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Abstract
Zika virus spreads to people primarily through the bite of an infected Aedes aegypti species mosquito. But it
Zika can also be passed through sex from an infected to his or her sex partners and it can be spread from a
pregnant woman to her fetus. Zika continues to spreading geographically to areas where competent vectors
are present. Although a decline in cases of Zika virus infection has been reported in some countries, or in
some parts of countries, vigilance needs to remain high. In this work, we present two mathematical models
for the Zika diffusion by using (1) ordinary differential equations with exposed state and, (2) ordinary
differential equations with delay (discrete), which is the time it takes mosquitoes to develop the virus. We
make a comparison between the two modeling variants. Computational simulations is performed for Santa
Ana, which is that is prone to develop the epidemic in an endemic manner.

Keywords . Diffusion, epidemic, model, delay, Zika.

Resumen
El virus del Zika se propaga a las personas principalmente a través de la picadura de un mosquito de
la especie Aedes Aegypti infectado. El Zika también puede transmitirse a través del sexo de una persona
infectada a sus parejas sexuales y se puede transmitir de una mujer embarazada a su feto. El Zika con-
tinúa expandiéndose geográficamente a áreas donde están presentes vectores competentes. Si bien se ha
informado una disminución en los casos de infección por el virus del Zika en algunos paı́ses o en algunas
partes de los paı́ses, la vigilancia debe mantenerse alta. En este trabajo, presentamos dos modelos ma-
temáticos para la epidemia del Zika mediante el uso de (1) ecuaciones diferenciales ordinarias con estado
expuesto y, (2) ecuaciones diferenciales ordinarias con retardo (discreto), que es el tiempo que tardan los
mosquitos en desarrollar el virus. Hacemos una comparación entre las dos variantes de modelado. Se rea-
lizan simulaciones computacionales para Santa Ana, que es propenso a desarrollar la epidemia de manera
endémica.

Palabras clave. Difusión, epidemia, modelo, retardo, Zika.

1. Introduction. Zika virus is a mosquito-borne flavivirus that was first identified in Uganda in 1947
in monkeys through a network that monitored yellow fever. It was later identified in humans in 1952
in Uganda and the United Republic of Tanzania. Outbreaks of Zika virus disease have been recorded in
Africa, the Americas, Asia and the Pacific. From the 1960s to 1980s, human infections were found across
Africa and Asia, typically accompanied by mild illness. The first large outbreak of disease caused by Zika
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infection was reported from the Island of Yap (Federated States of Micronesia) in 2007 [6].

Zika virus is primarily transmitted to people through the bite of an infected mosquito from the Aedes
genus, mainly Aedes aegypti in tropical regions. Aedes mosquitoes usually bite during the day, peaking
during early morning and late afternoon/evening. This is the same mosquito that transmits dengue, chikun-
gunya and yellow fever. Sexual transmission of Zika virus is also possible [5].

Recovery from Zika virus disease may require anywhere from 3 to 14 days after becoming infectious,
but once recovered humans are believed to be immune from the virus for life, many people infected with
Zika may be asymptomatic or will only display mild symptoms that do not require medical attention [5].
Sexual transmission of Zika virus is much more likely from men to women than from women to men, and
same-sex transmission, from man to man.

The use of diffusion and advection-diffusion equations in the study of epidemics can be seen in [12, 17],
in particular for Dengue [11, 14, 20], for HIV/AIDS in [10, 18] and for Malaria in [13], these texts con-
tributed background in the work that we present.

The objective of this work is to present models for the Zika epidemic based in the diffusion-advection
equations with variables exposed and delay. Computational simulations are carried out in Santa Ana, which
is countries where Zika can develop endemically. We performed a comparison between the two variants of
modeling with respect to the diffusion of men and mosquitoes infected.

The paper is organized as follows. Section 1 is devoted to a Zika model with exposed variables. Section
2 presents the Zika model with delay. Section 3 is devoted to computer simulations for Santa Ana. Section
4 are the conclusions of paper.

2. Diffusion model with exposed variables. The model variables are susceptible menHs, susceptible
womenMs, exposed menHE , exposed womenME , infected menHI , infected womenMI , recovered men
HR, recovered women MR, susceptible mosquitoes Vs, exposed mosquitoes VE and infected mosquitoes
VI . The model is SEIR type (susceptible-exposed-infected-recovered) for humans and SEI (susceptible-
exposed-infected) for mosquitoes, because mosquitoes do not recover. The model is compartmentalized by
sex because we take into account sexual contagion in the dynamics of Zika transmission. The description
of the parameters of model (2.1) are in Table 2.2.

Assumptions for the construction of model:
• we assumed immunity in the recovered state.
• The death by natural causes is equal in any state, the death of mosquitoes will be due to environ-

mental factors because no control strategy is applied.
• Using information from other sexually transmitted epidemics such as HIV/AIDS [10, 18], we

assumed only sexual contagion between men and from infected men to susceptible women.
• The Hs,Ms, HE ,ME , HI ,MI , HR,MR, Vs, VE and VI are continuous functions and positive or

null (because we work with human and mosquitoes populations).
• The model is defined in an interval [0, tf ], where tf is finite.

Let:
βy1 = (number of times a single mosquito bites a human per unit time × probability of pathogen transmis-
sion from an infectious mosquito to a susceptible human given that a contact between the two occurs)/the
total population of human within the model).
To define βy2

and βy3
we did an analogous study but taking into account the sexual contacts (between

men and heterosexual respectively) and the probability of infecting these contacts, the force of infection
from infected man to susceptible man by sexual contact βy2

, the force of infection from infected man to
susceptible woman by sexual contact βy3 .
The βx = (number of times a single mosquito bites a human per unit time × probability of pathogen
transmission from an infectious human to a susceptible mosquito given that a contact between the two
occurs)/the total population of human within the model.
Let l1, l2, l3 the life expectancy of men, women and mosquitoes. We define

µ1 =
1

l1
, µ2 =

1

l2
and η =

1

l3
,

such as death rates for men, women and mosquitoes respectively. The Figure 2.1 shows the transition and
transmission dynamics of our model.
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Parameters Description

βy1 The force of infection from infected mosquito to susceptible human

βy2 The force of infection from infected man to susceptible man

βy3 The force of infection from infected man to susceptible woman

βx The force of infection from infected human to susceptible mosquito

µ1, µ2, η Man, woman and mosquito mortality rate

ω1, ω2, ω3 The rate of progression of men, women and mosquitoes from the exposed state to the

infectious state

ε1, ε2 Disease-induced death rate for humans (men and women respectively)

r1, r2 Per capital recovery rate for humans from the infectious (men and women respectively)

N1, N2, N3 Recruitment rate of men, women and mosquitoes

Table 2.2: Description of parameters used in the model (2.1).

Figure 2.1: Schematic representation of model (2.1). The blue arrows represent the transitions in the diffe-
rent compartments men, women and mosquitoes, the red arrows represent the contagion sexual and the
black arrows the contagion by mosquito bites.

The diffusion of the Zika is modeled by the system (2.1).

∂Hs

∂t
= ∇ · (αs1∇Hs)−∇ · (βs1Hs) +N1 − βy1

VIHs − βy2
HIHs − µ1Hs,

∂Ms

∂t
= ∇ · (αs2∇Ms)−∇ · (βs2Ms) +N2 − βy1

VIMs − βy3
HIMs − µ2Ms,

∂HE

∂t
= ∇ · (αe1∇HE)−∇ · (βe1HE) + βy1

VIHs + βy2
HIHs − (ω1 + µ1)HE ,

∂ME

∂t
= ∇ · (αe2∇ME)−∇ · (βe2ME) + βy1VIMs + βy3HIMs + (ω2 + µ2)ME ,

∂HI

∂t
= ∇ · (αi1∇HI)−∇ · (βi1HI) + ω1HE − (ε1 + µ1 + r1)HI ,

∂MI

∂t
= ∇ · (αi2∇MI)−∇ · (βi2MI) + ω2ME − (ε2 + µ2 + r2)MI ,(2.1)

∂HR

∂t
= ∇ · (αr1∇HR)−∇ · (βr1HR) + r1HI − µ1HR,

∂MR

∂t
== ∇ · (αr2∇MR)−∇ · (βr2MR) + r2MI − µ2MR,

∂Vs
∂t

= ∇ · (αv1∇Vs)−∇ · (βv1Vs) +N3 − βxHIVs − βxMIVs − ηVs,

∂VE
∂t

= ∇ · (αv2
∇VE)−∇ · (βv2VE) + βxHIVs + βxMIVs − (ω3 + η)VE ,

∂VI
∂t

= ∇ · (αv3
∇VI)−∇ · (βv3

VI) + ω3VE − ηVI .
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Initial conditions:
Hs(0) = hs > 0, Ms(0) = ms > 0, HI(0) = hi > 0,

MI(0) = mi > 0, HR(0) = hr ≥ 0, MR(0) = mr ≥ 0,

HE(0) = he ≥ 0, ME(0) = me ≥ 0, Vs(0) = vs > 0,

VI(0) = vi > 0, VE(0) = ve ≥ 0.

Boundary conditions (zero influx conditions):
∂Hs(t, x∗)

∂ξ
=
∂HI(t, x∗)

∂ξ
=
∂HE(t, x∗)

∂ξ
=
∂ME(t, x∗)

∂ξ
=
∂HR(t, x∗)

∂ξ
=
∂Ms(t, x∗)

∂ξ
=
∂MI(t, x∗)

∂ξ
=
∂MR(t, x∗)

∂ξ
=

∂Vs(t, x∗)

∂ξ
=
∂VE(t, x∗)

∂ξ
=
∂VI(t, x∗)

∂ξ
= 0, x∗ ∈ ∂Ω.

The homogeneous Neumann boundary conditions mean that there is no population flux across the bound-
ary ∂Ω and both the human and mosquito individuals live in a self-contained environment. The ξ is the
outward normal vector to ∂Ω. The αsj , αej , αij , αrj , j = 1, 2, are the dispersion rate for susceptible,
infected and recovered humans and βsj , βej , βij , βrj , j = 1, 2, are the velocities field relative to the migra-
tory movement of susceptible, infected and recovered humans, respectively. We will consider the mosquito
dispersal as the result of a random (and local) flying movement, macroscopically represented by a diffusion
process with coefficients αvl , l = 1, 2, 3, coupled to a wind advection caused by a constants velocity flux
βvl , l = 1, 2, 3. Constant advection can be justified as a bias in the transport process caused by a long-term
geographical direction of the wind, while its random and short-term fluctuations are to be included in the
diffusion term.

For the transmission part (right-hand member of system (2.1)), we obtained the following results in [3]:

Lemma 1. The closed set Ω is positively invariant and attracting with respect to the model described
by (2.1).
Proof:
Let

Hs +HE +HI +HR = N,(2.2)
Ms +ME +MI +MR = M,(2.3)

Vs + VE + VI = V.(2.4)

We begin by showing all feasible solutions are uniformly bounded in a proper subset of Ω. The feasible
region Ω with

Ω =

{
(Hs, HE , HI , HR,Ms,ME ,MI ,MR, Vs, VE , VI) ∈ <11

+ : N ≤ N1

µ1
, M ≤ N2

µ2
, V ≤ N3

η

}
.

Differentiating both sides of (2.2), (2.3) and (2.4) with appropriate substitutions, we obtained the following
differential equations:

N
′

= N1 − µ1N − ε1HI ≤ N1 − µ1N,(2.5)
M

′
= N2 − µ2M − ε2MI ≤ N2 − µ2M,(2.6)

V
′

= N3 − ηV.(2.7)

Applying Grönwall Inequality in (2.5), (2.6) and (2.7), we obtained:

N(t) ≤ N(0) exp(−µ1t) +
N1

µ1
(1− exp(−µ1t)),

M(t) ≤M(0) exp(−µ2t) +
N2

µ2
(1− exp(−µ2t)),

V (t) ≤ V (0) exp(−ηt) +
N3

η
(1− exp(−ηt)),

where N(0), M(0) and V (0) represents the initial humans and mosquitoes population total.

Therefore, 0 ≤ N ≤ N1

µ1
, 0 ≤M ≤ N2

µ2
and 0 ≤ V ≤ N3

η
as t→∞. This implies,

N1

µ1
is an upper bound

for N(t),
N2

µ2
is an upper bound for ,M(t) and

N3

η
is an upper bound for V (t) provided N(0) ≤ N1

µ1
,
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M(0) ≤ N2

µ2
and V (0) ≤ N3

η
.

Hence, all feasible solutions of model (2.1) enter the region Ω which is a positively invariant set. Thus, the
system is biologically meaningful and mathematically well-posed in the domain of Ω. In this domain, it is
sufficient to consider the dynamics of the flow generated by the model system described by (2.1). �

The existence, uniqueness and positivity was demonstrated using the theoretical results presented in
[2, 15].
The basic reproduction number, denoted <0, is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual. If <0 < 1, then on average an infected
individual produces less than one new infected individual over the course of its infectious period, and the
infection cannot grow. Conversely, if <0 > 1 , then each infected individual produces, on average, more
than one new infection, and the disease can invade the population [21].

The disease-free equilibrium point in the model is:

v0 =

(
N1

µ1
, 0, 0, 0,

N2

µ2
, 0, 0, 0,

N3

η
, 0, 0

)
.

We use the theory presented in [7, 21] (next generation matrix method) to calculate the basic reproduction
number (<0).

The

<0 = max

{√
k1 + k2,

βy2N1ω1

µ1(ω1 + µ1)(ε1 + µ1 + r1)

}
,

where

k1 =
βy1N1βxN3ω1ω3

µ1η2(ω1 + µ1)(ε1 + µ1 + r1)(ω3 + η)
and

k2 =
βy1N2βxN3ω2ω3

µ2η2(ω2 + µ2)(ε2 + µ2 + r2)(ω3 + η)
.

The
βy2N1ω1

µ1(ω1 + µ1)(ε1 + µ1 + r1)
is the reproduction number basic for the sub-model with sexual conta-

gion is obtained assuming that the Zika is transmitted by sexual contact only and we eliminate the presence
of mosquitoes in the model because they do not participate in the transmission dynamics. The

√
k1 + k2 is

the reproduction number basic for the sub-model with contagion by mosquito bites.

3. Diffusion model with delay. The mosquito becomes infected when it consumes the blood of a sick
person. Then, if the insect bites a healthy person, it transmits the virus, which enters the bloodstream and
is incubated for 3 to 12 days, until the symptom begins appearance. The delay τ will refer to the time
that the mosquito that delays in developing the pathogen, 4 to 7 days [7]. The delay is taken into account
in the infected compartment and in the previous model this period was incorporated as exposed variables
in humans and mosquitoes. The model is SIR type (susceptible-infected-recovered) for humans and SI
(susceptible-infected) for mosquitoes. The parameters, variables, initial and boundary conditions (taking
into account the delay) maintain the definitions and restraints of the model (2.1). The Figure 3.1 shows the
transition and transmission dynamics of the model with delay.
The diffusion of Zika taking into account the time delay is modeled by the system with delay (discrete)
following:

∂Hs

∂t
= ∇ · (αs1∇Hs)−∇ · (βs1Hs) +N1 − βy1VIHs − βy2HIHs − µ1Hs,

∂Ms

∂t
= ∇ · (αs2∇Ms)−∇ · (βs1Ms) +N2 − βy1

VIMs − βy3
HIMs − µ2Ms,

∂HI

∂t
= ∇ · (αi1∇HI)−∇ · (βi1HI) + βy1

VI(t− τ)Hs + βy2
HIHs − (µ1 + r1 + ε1)HI ,

∂MI

∂t
= ∇ · (αi2∇MI)−∇ · (βi2MI) + βy1

VI(t− τ)Ms + βy3
HIMs − (µ2 + r2 + ε2)MI ,

∂HR

∂t
= ∇ · (αr1∇HR)−∇ · (βr1HR) + r1HI − µ1HR,(3.1)

∂MR

∂t
= ∇ · (αr2∇MR)−∇ · (βr2MR) + r2MI − µ2MR,

∂Vs
∂t

= ∇ · (αv1∇Vs)−∇ · (βv1Vs) +N3 − βxHIVs − βxMIVs − ηVs,

∂VI
∂t

= ∇ · (αv3∇VI)−∇ · (βv3VI) + βxHIVs + βxMIVs − ηVI .
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Initial conditions:
Hs(0) = hs > 0, Ms(0) = ms > 0, HI(0) = hi > 0,

MI(0) = mi > 0, HR(0) = hr ≥ 0, MR(0) = mr ≥ 0,

Vs(0) = vs > 0, VI(0) = vi > 0.

Boundary conditions (zero influx conditions):

∂Hs(t, x
∗)

∂ξ
=
∂HI(t, x∗)

∂ξ
=
∂HR(t, x∗)

∂ξ
=
∂Ms(t, x

∗)

∂ξ
=
∂MI(t, x∗)

∂ξ

=
∂MR(t, x∗)

∂ξ
=
∂Vs(t, x

∗)

∂ξ
=
∂VI(t, x∗)

∂ξ
= 0, x∗ ∈ ∂Ω.

Figure 3.1: Schematic representation of the transitions and contagions of the model with delay. The blue
arrows represent the transitions in the different compartments men, women and mosquitoes, the red arrows
represent the contagion sexual, the black arrows the contagion by mosquito bites and the green arrow is the
delay.

For the transmission part (right-hand member of system (3.1)), we proved the following results in [3]:
Theorem 1. Let f(t, x, y) and fx(t, x, y) be continuous on Rn, s ∈ R, and let φ : [s − r, s] → R be

continuous. Then there exists p > s and a unique solution of the initial-value problem (3.1) on [s− r, p].
Proof:

Let f(t, x, y) = (F1(t, x, y), F2(t, x, y), ..., F8(t, x, y)), x = (Hs,Ms, HI ,MI , HR,MR, Vs, VI) and
y = VI(t− τ).
The VI(t− τ) is continuous and positive function (by the form of construction of the model).

F1(t, x, y) = N1 − βy1
VIHs − βy2

HIHs − µ1Hs,

F2(t, x, y) = N2 − βy1
VIMs − βy3

HIMs − µ2Ms,

F3(t, x, y) = βy1
VI(t− τ)Hs + βy2

HIHs − (µ1 + r1 + ε1)HI ,

F4(t, x, y) = βy1
VI(t− τ)Ms + βy3

HIMs − (µ2 + r2 + ε2)MI ,

F5(t, x, y) = r1HI − µ1HR,

F6(t, x, y) = r2MI − µ2MR,

F7(t, x, y) = N3 − βxHIVs − βxMIVs − ηVs,
F8(t, x, y) = βxHIVs + βxMIVs − ηVI .

Fi(t, x, y), i = 1, 2, .., 8 are continuous functions, then f(t, x, y) is continuous.
∂F1

∂Hs
= −βy1

VI − βy2
HI − µ1,

∂F1

∂HI
= −βy2

Hs,
∂F1

∂VI
= −βy1

Hs,

∂F1

∂Ms
=

∂F1

∂MI
=

∂F1

∂HR
=

∂F1

∂MR
=
∂F1

∂Vs
= 0.
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∂F2

∂Ms
= −βy1

VI − βy3
HI − µ2,

∂F2

∂HI
= −βy3

Ms,
∂F2

∂VI
= −βy1

Ms,

∂F2

∂Hs
=

∂F2

∂MI
=

∂F2

∂HR
=

∂F2

∂MR
=
∂F2

∂Vs
= 0.

∂F3

∂Hs
= βy1VI(t− τ) + βy2HI ,

∂F3

∂HI
= βy2Hs − (µ1 + r1 + ε1),

∂F3

∂Ms
=

∂F3

∂MI
=

∂F3

∂HR
=

∂F3

∂MR
=
∂F3

∂Vs
= 0,

∂F3

∂VI
= 0.

∂F4

∂Ms
= βy1

VI(t− τ) + βy3
HI ,

∂F4

∂HI
= βy3

Ms,
∂F4

∂MI
= −(µ2 + r2 + ε2),

∂F4

∂Hs
=

∂F4

∂HR
=

∂F4

∂MR
=
∂F4

∂Vs
=
∂F4

∂VI
= 0.

∂F5

∂HI
= r1,

∂F5

∂HR
= −µ1,

∂F5

∂Hs
=

∂F5

∂MI
=

∂F5

∂Ms
=

∂F5

∂MR
=
∂F5

∂VI
=
∂F5

∂Vs
= 0.

∂F6

∂MI
= r2,

∂F6

∂MR
= −µ2,

∂F6

∂Hs
=

∂F6

∂Ms
=
∂F6

∂HI
=

∂F6

∂HR
=
∂F6

∂Vs
=
∂F6

∂VI
= 0.

∂F7

∂HI
= −βxVs,

∂F7

∂MI
= −βxVs,

∂F7

∂Vs
= −βxHI − βxMI − η,

∂F7

∂Hs
=

∂F7

∂Ms
=

∂F7

∂HR
=

∂F7

∂MR
=
∂F7

∂VI
= 0.

∂F8

∂HI
= βxVs,

∂F8

∂MI
= βxVs,

∂F8

∂Vs
= βx(HI +MI),

∂F8

∂VI
= −η,

∂F8

∂Hs
=

∂F8

∂Ms
=

∂F8

∂HR
=

∂F8

∂MR
= 0.

(Fi)x i = 1, 2, ..., 8 are continuous functions then fx is continuous.
The initial conditions are continuous and positive according to the model definition, so by Theorem 1 the
solution of model is unique.�

Theorem 2. Suppose that f : R× Rn
+ × Rn

+ → Rn satisfies the hypotheses of Theorem 1 and

∀i, t,∀x, y ∈ Rn
+ : xi = 0⇒ fi(t, x, y) ≥ 0.

If the initial data satisfy φ ≥ 0, then the corresponding solution x(t) of (3.1) satisfies x(t) ≥ 0 for all
t ≥ s where it is defined, see [8].
Proof:
F1(0,Ms, HI ,MI , HR,MR, Vs, VI) = N1 > 0,
F2(Hs, 0, HI ,MI , HR,MR, Vs, VI) = N2 > 0,
F3(Hs,Ms, 0,MI , HR,MR, Vs, VI) = βy1VI(t− τ)Hs ≥ 0,
F4(Hs,Ms, HI , 0, HR,MR, Vs, VI) = βy1

VI(t− τ)Ms + βy3
HIMs ≥ 0,

F5(Hs,Ms, HI ,MI , 0,MR, Vs, VI) = r1HI ≥ 0,
F6(Hs,Ms, HI ,MI , HR, 0, Vs, VI) = r2MI ≥ 0,
F7(Hs,Ms, HI ,MI , HR,MR, 0, VI) = N3 > 0,
F8(Hs,Ms, HI ,MI , HR,MR, Vs, 0) = βxVs(HI +MI) ≥ 0.

The initial conditions are continuous and positive or null then by Theorem 2 the solution of model is
positive.�

4. Discussion. The computational experimentation is carried out for Santa Ana, which has demo-
graphic and climatic characteristics and Zika can become an endemic problem. The values of parameters
used for the simulations are presented in the Table 4.1 and the delay τ is equal to 7 days and some were
assumed after discussing with the specialists so that they had a logical sense demographically (that were not
values far from reality). The Matlab-R2017a software was used for programming. In [4] was presented a
numerical scheme linking finite elements (FEM) with finite differences to solve a difussion-advesion model,
in this work we use an adaptation of this method for the model (2.1). For model (3.1) we use finite elements
for the problem with the delay presented in [22]. The Ω was taken as the unit circle to obtain adequate
graphic results but for future works it will be carried out in the regions under study directly. Was chosen
a season in which it is prone to the development of the mosquito. All sub-populations were studied but by
relevance we present the results for mosquitoes and men infected.
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Parameters Value Reference

βy1 0.2808 [19]

βx 0.3053 [19]

βy2
0.005 Assumed

βy3
0.007 Assumed

ω3
1

10.2 [20]

ω1 = ω2
1
6 [9, 1]

µ1 = µ2 0.0057 https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es

r1 = r2 0.75 Assumed

ε1 = ε2 0.0004 Assumed

η 1
18 [16]

N1 0.65 Assumed

N2 0.75 Assumed

N3 0.60 Assumed

Table 4.1: Parameter values

The diffusion of infected men with the model (3.1) is greater compared to tue model (2.1) and the behavior
is to the border of the region in both scenarios, see figures (4.1) and (4.2).
Among other results we have that infected men spread with greater speed and space than infected women,
but both move to the border of the region and a greater number of recovered men than women is reported
over time for both models.

Figure 4.1: Behavior of infected men with the model (2.1) at 1 month, 2 months and 3 months (result of the
investigation).

Figure 4.2: Behavior of infected men with the model (3.1) at 1 month, 2 months and 3 months (result of the
investigation).

Infected mosquitoes spread more rapidly with the model with delay than model with exposed variables.
But for both models, mosquitoes spread faster than humans and the diffusion is to the interior of the region
contrary to the humans who move to the border, see figures (4.3) and (4.4).

https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es
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Figure 4.3: Behavior of infected mosquitoes with the model (2.1) at 1 month, 2 months and 3 months (result
of the investigation).

Figure 4.4: Behavior of infected mosquitoes with the model (3.1) at 1 month, 2 months and 3 months (result
of the investigation).

5. Conclusions. We present mathematical models of the epidemic of Zika that allows to investigate
the spread of the disease over time. Among the results of computational experimentation is that the spread
of infected humans for model (3.1) is greater and moves towards the border of the region respect to (2.1).
In the case of infected mosquitoes, (3.1) shows the greatest diffusion compared to (2.1) and, in general,
infected mosquitoes spread more rapidly than infected humans and move into the interior of the region.
These results show the need to apply an adequate control strategy because Zika can become endemic.
For future work we will use the involution operator for the diffusion of humans because it is closer to
behavior in reality and perform computational experiments with other scenarios.
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