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Universidad Nacional de Trujillo

ISSN: 2411-1783 (Online)
2020; Vol. 7(2): 234-241.

Equivalence of the stability of discrete-time
Markov jump linear systems

Jorge Enrique Mayta Guillermo∗ and Maritza Lourdes Moreno Capristano†

Received, Mar. 18, 2020 Accepted, Oct. 13, 2020

How to cite this article:
Mayta Guillermo JE, Moreno Capristano ML. Equivalence of the stability of discrete-time Markov jump linear sys-
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Abstract

This paper investigates the stability of discrete-time Markov jump linear system of second-order, this type of
system is similar to the family of discrete-time Markov jump linear system it is known in classical literature
as MJLS. We present some consistent stability definitions for the system, where these types of stability are
equivalent as long as the state space Markov chain is finite. In addition, a computational test is presented
to analyze the stability of the system. The result is a generalization of classical theory, this implies a
contribution to the theory.
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1. Introduction. The Markov jump linear system is a special class of stochastic control systems with
multi-mode. The main problems in control systems is their ability to maintain stable behavior and meet
some performance requirements even in the presence of abrupt changes in system dynamics. These changes
may be due, for example, to abrupt environmental disturbances, component failures or repairs, changes in
subsystem interconnections, abrupt changes in the operating point for a plant. These systems are presented
in the control of solar thermal central receivers, aircraft control systems, economic systems, robotic han-
dling systems, etc. In addition the applications are found in power systems [1], [2], satellite control [3],
flight control [4], air traffic mgmt [5], solar thermal receiver [6], cell growth [7], etc.

Several authors have studied this system and, in particular due to some applications, which have aroused
great interest in this subject, the literature has constantly increased for example [8, 9, 10]. Analyzing the
stability of the system is a very important problem, it can be found in [11, 12, 13, 14].

The paper is organized as follows: In the section 2 gives the basic notations that will be used in
the article. In the section 3, homogeneous linear systems with second-order Markovian jumps will be
presented, which will impose certain conditions for its stability analysis. In the section 4 it consists of three
subsections. In the first part some stability definitions for this system will be announced, a matrix will be
presented which stores the probabilistic information of the Markov chain and the values of the matrices
associated with the system. In the second part the stability is analyzed by means of the spectral radius of
the matrix.In the third part the equivalence between the types of stability defined in section five will be
presented. Finally we will give some comments and culminate with the conclusions.

2. Basic Notation. In this section, the general notation used throughout the paper and certain specifi-
cations of the problem to be addressed are given. In this section, we will introduce the basic notation we use
in all the work. The set of natural numbers is denoted by N and the n-dimensional euclidean space of real
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numbers is denoted by Rn, the euclidean norm is denoted by ‖.‖, the set of non-negative integer numbers,
by Z+. The space of matrices of order m × n on R is denoted by Rm×n. The transpose matrix and the
inverse of the transpose matrix of A is denoted by AT and A−T , respectively and the identity matrix of
order n× n is denoted by In.

The spectral radius of A ∈ Rn×n is denoted by ρ(A). The Kronecker product is denoted with the
symbol ⊗ and the stacking column vector operator by vec(·).

Given that the work we do in this article is in the probabilistic sense it is necessary to define a probability
space (Ω,F ,P), where Ω is the sample space, F is the sigma algebra of events and P is the probability
measure, which are defined random variables.

A state random variable is written in boldface and its expectation is denoted by E{·}. A discrete-time
process is denoted by {x(k) = x(k,w)}k∈Z+

. The indicator function with respect to A ∈ F , is denoted
by 1A. The Markov Chain {θ(k)}k∈Z+ takes values in L , {1, . . . , L}, L ∈ N. The Markov Chain
{θ(k)}k∈Z+

is taken to be homogeneous with transition probability matrix Π = [pij ]L×L, where

pij = P{θ(k + 1) = j|θ(k) = i},

and initial state probability vector π = (π1, · · · , πL), where πi = P(θ(0) = i).

3. Problem Formulation. The System

(3.1) x(k + 2) = Aθ(k+1)x(k + 1) +Bθ(k)x(k),

where for all i, j ∈ L, Ai, Bj ∈ Rn×n, x(k) ∈ Rn×1. We will assume that the initial conditions
{x(0),x(1)} y {θ(0),θ(1)} they are independent, also x(0),x(1) they are second moment finite, i.e.,
E{‖x(0)‖2} <∞ and E{‖x(1)‖2} <∞. Here is the definition of system solution of (3.1).

Definition 3.1. It is said that the stochastic process x(k) = {x(k)}k∈Z+
is solution of (3.1) if for any

realization ω of θ(k) and for any x(0) and x(1), the Equation (3.1) is satisfied point wise, that is,

x(k + 2, ω;x(0),x(1)) = Aθ(k+1,ω)x(k + 1, ω;x(0),x(1)) +Bθ(k,ω)x(k, ω;x(0),x(1)), k ∈ Z+.

The solution x(k) of the System (3.1) it is also called trajectory solution.
Now, making the change of variable

z(k) =

 x(k)

x(k + 1)

 ,
the System (3.1) it can be expressed as follows

(3.2) z(k + 1) = Cθ̂(k)z(k), z(0) ∈ R2n×1,

where z(k) ∈ R2n×1, θ̂(k) = (θ(k),θ(k + 1)) and

Cθ̂(k) =

 0 In

Bθ(k) Aθ(k+1)

 .
In addition, the following equality and inequality is obtained

(3.3) ‖z(k)‖2 = ‖x(k)‖2 + ‖x(k + 1)‖2 and ‖x(k)‖ ≤ ‖z(k)‖.

We observe that the System (3.2) it is similar to a MJLS, what would be missing to verify that θ̂(k) is a
Markov chain.

Lemma 3.1. The θ(k) a Markov chain with state space L. Then the stochastic process θ̂(k) defined by

θ̂(k) = (θ(k),θ(k + 1)),

is an irreducible Markov chain with state space

L × L = {(i, j) | i, j ∈ L} ,

and the probability of transitions as follows:

P{θ̂(k + 1) = (s, r))|θ̂(k) = (i, j)} =

 0 , if j 6= s

pjr , if j = s
.
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Proof: We notice that the states space of θ̂(k) is L× L. We will verify the Markovian property, in fact for
this let’s take î0, î1 . . . îk+1 arbitrarily in L × L it follows:

P
{
θ̂(k + 1) = îk+1|θ̂(k) = îk . . . θ̂(0) = î0

}
=

P {θ(k + 2) = r,θ(k + 1) = s,θ(k + 1) = j, . . .θ(0) = i0}
P {θ(k + 1) = j, . . .θ(0) = i0}

.

Analyzing by cases, if j 6= s then

P{θ̂(k + 1) = îk+1|θ̂(k) = îk . . . θ̂(0) = î0} = 0,

on the other hand

P{θ̂(k + 1) = îk+1|θ̂(k) = îk} = 0.

Now, if j = s

P
{
θ̂(k + 1) = îk+1|θ̂(k) = îk . . . θ̂(0) = î0

}
=

P {θ(k + 2) = r,θ(k + 1) = j,θ(k + 1) = j, . . .θ(0) = i0}
P {θ(k + 1) = j, . . .θ(0) = i0}

= pj,r,

on the other hand

P
{
θ̂(k + 1) = îk+1|θ̂(k) = îk

}
=

P {θ(k + 2) = r,θ(k + 1) = j,θ(k) = i}
P {θ(k + 1) = j,θ(k) = i}

= pj,r.

This proves the Markovian property of θ̂(k).

4. Stability. This section presents some stability definitions for the System (3.1) , which are adapta-
tions of the theory of MJLS (see [15]).

Definition 4.1. The System (3.1) is:
a) MSS (Mean square stable) if for any θ(0),θ(1) and any initial condition x(0),x(1),

lim
k→∞

E{x(k)xT (k)} = 0.

b) SS (Stochastically stable) if for any θ(0),θ(1) and any initial condition x(0),x(1),

∞∑
k=0

E
{
‖x(k)‖2

}
<∞.

c) MSES (Mean square Exponentially Stable) if for any θ(0),θ(1) and any initial condition x(0),x(1)
there exist constants 1 ≤ β and 0 < γ < 1 and such that for all k ≥ 0,

E
{
‖x(k)‖2

}
≤ βγkE{‖x(0)‖2}.

d) ASS (Almost sure stable) if for any θ(0),θ(1) and any initial condition x(0),x(1),

P
{

lim
k→∞

||x(k)|| = 0

}
= 1.

In this section the matrix is presented A which will be very useful to analyze the stability of the System
(3.1). Therefore, it is expected that system stability can be analyzed through the spectral radius of this
matrix as classical theory. In order to introduce these matrices we need to define some matrices that are
given in terms of the solution path of the system. These matrices, which will be used throughout this work,
are consistent with those defined in the in classical literature.
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For each k ∈ Z+, (i, j) ∈ L × L, let’s consider

Q̂(k) = E{z(k)zT (k)},(4.1)

Q̂i,j(k) = E{z(k)zT (k)1{θ̂(k)=(i,j)}},(4.2)

q̂i,j(k) = vec(Q̂i,j(k)),(4.3)

q̂(k) =



q̂1,1(k)
...

q̂1,L(k)
...

q̂L,1(k)
...

q̂L,L(k)


,(4.4)

Note that

Q̂(k) = E

 ∑
(i,j)∈L×L

z(k)zT (k)1{θ̂(k)=(i,j)}


=

∑
(i,j)∈L×L

Q̂i,j(k).(4.5)

The following relationships are very well known results that are going to be useful in our derivations [?].

(4.6)
1

n
E{‖x(k)‖2} ≤ ‖E{x(k)xT (k)}‖ ≤ E

{
‖x(k)‖2

}
, x(k) ∈ Rn×1.

The Lemma 4.1 establish a recursive equation for the matrix Q̂i,j(k), defined in (4.2). This equation is very
useful for obtaining the main results presented in this work.

Lemma 4.1. The System (3.2) with solution z(k), the matrix Q̂i,j(k) defined in (4.2) satisfy the fol-
lowing recursive equation:

(4.7) Q̂j,r(k + 1) =

L∑
i=1

pj,rCi,jQ̂i,j(k)CT
i,j i, j ∈ L, k ∈ Z+.

Proof: For the proof of this result we use the recursion of the System (3.2).

Q̂j,r(k + 1) = E
{
z(k + 1)zT (k + 1)1{θ̂(k+1)=(j,r)}

}
= E

{
Cθ̂(k)z(k)zT (k)CT

θ̂(k)
1{θ̂(k+1)=(j,r)}

}
= E

{
L∑

i=1

Ci,jz(k)zT (k)CT
i,j1{θ(k)=i,θ̂(k+1)=(j,r)}

}

=

L∑
i=1

Ci,jE
{
z(k)zT (k)1{θ(k)=i,θ̂(k+1)=(j,r)}

}
CT

i,j

=

L∑
i=1

Ci,jE
{
E{z(k)zT (k)1{θ(k)=i,θ̂(k+1)=(j,r)}|z(k), θ̂(k)}

}
CT

i,j

=

L∑
i=1

Ci,jE
{
z(k)zT (k)1{θ̂(k)=(i,j)}E{1{θ(k+2)=r}|z(k), θ̂(k)}

}
CT

i,j

=

L∑
i=1

Ci,jE{z(k)zT (k)1{θ̂(k)=(i,j)}pj,r}C
T
i,j

=

L∑
i=1

pj,rCi,jQ̂i,j(k)CT
i,j .
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The matrix A is defined below which will be of fundamental importance to establish different results
related to the stability of the System (3.1) and the System (3.2).

A , (Π̄T ⊗ I4n2)diag[Ci,j ⊗ Ci,j ],(4.8)

where the matrix diag[Ci,j ⊗ Ci,j ] it is a diagonal matrix by blocks and Π̄ is the probability transition

matrix of the Markov chain θ̂(k) which is as follows:

Π̄ = D · (IL ⊗Π),

where

D =


D1 . . . DL

...
. . .

...

D1 . . . DL

 ,
and

Di =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


L×L

→ i-row

↑ i-column
For better block matrix operation diag[Ci,j ⊗ Ci,j ], present a particular case, for case L = 2 is obtained

diag[Ci,j ⊗ Ci,j ] =


C1,1 ⊗ C1,1 0 0 0

0 C1,2 ⊗ C1,2 0 0

0 0 C2,1 ⊗ C2,1 0

0 0 0 C2,2 ⊗ C2,2

 .

Note that these matrices collect the information of all the system parameters and also keep the probable
information of the Markov chain. Next it shows that the System (3.2) it can be transformed into an equation
of the classical type by the matrix A.

Lemma 4.2. The column vector q̂(k) defined in (4.4), is the solution of

(4.9) y(k + 1) = Ay(k), y(0) = q̂(0) ∈ R4n2

.

Proof:
Vectorizing both sides of (4.7) is obtained

q̂j,r(k + 1) =

L∑
i=1

pj,rCi,j ⊗ Ci,j q̂i,j(k),

what can be written matrixally in the following way:

(4.10) q̂(k + 1) = Aq̂(k),

and by induction you have

(4.11) q̂(k) = Akq̂(0).
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Lemma 4.3. If lim
k→∞

E{z(k)zT (k)} = 0 if and only if for any x(0),x(1) ∈ Rn and for any θ(0),θ(1)

is fulfilled

(4.12) lim
k→+∞

q̂(k) = 0.

Proof: Let’s assume that lim
k→∞

E{z(k)zT (k)} = 0. The inequality

‖Q̂i,j(k)‖ =
∥∥E{z(k)zT (k)1{θ(k)=i,θ(k+1)=j}}

∥∥
≤
∥∥E{z(k)zT (k)}

∥∥ ,
it follows that lim

k→+∞
Q̂i,j(k) = 0, and as the operator vec is continuous then lim

k→+∞
q̂i,j(k) = 0. From

here it concludes immediately (4.12).
Now, if lim

k→+∞
q̂(k) = 0, then lim

k→+∞
q̂i,j(k) = 0 which is equivalent to saying that lim

k→+∞
Q̂i,j(k) = 0.

From (4.5) it is concluded that lim
k→∞

E{z(k)zT (k)} = 0.

The following lemma gives us a connection between the systems 3.1 and 3.2.
Lemma 4.4. The solution x(k) of System (3.1) and the solution z(k) of System (3.2). The following is

satisfied:

lim
k→∞

E{‖x(k)‖2} = 0⇔ lim
k→∞

E{‖z(k)‖2} = 0.

Proof: The proof is essentially based on equality and inequality (3.3).

4.1. Test for MSS. The Theorem 4.1 provides an easy computational implementation tool to analyze
if the System (3.1) is MSS using the spectral radius of the matrix A.

Theorem 4.1. The System (3.1) is MSS if and only if ρ(A) < 1.
Proof: If the System (3.1) is MSS, then by the inequality (4.6) is obtained lim

k→+∞
E{‖x(k)‖2} = 0,

and by the Lemma 4.4 it follows lim
k→+∞

E{‖z(k)‖2} = 0, finally for the inequality (4.6) is obtained

lim
k→+∞

E{z(k)zT (k)} = 0 and by Lemma 4.3 it is concluded that lim
k→+∞

q̂(k) = 0. In addition, we

have to x(0),x(1) and θ(0),θ(1) are arbitrary and independent considering that

Q̂i,j(0) = E
{
z(0)zT (0)

}
E
{

1{θ(0)=i}1{θ(1)=j}
}

= E
{
z(0)zT (0)

}
pi,jπi,

then it is seen that it is always possible to obtain q̂(0) with non-zero components. Then by Jordan’s decom-
position of A and by (4.11) it follows that ρ(A) < 1.

Now, if ρ(A) < 1 then taking limit on both sides of (4.11) this implies that lim
k→+∞

q̂(k) = 0. From

here, for the Lemma 4.3 and the inequality (4.6) it is concluded that the System (3.1) is MSS.
This subsection shows an example that illustrates the results of Theorem 4.1.

Example 1. This example shows a system that is not MSS.

A1 = B1 =

 3 0

0 0

 A2 = B2 =

 0 0

0 1

 , Π =

 0 1

1 0

 .
We noticed that ρ(A) = 3 > 1, the system is not MSS. In fact, we have two significant accomplishments

w1 = {1, 2, 1, 2, · · · }; w2 = {2, 1, 2, 1, · · · }.

For w1, it has
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For w2, it has

This implies that lim
k→+∞

E{‖x(k)‖2} = +∞.

5. Equivalence between stabilities. This section establishes the relationships between the different
types of stability introduced in section 4. It is proved that under the condition of being L a finite state space,
the notions of stability (a)− (c) are equivalent and all of them imply stability (d).

We note that the system (3.2) is an MJLS, by classical theory it is known that the types of stability are
equivalent. When you want to verify the same result for the system (3.1) there are technical difficulties
you see the need to present some previous results presented below. The following theorem gives us an
equivalence of stability MSS of System (3.1) and System (3.2).

Theorem 5.1. The System (3.1) is MSS if and only if the System (3.2) is MSS.
Proof: The proof is based of Lemma 4.4 and the inequality (4.6).

The following theorem gives us an equivalence of stability SS of System (3.1) and System (3.2).
Theorem 5.2. The System (3.1) is SS if and only if the System (3.2) is SS.

Proof: If the System (3.1) is SS and

∞∑
k=0

E
{
‖z(k)‖2

}
=

∞∑
k=0

E
{
‖x(k)‖2

}
+

∞∑
k=0

E
{
‖x(k + 1)‖2

}
<∞.

Conversely, if the System (3.2) is SS and ‖x(k)‖2 ≤ ‖z(k)‖2, it is concluded by the comparison criteria.
We are ready to present the equivalence between MSS and MSES of the System (3.1).
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Theorem 5.3. The System (3.1) is MSS if and only if the System (3.1) is MSES.
Proof: If the System (3.1) is MSS then for the Theorem 4.1, implies that ρ(A) < 1. We have to ‖Ak‖ ≤
βγk for some 1 ≤ β and γ ∈ 〈0, 1〉 by similar arguments of Proposition 2.5 ( see [15]) , it is concluded.
Now, if the System (3.1) is MSES, it is trivially proof that the System (3.1) is MSS.
The following theorem gives us an equivalence of stability ASS of System (3.1) and System (3.2).

Theorem 5.4. If the System (3.1) is ASS, if and only if the System (3.2) is ASS.
Proof: The proof is essentially based on equality and inequality (3.3).

Remark Recall that for the System (3.2), MSS, SS and MSES stability are equivalent according to the
theory of MJLS. For the results of Theorems [5.1-5.4] is obtained

SS(2) ⇐⇒ MSS(2) ⇐⇒ MSES(2) =⇒ ASS(2)

m m m

SS(1) MSS(1) ⇐⇒ MSES(1) ASS(1)

.

The last scheme indicates that the types of stability for the system (3.1) are equivalent and these imply
the ASS.

6. Conclusions. In this paper, the three stability concepts for the System (3.1) have been introduced
and proved to be equivalent under certain conditions. This is a new result and represents an extension of the
well known result for the Markov linear jump system (MJLS) which sets the same property for the same
three stability concept. A test is presented in terms of the spectral radius of a certain matrix to analyze the
stability of the System (3.1) and then present an example and check the test.
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