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Abstract
Zika virus spreads to people primarily through the bite of an infected Aedes aegypti species mosquito. But it
Zika can also be passed through sex from an infected to his or her sex partners and it can be spread from a
pregnant woman to her fetus. Zika continues to spreading geographically to areas where competent vectors are
present. Although a decline in cases of Zika virus infection has been reported in some countries, or in some
parts of countries, vigilance needs to remain high. In this work, we propose a mathematical model that uses
diffusion-advection equations to study the impact of the Zika epidemic. We present a numerical scheme linking
finite elements (FEM) with finite differences to solve the model. The computer simulations are performed for
Paramaribo and Santa Ana that have different demographic characteristics and allow us to extend the study to
other regions.
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Resumen
El virus del Zika se propaga a las personas principalmente a través de la picadura de un mosquito de la espe-
cie Aedes Aegypti infectado. El Zika también puede transmitirse a través del sexo de una persona infectada a
sus parejas sexuales y se puede transmitir de una mujer embarazada a su feto. El Zika continúa expandiéndose
geográficamente a áreas donde están presentes vectores competentes. Si bien se ha informado una disminución en
los casos de infección por el virus del Zika en algunos paı́ses o en algunas partes de los paı́ses, la vigilancia debe
mantenerse alta. En este trabajo proponemos un modelo matemático que utiliza ecuaciones de difusión-advección
para estudiar el impacto de la epidemia de Zika. Presentamos un esquema numérico vinculando elementos finitos
(FEM) con diferencias finitas para resolver el modelo. Las simulaciones computacionales se realizan para Para-
maribo y Santa Ana, que tienen diferentes caracterı́sticas demográficas y nos permiten ampliar el estudio a otras
regiones.

Palabras clave. Difusión, epidemia, modelo, Zika.

1. Introduction. Zika virus is a mosquito-borne flavivirus that was first identified in Uganda in 1947 in mon-
keys through a network that monitored yellow fever. It was later identified in humans in 1952 in Uganda and the
United Republic of Tanzania. Outbreaks of Zika virus disease have been recorded in Africa, the Americas, Asia
and the Pacific. From the 1960s to 1980s, human infections were found across Africa and Asia, typically accom-
panied by mild illness. The first large outbreak of disease caused by Zika infection was reported from the Island
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of Yap (Federated States of Micronesia) in 2007 [5].
Zika virus is primarily transmitted to people through the bite of an infected mosquito from the Aedes genus, mainly
Aedes aegypti in tropical regions. Aedes mosquitoes usually bite during the day, peaking during early morning and
late afternoon/evening. This is the same mosquito that transmits dengue, chikungunya and yellow fever. Sexual
transmission of Zika virus is also possible [4].
Recovery from Zika virus disease may require anywhere from 3 to 14 days after becoming infectious, but once
recovered humans are believed to be immune from the virus for life, many people infected with Zika may be
asymptomatic or will only display mild symptoms that do not require medical attention [4].
Sexual transmission of Zika virus is much more likely from men to women than from women to men, and same-sex
transmission, from man to man, has only been documented once [13].
The use of diffusion and advection-diffusion equations in the study of epidemics can be seen in [10, 14], in partic-
ular for Dengue [9, 12, 17], for HIV / AIDS in [8, 15] and for Malaria in [11], these texts contributed background
in the work that we present.
The objective of this work is to present a model for the Zika epidemic based in the diffusion-advection equations.
To solve this model we use a numerical scheme that links elements and differences finites. Computational simula-
tions are carried out in Paramaribo and Santa Ana, which are countries where Zika can develop endemically.
The paper is organized as follows. Section 1 is devoted to a Zika model by described by advection-diffusion equa-
tion. Section 2 presents the numerical method for the solution of the model. Section 3 is devoted to computer
simulations for Santa Ana and Paramaribo. Section 4 are the conclusions of paper.

2. Construction of the Model. The model variables are susceptible men Hs, susceptible women Ms, in-
fected men HI , infected women MI , recovered men HR, recovered women MR, susceptible mosquitoes Vs and
infected mosquitoes VI . The parameters of the model are the force of infection from infected mosquito to sus-
ceptible human βy1 = (number of times a single mosquito bites a human per unit time × probability of pathogen
transmission from an infectious mosquito to a susceptible human given that a contact between the two occurs) /
the total population of human within the model). To define βy2 and βy3 we did an analogous study but taking
into account the sexual contacts (between men and heterosexual respectively) and the probability of infecting these
contacts, the force of infection from infected man to susceptible man by sexual contact βy2 , the force of infec-
tion from infected man to susceptible woman by sexual contact βy3 . The ε is a parameter modification associated
with contagion by sexual contact with infected women. The force of infection from infected human to susceptible
mosquito βx = (number of times a single mosquito bites a human per unit time × probability of pathogen trans-
mission from an infectious human to a susceptible mosquito given that a contact between the two occurs) / the
total population of human within the model, disease-induced death rate for man and woman ε1, ε2 and per capital
recovery rate for humans from the infectious for man and woman r1, r2.

Let l1, l2, l3 the life expectancy of men, women and mosquitoes. We define µ1 =
1

l1
, µ2 =

1

l2
and η =

1

l3
such as

death rates for men, women and mosquitoes respectively.
We define N,M, V as the recruitment rate of men, women and mosquitoes (depends on the life expectancy and
the total populations).
All model parameters are assumed to be positive. Description of model parameters are given in Table 2.1.
Assumptions for the construction of the model:

• There is immunity in the recovered state, the infected man can infect a susceptible woman and a suscep-
tible man (result of the study of other epidemics that are transmitted by sexual contact).

• The contagion to the fetus is not taken into account, because the fetus is not directly in the transmission
dynamics.

• The death by natural causes is equal in any state, the death of mosquitoes will be due to environmental
factors because no control strategy is applied.

• We do not take into account the contagion among women in any of the compartments.
• By definition epidemiological Hs,Ms, HI ,MI , HR,MR, Vs and VI and the initial conditions are contin-

uous functions and positive or null.

The model represents the transmission with exposed variable, it is a SIR model (susceptible-infected-recovered)
for humans and for mosquitoes we do not have the status of recovered.
The Laplacian (∆) and the gradient (∇) operators are relative to the spatial variable x ∈ Ω and assume that the



198 Delgado, E., Marrero, A.- Selecciones Matemáticas. 2019; 06(02):196-203.

Parameters Description
βy1 The force of infection from infected mosquito to susceptible human
βy2 The force of infection from infected man to susceptible man
βy3 The force of infection from infected man to susceptible woman
βx The force of infection from infected human to susceptible mosquito
µ1, µ2, η Man, woman and mosquito mortality rate
ε1, ε2 Disease-induced death rate for humans (men and women)
r1, r2 Per capital recovery rate for humans from the infectious (men and women)
N,M, V Recruitment rate of men, women and mosquitoes

Table 2.1: Description of parameters used in the model (1).

Figure 2.1: This schematic representation shows the Zika progression in human and mosquito populations for our
model. Susceptible humans start in Hs, Ms (men and women) and move to HI and MI , the infected population,
once infected by a mosquito carrying the virus and sexual contact. Infectious humans will then move to and
remain in HR and MR after recovering from the infection. The loop in the compartment of infected men with
βy2 represents co-infection. The susceptible mosquitoes population is denoted Vs. After transmission occurs from
biting an infectious human, susceptible mosquitoes transition to the infected population, VI ,where they remain
infectious until death.

initial data are continuous and bounded functions on Ω.
∂Hs

∂t
−∇ · (αs∇Hs) +∇ · (βsHs) = N − βy1HsVI − βy2 (HI + εMI)Hs − µ1Hs,

∂Ms

∂t
−∇ · (αs∇Ms) +∇ · (βsMs) = M − βy1MsVI − βy3MsHI − µ2Ms,

∂HI

∂t
−∇ · (αI∇HI) +∇ · (βIHI) = βy1HsVI + βy2 (HI + εMI)− (r1 + ε1 + µ1)HI ,

∂MI

∂t
−∇ · (αI∇MI) +∇ · (βIMI) = βy1MsVI + βy3MsHI − (r2 + ε2 + µ2)MI ,

∂HR

∂t
−∇ · (αr∇HR) +∇ · (βrHR) = r1HI − µ1HR,

∂MR

∂t
−∇ · (αr∇MR) +∇ · (βrMR) = r2MI − µ2MR,

∂Vs

∂t
−∇ · (αm∇Vs) +∇ · (βmVs) = V − βxVs(HI +MI)− ηVs,

∂VI

∂t
−∇ · (αp∇VI) +∇ · (βpVI) = βxVs(HI +MI)− ηVI . (1)

Boundary condition (zero influx conditions):
∂Hs(t, x∗)

∂ξ
=

∂HI(t, x∗)

∂ξ
=

∂HR(t, x∗)

∂ξ
=

∂Ms(t, x∗)

∂ξ
=

∂MI(t, x∗)

∂ξ
=

∂MR(t, x∗)

∂ξ
=

∂Vs(t, x∗)

∂ξ
=

∂VI(t, x∗)

∂ξ
=

0, x∗ ∈ ∂Ω.

The homogeneous Neumann boundary conditions mean that there is no population flux across the boundary ∂Ω
and both the human and mosquito individuals live in a self-contained environment. The ξ is the outward normal
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vector to ∂Ω.
The αs, αI and αr are the dispersion rate for susceptible, infected and recovered humans and βs, βI and βr are
the velocities field relative to the migratory movement of susceptible, infected and recovered humans, respectively.
We will consider the mosquito dispersal as the result of a random (and local) flying movement, macroscopically
represented by a diffusion process with coefficients αm and αp, coupled to a wind advection caused by a constants
velocity flux βm and βp. Constant advection can be justified as a bias in the transport process caused by a long-
term geographical direction of the wind, while its random and short-term fluctuations are to be included in the
diffusion term.
In [7], mathematical models similar to the right member of model (1) were presented, where the transmission of
Zika is modelled but with exposed variables and time delay. A mathematical and epidemiological study of the
models and computational simulations for Suriname and El Salvador was carried out. This study evidenced the
influence of parameters βy1 and βx (related with contagion by mosquito bites) in the transmission of Zika and that
sexual contagion does not exert a strong influence.

3. Method of solution. First we find the variational formulation of the model and apply the Galerkin method,
[2], [3].
Let W = {L2([0, Tf ], V )}, V = H1(W ) space of test functions and we define the scalar product:

〈u, v〉 =

∫
Ω

uvdxdy, 〈∇u||∇v〉 =

∫
Ω

∇u∇vdµ

u ∈W , v ∈ V .
Let U = Hs,Ms, HI ,MI , HR,MR, Vs, VI , U(t, x, y) = U ,
v = v(x, y), (x, y) ∈ Ω, by the formula of Green

−αU 〈∆U, v〉 = αU 〈∇U ||∇v〉 − αU 〈
∂U

∂η
, v〉.

Remembering that we have boundary condition null.
We write the parameters (constants in this study) as follows:

βs = 〈βs1 , βs2〉,
βI = 〈βI1 , βI2〉,
βr = 〈βr1 , βr2〉,
βm = 〈βm1

, βm2
〉,

βp = 〈βp1 , βp2〉.

Let {φi}ni=1 base of Vh ⊂ V be a finite approximation of the problem. We use the notation:

Uh =

n∑
j=1

Uj(t)φj(x, y).

The respective derivatives are:

∂Uh
∂t

=

n∑
j=1

dUj
dt

φj(x, y),
∂Uh
∂x

=

n∑
j=1

Uj
∂φj
∂x

,
∂Uh
∂y

=

n∑
j=1

Uj
∂φj
∂y

.

In this approximation, the model is expressed as:
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〈
∂Hs

∂t
, v〉+ αs〈∇Hs||∇v〉+ βs1

〈
∂Hs

∂x
, v〉+ βs2

〈
∂Hs

∂y
, v〉 = N − βy1

〈HsVI , v〉

− βy2
〈HsHI , v〉 − µ1〈Hs, v〉,

〈
∂Ms

∂t
, v〉+ αs〈∇Ms||∇v〉+ βs1 〈

∂Ms

∂x
, v〉+ βs2 〈

∂Ms

∂y
, v〉 = M − βy1 〈MsVI , v〉

− βy3
〈MsHI , v〉 − µ2〈Ms, v〉,

〈
∂HI

∂t
, v〉+ αI〈∇HI ||∇v〉+ βI1

〈
∂HI

∂x
, v〉+ βI2

〈
∂HI

∂y
, v〉 = βy1 〈HsVI , v〉

+ βy2
〈HsHI , v〉 − (r1 + ε1 + µ1)〈HI , v〉,

〈
∂MI

∂t
, v〉+ αI〈∇MI ||∇v〉+ βI1

〈
∂MI

∂x
, v〉+ βI2

〈
∂MI

∂y
, v〉 = βy1

〈MsVI , v〉

+ βy2
〈MsHI , v〉 − (r2 + ε2 + µ2)〈MI , v〉,

〈
∂HR

∂t
, v〉+ αr〈∇HR||∇v〉+ βr1

〈
∂HR

∂x
, v〉+ βr2

〈
∂HR

∂y
, v〉 = r1〈HI , v〉 − µ1〈HR, v〉,

〈
∂MR

∂t
, v〉+ αr〈∇MR||∇v〉+ βr1 〈

∂MR

∂x
, v〉+ βr2 〈

∂MR

∂y
, v〉 = r2〈MI , v〉 − µ2〈MR, v〉,

〈
∂Vs

∂t
, v〉+ αm〈∇Vs||∇v〉+ βm1

〈
∂Vs

∂x
, v〉+ βm2

〈
∂Vs

∂y
, v〉 = V − βx〈Vs(HI +MI), v〉

− η〈Vs, v〉,

〈
∂VI

∂t
, v〉+ αm〈∇VI ||∇v〉+ βm1 〈

∂VI

∂x
, v〉+ βm2 〈

∂VI

∂y
, v〉 = βx〈Vs(HI +MI), v〉

− η〈VI , v〉,

For the temporary variables we use the Crank-Nicolson method (central differences in the time tn+ 1
2

)
was used

Uj
dt

(x, y, tn+ 1
2
) =

Un+1
j − Unj

2
.

dUj
dt

(x, y, tn+ 1
2
) =

Un+1
j − Unj

∆t
,

The matrix formulation is:

Chs(H
n
s , H

n+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Hn+1
s = Dhs(H

n
s ,

Hn+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Hn
s + E1,

Cms(M
n
s ,M

n+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Mn+1
s = Dms(M

n
s ,

Mn+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Mn
s + E2,

ChI(c)H
n+1
I = DI(H

n
s , H

n+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Hn
I + E3,

CmI(c)M
n+1
I = DI(M

n
s ,M

n+1
s , V n+1

I , V nI , H
n+1
I , Hn

I )Mn
I + E4,

ChR(c)Hn+1
R = DR(Hn+1

I , Hn
I , H

n+1
R , Hn

R)Hn
R + E5,

CmR(c)Hn+1
R = DR(Mn+1

I ,Mn
I ,M

n+1
R ,Mn

R)Mn
R + E6,

CvS(V n+1
s , V ns , H

n+1
I , Hn

I ,M
n+1
I ,Mn

I )V n+1
s = DvS(V n+1

s ,

V n+1
s , Hn+1

I , Hn
I ,M

n+1
I ,Mn

I )V ns + E7,

CvI(c)V
n+1
I = DvI(H

n+1
I , Hn

I ,M
n+1
I ,Mn

I )V nI + E8. (2)

Where ChI(c), CmI(c), ChR(c), CmR(c) and CvI(c) are matrices of constant coefficients.
The Ei i = 1, 2, ..., 8 depend on some of the variables and parameters of the model (non-linearity of system).
Solution algorithm proposal for (2):
To solve the system we used a predictor-corrector method [1, 2].
Using H0

s ,M
0
s , H

0
I ,M

0
I , H

0
R,M

0
R, V

0
s , and V 0

I ,
we calculate H1

s ,M
1
s , H

1
I ,M

1
I , H

1
R,M

1
R, V

1
s , and V 1

I .
• We calculate H∗s ,M

∗
s in:

Chs(H0
s , H

0
s , V

0
I , V

0
I , H

0
I , H

0
I )H∗s = Dhs(H0

s , H
0
s , V

0
I , V

0
I , H

0
I , H

0
I )H0

s + E0
1

Cms(M0
s ,M

0
s , V

0
I , V

0
I , H

0
I , H

0
I )M∗s = Dms(M0

s ,M
0
s , V

0
I , V

0
I , H

0
I , H

0
I )M0

s + E0
2 .

The E0
1 and E0

2 depend of the initial conditions and from this iteration the Ei i = 1, 2, ..., 8 are updated.
• We calculate H∗I ,M

∗
I in:

ChI(c)H∗I = DI(H0
s , H

∗
s , V

0
I , V

0
I , H

0
I , H

0
I )H0

I + E3,

CmI(c)I∗ = DI(M0
s ,M

∗
s , V

0
I , V

0
I , H

0
I , H

0
I )M0

I + E4,
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• We calculate H∗R,M
∗
R in:

ChR(c)R∗ = DR(H∗I , H
0
I , H

0
R, H

0
R)H0

R + E5,

CmR(c)R∗ = DR(M∗I ,M
0
I , ,M

0
R,M

0
R)M0

R + E6,

• We calculate V ∗s , V
∗
I in:

CvS(V 0
s , V

0
s , H

0
I , H

∗
I ,M

0
I ,M

∗
I )V ∗s = DvS(V 0

s , V
∗
s , H

0
I , H

∗
I ,M

0
I ,M

∗
I )V 0

s + E7

CvI(c)V ∗I = DvI(H0
I , H

∗
I ,M

0
I ,M

∗
I )V 0

I + E8

• We calculate H∗∗s ,M∗∗s in:
Chs(H0

s , H
∗
s , V

0
I , V

∗
I , H

0
I , H

∗
I )H∗∗s = Dhs(H0

s , H
∗
s , V

0
I , V

∗
I , H

0
I , H

∗
I )H0

s + E1,

Cms(M0
s ,M

∗
s , V

0
I , V

∗
I , H

0
I , H

∗
I )M∗∗s = Dms(M0

s ,M
∗
s , V

0
I , V

∗
I , H

0
I , H

∗
I )M0

s + E2,

• We calculate H∗∗I ,M∗∗I in:
ChI(c)H∗∗I = DI(H0

s , H
∗∗
s , V 0

I , V
∗
I , H

0
I , H

∗∗
I )H0

I + E3,

CmI(c)M∗∗I = DI(M0
s ,M

∗∗
s , V 0

I , V
∗
I , H

0
I , H

∗
I )M0

I + E4,

• We calculate H∗∗R ,M∗∗R in:
ChR(c)H∗∗R = DR(H∗∗I , H0

I , H
0
R, H

∗
R)H0

R + E5,

CmR(c)M∗∗R = DR(M∗∗I ,M0
I ,M

0
R,M

∗
R)M0

R + E6,

• We calculate V ∗∗s , V ∗∗I in:
CvS(V 0

s , V
∗
s , H

0
I , H

∗∗
I ,M0

I ,M
∗∗
I )V ∗∗s = DvS(V 0

s , V
∗
s , H

0
I , H

∗∗
I ,M0

I ,M
∗∗
I )V 0

s

+E7,

CvI(c)V ∗∗I = DvI(H0
I , H

∗∗
I ,M0

I ,M
∗∗
I )V 0

I + E8.

For k iterations, with certain condition of stop of the process you have:

H1
s = Hk∗

s ,M1
s = Mk∗

s , H1
I = Hk∗

I ,M1
I = Mk∗

I , H1
R = Hk∗

R ,M1
R = Mk∗

R , V 1
s = V k∗s , V 1

I = V k∗I ,
and we continue the process until we obtain the approximate solution of the model.

4. Discussion. The computational experimentation are carried out for Paramaribo and Santa Ana, which have
different demographic and climatic characteristics and Zika can become an endemic problem. The values of pa-
rameters and initial conditions were extracted from [12, 16, 17] and some were assumed after discussing with
specialists in this epidemic (to use logical values not far from reality). The Matlab-R2017a software was used for
programming. The Ω was taken as the unit circle to obtain adequate graphic results but for future works it will be
carried out in the regions under study directly. Was chosen a season in which it is prone to the development of the
mosquito. All sub-populations were studied but by relevance we present the results for mosquitoes and infected
men.

Figure 4.1: Behavior of infected men in Paramaribo at 45 days, 2 months and 3 months (Result of the investigation).

The diffusion of infected men in Paramaribo is greater compared to Santa Ana and the behavior is to the border of
the region in both scenarios, see figures (4.1) and (4.2).
Among other results we have that infected men spread with greater speed and space than infected women, but both
move to the border of the region and a greater number of recovered men than women is reported over time, which
shows that the greater the number of infected people, the greater the number recovered for this epidemic in both
scenarios.

Figure 4.2: Behavior of infected men in Santa Ana at 45 days, 2 months and 3 months (Result of the investigation).
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Infected mosquitoes spread more strongly in Santa Ana than in Paramaribo, logical behavior as the population
of humans in Santa Ana is larger. But in both scenarios the mosquitoes, the diffusion is to the interior of the region
contrary to the humans who move to the border, see figures (4.3) and (4.4).

Figure 4.3: Behavior of infected mosquitoes in Paramaribo at 15 days and 1 month (Result of the investigation).

Figure 4.4: Behavior of infected mosquitoes in Santa Ana at 15 days and 1 month (Result of the investigation).

5. Conclusions. We present a mathematical model of the epidemic of Zika that allows to investigate the
spread of the disease over time. Among the results of the computational experimentation is that the spread of
infected humans in Paramaribo is greater than in Santa Ana and they move towards the border of the region. In
the case of infected mosquitoes, Santa Ana shows the greatest diffusion compared to Paramaribo and, in general,
infected mosquitoes spread more rapidly than infected humans and move into the interior of the region. These
results show the need to apply an adequate control strategy because Zika can become endemic in both scenarios.
For future work we will use the involution operator for the diffusion of humans because it is closer to behavior in
reality and will take into account the time delay for humans and mosquitoes that will be the time it takes to develop
the pathogen.
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