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Abstract
We solve the Cauchy problem for the n-dimensional wave equation using elementary properties of the Bessel
functions.
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Resumen
Resolvemos el problema de Cauchy para la ecuación de las ondas en n dimensiones utilizando propiedades ele-
mentales de las funciones de Bessel.
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1. Introduction. With∇2 = D2
x1x1

+ · · ·+D2
xnxn

the Laplacian in Rn, where

D2
xkxk

=
∂2

∂x2k
, 1 ≤ k ≤ n ,

and Dt and Dtt indicating the first and second order derivatives with respect to the variable t ∈ R, respectively,
the wave equation in the upper half-space Rn+1

+ is given by

(1.1) D2
ttu(x, t) = ∇2u(x, t) , x ∈ Rn, t > 0 ,

and the Cauchy problem for this equation consists of finding u(x, t) that satisfies (1.1) subject to the initial condi-
tions

u(x, 0) = ϕ(x) and Dtu(x, 0) = ψ(x) , x ∈ Rn,

where for simplicity we shall take ϕ and ψ in S(Rn). Applying the Fourier transform to (1.1) in the space variables,
considering t as a parameter, it readily follows that ∇̂2u(ξ, t) = −|ξ|2 û(ξ, t), and so û satisfies

D2
ttû(ξ, t) + |ξ|2û(ξ, t) = 0 , ξ ∈ Rn, t > 0 ,

subject to

û(ξ, 0) = ϕ̂(ξ) and Dtû(ξ, 0) = ψ̂(ξ) , ξ ∈ Rn .

For each fixed ξ ∈ Rn this resulting ordinary differential equation in t is the simple harmonic oscillator
equation with constant angular frequency |ξ|, and so

û(ξ, t) = ϕ̂(ξ) cos(t|ξ|) + ψ̂(ξ)
sin(t|ξ|)
|ξ|

, ξ ∈ Rn, t > 0 .
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Hence, the Fourier inversion formula gives for (x, t) ∈ Rn+1
+ ,

u(x, t) =
1

(2π)n

∫
Rn

ϕ̂(ξ) cos(t|ξ|) eiξ·x dξ(1.2)

+
1

(2π)n

∫
Rn

ψ̂(ξ)
sin(t|ξ|)
|ξ|

eiξ·x dξ .

Since the first integral in (1.2) can be obtained from the second by differentiating with respect to t, we will
concentrate on the latter. The idea is to interpret sin(|ξ|t)/|ξ| as the Fourier transform of a tempered distribution,
and the key ingredient for this are the representation formulas established in [1].

2. Representation Formulas. The reader will note that the formulas are different in character when the
dimension is odd on the one hand and even on the other, this is not unusual in n-dimensional Fourier analysis.

Assume that n is an odd integer greater than or equal to 3. Then, with dσ the element of surface area on
∂B(0, R),

(2.1)
sin(R|ξ|)
|ξ|

= cn

( 1

R

∂

∂R

)(n−3)/2( 1

ωnR

∫
∂B(0,R)

e−ix·ξ dσ(x)
)
,

where R > 0, ωn is the surface measure of the unit ball in Rn, and c−1n = (n− 2)(n− 4) · · · 1.
On the other hand, if n is an even integer greater than or equal to 2,

(2.2)
sin(R|ξ|)
|ξ|

= dn

( 1

R

∂

∂R

)(n−2)/2( 1

vn

∫
B(0,R)

1√
R2 − |x|2

e−ix·ξ dx
)
,

where R > 0, d−1n = n(n− 2)(n− 4) · · · 2, and vn is the volume of the unit ball in Rn.
The purpose of this note is to establish (2.1) and (2.2) using elementary properties of Bessel functions. Jν(x),

the Bessel function of order ν, is defined as the solution of the second order linear equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2) y = 0 .

Several basic properties of the Bessel functions follow readily from their power series expression [2]. They
include the recurrence formula

(2.3)
d

dx
(xνJν(x)) = xνJν−1(x) ,

the integral representation of Poisson type

(2.4) Jν(x) =
(x/2)ν

Γ(ν + 1/2)Γ(1/2)

∫ 1

−1
(1− s2)ν−1/2 eixs ds ,

and the identity

(2.5) J1/2(x) =

√
2√
π

1

x1/2
sin(x) ,

for x > 0.
We will consider the odd dimensional case first. The dimensional constant cn may vary from appearance to

appearance until it is finally determined at the end of the proof. To begin recall that for n ≥ 3, as established in
(18) in [1],

1

ωn−1R

∫
∂B(0,R)

e−ix·ξ dσ(x) = Rn−2
∫ 1

−1
eiR|ξ|s (1− s2)(n−3)/2 ds ,

which combined with (2.4) above with ν − 1/2 = (n− 3)/2 there, i.e., ν = (n− 2)/2, gives

1

ωnR

∫
∂B(0,R)

e−ix·ξ dσ(x) = cnR
n−2 J(n−2)/2(R|ξ|)

(R|ξ|)(n−2)/2

= cn
1

|ξ|n−2
(R|ξ|)(n−2)/2J(n−2)/2(R|ξ|) .
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Now, by (2.3) we obtain that

∂

∂R

( 1

ωnR

∫
∂B(0,R)

e−ix·ξ dσ(x)
)

= cn
1

|ξ|n−2
|ξ| (R|ξ|)(n−2)/2J(n−4)/2(R|ξ|) ,

or

1

R

∂

∂R

( 1

ωnR

∫
∂B(0,R)

e−ix·ξ dσ(x)
)

= cn
1

|ξ|n−4
(R|ξ|)(n−4)/2J(n−4)/2(R|ξ|) .

Thus, applying the above reasoning (n− 3)/2 times, (2.5) gives( 1

R

∂

∂R

)(n−3)/2( 1

ωnR

∫
∂B(0,R)

e−ix·ξ dσ(x)
)

= cn
1

|ξ|
(R|ξ|)1/2J1/2(R|ξ|)

= cn
1

|ξ|
(R|ξ|)1/2 sin(R|ξ|)

(R|ξ|)1/2

= cn
sin(R|ξ|)
|ξ|

.

The value of cn is readily obtained as in [1], and (2.1) has been established.
To consider the case n even, one generally proceeds at this point by a reasoning akin to Hadamard’s method

of descent, i.e., the desired result for the wave equation in even dimension n is derived from the result in odd
dimension n+ 1, as is done for instance in [1] for the representation formulas. On the other hand, Bessel functions
provide the desired result for the wave equation in even dimensions directly, by a method akin to ascent: the result
for the wave equation for dimension n = 2 is obtained explicitly, and for even dimension n + 2 is obtained from
the result in even dimension n.

We will first prove a preliminary result. The dimensional constant dn may vary from appearance to appearance
until it is finally determined at the end of the proof.

Lemma 2.1. The following three statements hold.

(2.6)
∫ ∞
0

sin(Rρ) J0(t ρ) dρ =
1√

R2 − t2
H(R− t) , R, t > 0 ,

where H denotes the Heavyside function.
Furthermore, for ν ≥ 1,

(2.7)
( 1

R

∂

∂R

)(∫ ∞
0

sin(Rρ) ρν−1Jν−1(t ρ) dρ
)

=
1

t

∫ ∞
0

sin(Rρ) ρνJν(tρ) dρ ,

and, consequently, for 1 ≤ j ≤ ν,

(2.8)
( 1

R

∂

∂R

)j(∫ ∞
0

sin(Rρ) ρν−jJν−j(t ρ) dρ
)

=
1

tj

∫ ∞
0

sin(Rρ) ρνJν(tρ) dρ .

Proof. (2.6) is Formula (6) in [2], page 405.
Now,

∂

∂R

(∫ ∞
0

sin(Rρ) ρν−1Jν−1(tρ) dρ
)

=

∫ ∞
0

cos(Rρ) ρνJν−1(tρ) dρ

=
1

tν

∫ ∞
0

cos(Rρ) (tρ)νJν−1(tρ) dρ ,

which, by (2.3), equals

1

tν+1

∫ ∞
0

cos(Rρ)
∂

∂ρ

((
tρ)νJν(tρ)

)
dρ = R

1

t

∫ ∞
0

sin(Rρ) ρνJν(tρ) dρ ,

which proves (2.7).
(2.8) follows by repeated applications of (2.7), and we have finished.
Finally, recall that the Fourier transform of a radial function f on Rn is given by the expression [2],

f̂(|ξ|) = dn
1

|ξ|(n−2)/2

∫ ∞
0

ρn/2 f(ρ) J(n−2)/2(|ξ|ρ) dρ .
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In particular, we have

(2.9)
∫
Rn

sin(R|ξ|)
|ξ|

e−ix·ξ dξ = dn
1

|x|(n−2)/2

∫ ∞
0

ρn/2
sin(Rρ)

ρ
J(n−2)/2(|x|ρ) dρ .

Let now n = 2k be an even integer. Then by (2.9),∫
Rn

sin(R|ξ|)
|ξ|

e−ix·ξ dξ = dn
1

|x|(k−1)

∫ ∞
0

sin(Rρ) ρk−1Jk−1(|x|ρ) dρ ,

and, therefore, (2.8) with ν = j = k − 1 there yields∫
Rn

sin(R|ξ|)
|ξ|

e−ix·ξ dξ = dn
1

|x|(k−1)

∫ ∞
0

sin(Rρ) ρ(k−1)Jk−1(|x|ρ) dρ

= dn

( 1

R

∂

∂R

)(k−1)(∫ ∞
0

sin(Rρ) J0(|x| ρ) dρ
)

= dn

( 1

R

∂

∂R

)(k−1)( 1√
R2 − |x|2

H(R− |x|)
)
.

Thus by the Fourier inversion formula,

sin(R|ξ|)
|ξ|

= dn

( 1

R

∂

∂R

)(n−2)/2(∫
Rn

1√
R2 − |x|2

H(R− |x|) e−ix·ξ dx
)

= dn

( 1

R

∂

∂R

)(n−2)/2( 1

vn

∫
B(0,R)

1√
R2 − |x|2

e−ix·ξ dx
)
,

The constant dn is readily determined as in [1], and we have finished.

REFERENCES

[1] Torchinsky, A., The Fourier transform and the wave equation, Amer. Math. Monthly 118(7) (2011), 599-609.
[2] Watson, G. N., A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge,

1995.


