant of (2.1)

(23) fm) = fla)=f'(mmn—a)—3
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D.Cakmak and A.Tiryaki (see [1, Theorem 2.1]) proved a slight modification of Sahoo-Riedel theo-
rem (Theorem 2.1) and its reduces to Myers’ theorem (Theorem 1.2) when f/(a) = f/(b).

Theorem 2.3 (Cakmak-Tiryaki’s Theorem). Let f : [a,b] — R be a differentiable function on |a, b).
Then there exists n) € (a,b) such that

2.4) FO) = fm) = mb-n+5 (b—mn)*.

1 f'(b) — f'(a)
2 b—a

Now we prove our second result, which is, a variant of Cakmak-Tiryaki’s theorem.

Theorem 2.4. If f : [a,b] — R is a differentiable function on [a,b], then there exists n € (a,b) such
that

n—1f'(b) - f'(a)

n (b—a)n !

(2.5) fb) = f(n) = f'(n)b—n)+

(b—n)", neN.

Proof: Let n € N and consider the function ¢ : [a,b] — R given by ¢(x) = f(x) + A(z — b)", where
A € R. We choose A in such a way to satisfy the condition ¢'(a) = ¢'(b).

The function ¢ is differentiable on [a, b] and ¢'(z) = f'(x) + nA(x — b)"~L. Then

¢'(a) = ¢/(b) & f'(a) + nAa— )" = F/(b)
1)~ f'(a)

A= L L
= n (a_b)n—l

Thus, we have the simple auxiliary function ¢(x) = f(z) + * £ )-1(a) (x — b)™ which satisfy the condi-

n (a—b)n—1

tions of Myers’ theorem (Theorem 1.2). Then there exists 77 € (a, b) such that

¢(b) — ¢(n) = ¢'(n)(b —n),
which implies,

VIO = @)y Ly SO =S
£O) = {7+ S e =0 = { ) S e =6 )

_ 1) = f'(a) f'(b) = f'(a)

(2.6) f(®)=f(n) n (a—byn1 (n—0)" :f’(ﬁ)(ﬂ*b)JFWm*b)n*l(b*Tl)-

(i) If n is even, from (2.6) we have

10~ s+ LI 0y = -0+ T

n (b—a)"!
10 = ) = £ o)+ L LI e

(ii) If n is odd, from (2.6) we have
1 f'(b) = f'(a) n_ f'(b) = f'(a) n
E (bia)nfl (b_n) _f (n)(n_b)+ (bia)nfl (5_77)

10 = £ = £ o=+ LT g

f() = f(n) +

Now, from (i) and (ii) we get (2.5).

Remark 2. Note that:
Ifn = 1in(2.5), we get Theorem 1.2.
If n = 2in (2.5), we get Cakmak-Tiryaki’s theorem (Theorem 2.3). In this case the auxiliary function
takes the form
17(b)—f
f() f(a)(.’L'—b)Q



Lozada-Cruz G.- Selecciones Matematicas. 2020; Vol. 7(1): 144-150 147

Ifn = 3 in (2.5), we get a slight variant of (2.4)

27/(0) -~ f'(a)

@7 f®) = fn) = F)b—n) + 37— 53— (b—n)’.

In this case, we use the auxiliary function

3. Generalizations of Sahoo-Riedel and Cakmak-Tiryaki Theorems. In 2012, A.N. Mohapatra [5]
generalized Sahoo-Riedel’s theorem (Theorem 2.1) and Cakmak-Tiryaki (Theorem 2.3) using two functions

fand g.

Theorem 3.1 ([5, Theorem 2.5]). If f,g : [a,b] — R are differentiable functions on [a, b, then there
exists 1) € (a, b) such that

[9(b) = g(@)] ' (®0)[f(n) = f(a) = f'(n)(n — a)]
(3.1) = [£/(®) = £'@)] [9() — 9(@)] [ (9(n) = 9(0)) = g'(m)(n — a)]

Proof: Consider the function M : [a,b] — R given by

2

M(z) = [g(b) — g(a)]g' () f () = 5[ (b) = f'(a)] [9(=) — g(a)] .
The function M is differentiable on [a, b] and
M () = [9(b) — g(a)]g'(0)f'(z) = [f'(b) = f'(a)] [9(2) — g(a)] ¢/ ().

Also, M'(a) = [g(b) — g(a)]g'(b) f'(
€ (a,b) such that/\/l( ) M(a) =

(a) = M'(b). Then, by Flett’s theorem (Theorem 1.1), there exists
M (n)(n —a),ie.,

2

[9(b) — 9(a)]g () () — 3 [F'®) = f' (@] [g(n) — 9(a)]” = [9(b) — g(a)] ¢/ (b) f ()
= [l9(b) = g(@)]g'(0)f' () ['b) 7@ [9tn) = g(@)]g' ()| (1 - a)

< [9(b) — g(a }g’(b [f(n) = f'(m)(n - a]
= [£'() = 1'(@)] [g(n) - (a)] [%( 9(@) =g (0 —a)].

Remark 3. If g(x) = x in (3.1), we get Sahoo-Riedel’s theorem

(b= a)[f(n) = (@) = F')n = )] = [£'(®) = F'(@)] [n - a] [1(n — @) = (1 — a)]
(b—a)[f(n) = f(a) = f' (0 — )] = =3[1'(6) = (@] (n — a)’

£~ £(a) = ) —a) - LTS

(n— a)z.

Theorem 3.2 ([5, Teorema 2.6]). If f, g : [a,b] — R are differentiable functions on [a, b, there exists
n € (a,b) such that

[9(b) = g(a)]g'(a)[f () = f(n) = f'(n)(b—n)]
(3:2) = [1'®) = £(@)] [9(n) = 9®)] [3 (9(6) — 9(m) — o' () (b — )]

Proof: Consider the function M, : [a,b] — R given by

2

Mi(x) = [g(b) — g(a)]g'(a) f(x) — 5 [f'(b) — f'(a)] [g(=) — 9(D)]".
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The function M is differentiable on [a, b] and

M (x) = [g(b) = g(a)]g' (@) f'(z) = [f'(b) = f'(a)] [9(z) — g(b)]d' (2).
Also, M (a) = [g(b) — g(a)] f'(b)g'(a) = M (b). Then, by Myers’ theorem (Theorem 1.2), there exists
n € (a,b) such that My (b) — My(n) = Mi(n )( -n),ie.,
[9(8) = 9(@)]g'(@)£(6) — [[9(8) — gl@)]g'(@)f () = 1[1'(®) = F'(@)] [9(n) — 9(0)]]
= [l9(®) = g(@)]g' @) (n) = [£'(®) = £'(@)] [a(n) — ()] g/ ()] (6 = )
& [o0) 0@/ (@)[£0) = £0] + 3 17'0) ~ £ (@)] o) — (b))
= [9(b) —g(a )] () fm®b—mn) - [ () = f'(@)] [9(n) = g(®)]g'(n) (b —n)

& [9(0) = gl@)]g'(a) [ £(b) = £ () - bw)]
L7/ - f’(a)] [gm) — 9(®)] [4 <g<b> —g(n) g ®—n)].

Remark 4. If g(z) = x in (3.2), we get Cakmak-Tiryaki’s theorem
(b—a)[fO)=fm) = ) —m] = [f'®)—f(a)] (n—b)[3(b— - )]
(b= a)[fO) =) —f (mb—m] =3[ (B)—f (@) (b—n)*
£6) ~ £ = £ ) + 7O e

Now we prove our last results, which are, some variants of Theorem 3.1 and 3.2 ([5, Theorem 2.5 and
Theorem 2.6]).

Theorem 3.3. If f, g : [a,b] — R are differentiable functions on [a, b], then there exists ) € (a,b) such
that

[9(0) — g(a)]" "' g ) [F(n) = Fla) = F'(m)(n — a)]
3.3) =['®)~f(@)] [g(n) —9(@)]" " {%(g(n) —g(a)) —9’(77)(77—60},71 > 2.

Proof: Let n > 2 and consider the function G : [a,b] — R given by

G(x) = [9(b) — 9(a)]" "9 () f(x) = L[F' () - F'(@)] [9(x) — g(a)] "

The function G is differentiable on [a, b] and

Also,
G'(a) = [9(b) — 9(a)]" " ¢'(b)f'(a)
G'(b) = [9(b) — 9(@)]" " g (B)F'(b) — [£'(B) — F'(a)] [9(b) — 9(@)]" "¢’ (D)
= [9(0) = 9(@)]" " g B [£'(b) — (f'(b) - f'(a))]
= [g(0) — g()]" g (0) f'(a)

Thus, G'(a) = G’(b). Then, by Flett’s theorem, there exists n € (a, b) such that G(n)—G(a) = G'(n)(n—a),
ie.,

()£ (@)] [9m) ~9(a))" = [9)-g(a)]" "9/ (4) f ()
= [l9(®) = g(@)]" ™" @) () = [1'®) = 1'(@)] [9(n) — 9(@)] """ g )] (n — @)
)
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Remark 5. If g(x) = x in (3.3), we get a variant of Sahoo-Riedel’s theorem (Theorem 2.2)
(b=a)" [0 = Fla) = )0 = )] = [F' )1 (@)] (1 = )"~ [2(n—a) ~ (n-0)

Fo)=F @)= ) — )=~ LOL L o

o= f@) =1 o - )~ A LOS )

Theorem 3.4. If f, g : [a,b] — R are differentiable functions on [a, b, then there exists 1 € (a,b) such
that

[9(@) = g®)""g' @ [F®) = () = 1 () (b= )]
(3.4) = [£/®) = £/ @] [9) = 9)]) "™ [ (9() — 9(@) + ¢/ (b—m)].

Proof: Let n > 2 and consider the function G, : [a,b] — R given by

Gi(2) = [9(a) — g(®)]" g () F (@) + L[F'(b) = '(@)] [9(x) — 9(0)]".

The function G is differentiable on [a, b] and

Also,

G1(6) = [9(a) —9(®)]""" g’ (@) ' (0).
Thus, G (a) = G1(b). Then, by Myers’theorem, there exists ) € (a, b) such that G, (b)—G1(n) = G1(n)(b—

—

9(a)—g®)]" g (@) f )~ [g(a) = g(B)]" g () ()= £ [F'(B) = 1" (@)] [g(m) g ()] "
= [lg(@) = 9®)]" " g/ (@) () + [£' () = ' @)] [9(m) = 9®)]"~"g'(m)| (b =)

& [gl@)—g®)]" " g'(@) [ 1) = F(n) = ' ()b~ )]

[0~ @)] [gm =g ®)]" | £(am) —g(6) + ¢ (b —n)|.

Remark 6. Se g(z) = x in (3.4), we get a variant of Cakmak-Tiryaki’s theorem (Teorema (2.4))

(@=b)""[f(b) = f(n) = F'() (b= n)] = (F'(0) = f'(a))(n=b)""* [ 5 (n—=b) + (b —n)]
(a=b)" " [F(b) = f(n) = [ () (b —n)] =22 (F'(0) = f'(a)) (n—=b)"" (b —n)
B o o 'O =f@) g,
(3.5) fO) = f(n) = f(m)b—n)="; D) (n=0)"""(b—n).

(i) If n is even, from (3.5) we get

£0) = 5= )6 =) + DL e

(ii) If n is odd, from (3.5) we get

10 = £ =1 o - + "L HOT D g

From (i) and (ii) we have (2.5) of Theorem (2.4).
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4. Conclusion. The use of elementary auxiliary functions to prove type mean value theorems is an

effective didactic resource. This has already been seen in the proof of Lagrange’s mean value theorem, see
references [4], [6], [8] and [9], for example.

In this note using some elementary auxiliary functions and differential Calculus some variants of La-

grange’s mean value theorem were proved (Theorems 2.2, 2.4, 3.3 and 3.4).
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