

SELECCIONES MATEMÁTICAS

Universidad Nacional de Trujillo ISSN: 2411-1783 (Online) Vol. 06(01): 26 - 30 (2019)

List-Chromatic Number and Chromatically Unique of the Graph $K_2^r + O_k$.

Número de lista cromática y cromáticidad única del grafo $K_2^r + O_k$.

Le Xuan Hung*

Received, Apr. 17, 2019

Accepted, Jun. 22, 2019

DOI: http://dx.doi.org/10.17268/sel.mat.2019.01.04

Abstract

In this paper, we determine list-chromatic number and characterize chromatically unique of the graph $G = K_2^r + O_k$. We shall prove that ch(G) = r + 1 if $1 \le k \le 2$, G is χ -unique if $1 \le k \le 3$.

Keywords. Chromatic number, list- chromatic number, chromatic polynomial, chromatically unique graph, complete r-partite graph.

Resumen

En este artículo, determinamos el número de lista cromática y caracterizamos cromáticamente el grafo $G = K_2^r + O_k$. Probaremos que ch(G) = r + 1 si $1 \le k \le 2$, G es χ -único si $1 \le k \le 3$.

Palabras clave. Número Cromático, polinomio cromático, grafo único cromaticmente grafo completo r-partido.

1. Introduction. All graphs considered in this paper are finite undirected graphs without loops or multiple edges. If G is a graph, then V(G) and E(G) (or V and E in short) will denote its vertex-set and its edge-set, respectively. The set of all neighbours of a subset $S \subseteq V(G)$ is denoted by $N_G(S)$ (or N(S) in short). Further, for $W \subseteq V(G)$ the set $W \cap N_G(S)$ is denoted by $N_W(S)$. If $S = \{v\}$, then N(S) and $N_W(S)$ are denoted shortly by N(v) and $N_W(v)$, respectively. For a vertex $v \in V(G)$, the degree of v (resp., the degree of v with respect to W), denoted by deg(v) (resp., $deg_W(v)$), is $|N_G(v)|$ (resp., $|N_W(v)|$). The subgraph of G induced by $W \subseteq V(G)$ is denoted by G[W]. The empty and complete graphs of order v are denoted by v and v and v are respectively. Unless otherwise indicated, our graph-theoretic terminology will follow [2].

A graph G=(V,E) is called r-partite graph if V admits a partition into r classes $V=V_1\cup V_2\cup\ldots\cup V_r$ such that the subgraphs of G induced by $V_i, i=1,\ldots,r$, is empty. An r-partite graph in which every two vertices from different partition classes are adjacent is called complete r-partite graph and is denoted by $K_{|V_1|,|V_2|,\ldots,|V_r|}$. The complete r-partite graph $K_{|V_1|,|V_2|,\ldots,|V_r|}$ with $|V_1|=|V_2|=\ldots=|V_r|=s$ is denoted by K_s^r

Let $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ be two graphs such that $V_1 \cap V_2 = \emptyset$. Their *union* $G = G_1 \cup G_2$ has, as expected, $V(G) = V_1 \cup V_2$ and $E(G) = E_1 \cup E_2$. Their *join* defined is denoted $G_1 + G_2$ and consists of $G_1 \cup G_2$ and all edges joining V_1 with V_2 .

Let $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ be two graphs. We call G_1 and G_2 isomorphic, and write $G_1 \cong G_2$, if there exists a mapping $f: V_1 \to V_2$ with $uv \in E_1$ if and only if $f(u)f(v) \in E_2$ for all $u, v \in V_1$.

Let G = (V, E) be a graph and λ is a positive integer.

A λ -coloring of G is a mapping $f:V(G)\to\{1,2,\ldots,\lambda\}$ such that $f(u)\neq f(v)$ for any adjacent vertices $u,v\in V(G)$. The smallest positive integer λ such that G has a λ -coloring is called the *chromatic number* of G and is denoted by $\chi(G)$. We say that a graph G is n-chromatic if $n=\chi(G)$.

Two λ -colorings f and g are considered different if and only if there exists $u \in V(G)$ such that $f(u) \neq g(u)$. Let $P(G, \lambda)$ (or simply P(G) if there is no danger of confusion) denote the number of distinct λ -colorings of G. It is well-known that for any graph G, $P(G, \lambda)$ is a polynomial in λ , called the *chromatic polynomial* of G. The notion of chromatic polynomials was first introduced by Birkhoff [4] in 1912 as a quantitative approach to tackle

^{*}HaNoi University for Natural Resources and Environment 41 A, Phu Dien Road, Phu Dien precinct, North Tu Liem district, Hanoi, Vietnam(lxhung@hunre.edu.vn).

This work is licensed under the Creative Commons Attribution-NoComercial-ShareAlike 4.0.

the four-color problem. Two graphs G and H are called *chromatically equivalent* or in short χ -equivalent, and we write in notation $G \sim H$, if $P(G, \lambda) = P(H, \lambda)$. A graph G is called *chromatically unique* or in short χ -unique if $G' \cong G$ (i.e., G' is isomorphic to G) for any graph G' such that $G' \sim G$. For examples, all cycles are χ -unique [10]. The notion of χ -unique graphs was first introduced and studied by Chao and Whitehead [7] in 1978. The readers can see the surveys [10], [11] and [13] for more informations about χ -unique graphs.

Let $(S_v)_{v \in V}$ be a family of sets. We call a coloring f of G with $f(v) \in S_v$ for all $v \in V$ is a list coloring from the lists S_v . The graph G is called λ -list-colorable, or λ -choosable, if for every family $(S_v)_{v \in V}$ with $|S_v| = \lambda$ for all v, there is a coloring of G from the lists S_v . The smallest positive integer λ such that G has a λ -choosable is called the list-chromatic number, or choice number of G and is denoted by ch(G).

In this paper, we shall determine list-chromatic number and characterize chromatically unique for the graph $G=K_2^r+O_k$. Namely, we shall prove that ch(G)=r+1 if $1\leq k\leq 2$ (Section 2), G is χ -unique if $1\leq k\leq 3$ (Section 3).

2. List colorings. We need the following lemmas 1–4 to prove our results.

Lemma 1 ([3]). If K_n is a complete graph on n vertices then $\chi(K_n) = n$.

Lemma 2. If $G = K_{n_1, n_2, ..., n_r}$ is a complete r-partite graph then $\chi(G) = r$.

Proof. It is clear that the complete graph K_r is a subgraph of $G = K_{n_1,n_2,...,n_r}$. So $\chi(G) \geq r$. Let $V(G) = V_1 \cup V_2 \cup ... \cup V_r$ is a partition of V(G) such that for every $i = 1, ..., r, |V_i| = n_i$ and the subgraphs of G induced by V_i , is empty graph. Set mapping

$$f: V(G) \to \{1, 2, \dots, r\}$$

such that f(v)=i if $v\in V_i$ for every $i=1,2,\ldots,r$. Then f is a r-coloring of G, ie., $\chi(G)\leq r$. Thus, $\chi(G)=r$. \square

Lemma 3 ([9]). If G is a graph then $ch(G) \ge \chi(G)$.

Lemma 4 ([9]). If G_1 is a subgraph of G_2 then $ch(G_1) \leq ch(G_2)$.

We determine list-chromatic number for complete graphs.

Lemma 5. If K_n is a complete graph on n vertices then $ch(K_n) = n$.

Proof. By Lemma 1 and Lemma 3, $ch(K_n) \ge n$. Set $V(K_n) = \{v_1, v_2, \dots, v_n\}$ and S_{v_i} is a list of colors of V_i such that $|S_{v_i}| = n$ for every $i = 1, 2, \dots, n$. Let f be a coloring of K_n such that

$$f(v_1) \in S_{v_1}, f(v_2) \in S_{v_2} \setminus \{f(v_1)\}, \dots, f(v_n) \in S_{v_n} \setminus \{f(v_1), f(v_2), \dots, f(v_{n-1})\}.$$

Then f is a n-choosable for K_n , ie., $ch(K_n) \leq n$. Thus, $ch(K_n) = n$. \square

Now we determine list-chromatic number for the graph $G = K_2^r$.

Theorem 6.

List-chromatic number of $G = K_2^r$ is

$$ch(G) = r$$
.

Proof. By Lemma 2 and Lemma 3, we have $ch(G) \ge r$. Now we prove $ch(G) \le r$ by induction on r. For r = 1 the assertion holds, so let r > 1 and assume the assertion for smaller values of r.

Let $V(G) = V_1 \cup V_2 \cup ... \cup V_r$ is a partition of V(G) such that for every i = 1, ..., r, $|V_i| = 2$ and the subgraphs of G induced by V_i , is empty graph. Set

$$V_i = \{v_{i1}, v_{i2}\}$$

for every $i=1,\ldots,r$. Let $S_{v_{ij}}$ be the lists of colors of v_{ij} such that $|S_{v_{ij}}|=r$ for every $i=1,2,\ldots,r; j=1,2$. Now we consider separately two cases.

Case 1: There exists $i \in \{1, 2, ..., r\}$ such that $S_{v_{i1}} \cap S_{v_{i2}} \neq \emptyset$.

Without loss of generality we may assume that $S_{v_{11}} \cap S_{v_{12}} \neq \emptyset$ and $a \in S_{v_{11}} \cap S_{v_{12}}$. set $G' = G - V_1$. It is clear that G' is a graph K_2^{r-1} . Again set

$$S'_{v_{i,i}} \subseteq S_{v_{i,i}} \setminus \{a\}$$

such that $|S'_{v_{ij}}| = r - 1$ for every i = 2, 3, ..., r; j = 1, 2.

By the induction hypothesis, there exists (r-1)-choosable g of G' with the lists of colors $S'_{v_{ij}}$ for every i=1 $2,3,\ldots,r; j=1,2.$

Let f be the coloring of G such that

$$f(v_{ij}) = g(v_{ij})$$
 for every $i = 2, 3, ..., r; j = 1, 2,$

$$f(v_{1j}) = a$$
 for every $j = 1, 2$.

Then f is a r-choosable for G, ie., $ch(G) \le r$.

Case 2:
$$S_{v_{i1}} \cap S_{v_{i2}} = \emptyset$$
 for every $i=1,2,\ldots,r$.
 Let $b \in S_{v_{11}}$. Set $G'=G-V_1=K_2^{r-1}$ and

Let
$$b \in S_{v...}$$
. Set $G' = G - V_1 = K_2^{r-1}$ and

$$S'_{v_{ij}} \subseteq S_{v_{ij}} \setminus \{b\}$$

such that $|S'_{v_{ij}}| = r - 1$ for every i = 2, 3, ..., r; j = 1, 2.

By the induction hypothesis, there exists (r-1)-choosable g of G' with the lists of colors $S'_{v_{ij}}$ for every i=1 $2, 3, \ldots, r; j = 1, 2$. Since $|S_{v_{11}} \cup S_{v_{12}}| = 2r$ and |V(G')| = 2(r-1), it follows that

$$|(S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))| \ge 2.$$

We again divide this case into two subcases.

Subcase 2.1: $((S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))) \cap S_{v_{12}} \neq \emptyset$.

Let $c \in ((S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))) \cap S_{v_{12}}$. Let f be the coloring of G such that

$$f(v_{ij}) = g(v_{ij})$$
 for every $i = 2, 3, ..., r; j = 1, 2,$

$$f(v_{11}) = b, f(v_{12}) = c.$$

Then f is a r-choosable for G, ie., $ch(G) \le r$.

Subcase 2.2:
$$((S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))) \cap S_{v_{12}} = \emptyset$$

Subcase 2.2: $((S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))) \cap S_{v_{12}} = \emptyset$. By $|(S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))| \ge 2$, there exists $d \in (S_{v_{11}} \cup S_{v_{12}}) \setminus g(V(G'))$, $d \ne b$. It is clear that $b, d \in S_{v_{11}}$. Since $|S_{v_{12}}|=r$ and $|g(V(G'))|\leq 2(r-1)$, there exists $i\in\{2,3,\ldots,r\}$ such that $g(v_{i1}),g(v_{i2})\in S_{v_{12}}$. Without loss of generality we may assume that $g(v_{21}), g(v_{22}) \in S_{v_{12}}$. Let $e \in (S_{v_{21}} \cup S_{v_{22}}) \setminus g(V(G'))$. First assume that $e \in S_{v_{21}}$. If $e \neq b$ then coloring f of G such that

$$f(v_{ij}) = g(v_{ij})$$
 for every $i = 3, 4, ..., r; j = 1, 2$,

$$f(v_{22}) = g(v_{22}), f(v_{21}) = e,$$

$$f(v_{11}) = b, f(v_{12}) = g(v_{21}).$$

is a r-choosable for G. If e = b then coloring f of G such that

$$f(v_{ij}) = g(v_{ij})$$
 for every $i = 3, 4, ..., r; j = 1, 2,$

$$f(v_{22}) = g(v_{22}), f(v_{21}) = e,$$

$$f(v_{11}) = d, f(v_{12}) = g(v_{21}).$$

is a r-choosable for G. By symmetry, we can show that $ch(G) \leq r$ if $e \in S_{v_{22}}$. \square

Theorem 7.

If $1 \le k \le 2$ then list-chromatic number of $G = K_2^r + O_k$ is

$$ch(G) = r + 1.$$

Proof. It is not difficult to see that $G = K_2^r + O_k$ is a complete (r+1)-partite graph. By Lemma 2 and Lemma 3, we have $ch(G) \ge r+1$. Now we prove $ch(G) \le r+1$. By $1 \le k \le 2$, it follows that $G=K_2^r+O_k$ is a subgraph of K_2^{r+1} . By Lemma 4 and Theorem 6, $ch(G) \leq r+1$. Thus, ch(G) = r+1. \square

3. Chromatic uniqueness. The results of the following lemmas were proved in [12]. So we omit their proofs here.

Lemma 8 ([12]). Let G and H be two χ -equivalent graphs. Then

- (i) |V(G)| = |V(H)|;
- (ii) |E(G)| = |E(H)|;
- (iii) $\chi(G) = \chi(H)$;
- (iv) G is connected if and only if H is connected;
- (v) G is 2-connected if and only if H is 2-connected.

We need the following lemmas 9-11 to prove our results.

Lemma 9. Let $G = (V_1 \cup V_2 \cup \ldots \cup V_{r+1}, E)$ be a (r+1)-partite graph with $|V_1| \geq |V_2| \geq \ldots \geq |V_{r+1}|$ and $|V_1| + |V_2| + \ldots + |V_{r+1}| = 2r + 1$. Then

$$|E| \le 2r^2$$
.

 $|E|=2r^2$ if and only if G is a complete (r+1)-partite graph $K_{|V_1|,|V_2|,\dots,|V_{r+1}|}$ with

$$|V_1| = |V_2| = \ldots = |V_r| = 2, |V_{r+1}| = 1.$$

Proof. We prove lemma by induction on r. For r=1 the assertion holds, so let r>1 and assume the assertion for smaller values of r. If $|V_{r+1}| \geq 2$ then $|V_1| + |V_2| + \ldots + |V_{r+1}| \geq 2r+2$, a contradiction. So, $|V_{r+1}| = 1$. If $|V_r| \geq 3$ then $|V_1| + |V_2| + \ldots + |V_{r+1}| \geq 3r+1$, a contradiction. Therefore, $|V_r| \leq 2$. Now we consider separately two cases.

Case 1: There exists $i \in \{1, 2, ..., r\}$ such that $|V_i| = 2$. Set $G' = G - V_i$. It is clear that G' is a r-partite graph

$$(V_1 \cup V_2 \cup \ldots \cup V_{i-1} \cup V_{i+1} \cup \ldots \cup V_{r+1}, E')$$

By the induction hypothesis,

$$|E'| < 2(r-1)^2$$
.

We have

$$|E| \le |E'| + |V_i|(|V_1| + \dots + |V_{i-1}| + |V_{i+1}| + \dots + |V_{r+1}|)$$

$$\le 2(r-1)^2 + 2(2r-1)$$

$$= 2r^2.$$

It is not difficult to see that $|E|=2r^2$ if and only if G is a complete (r+1)-partite graph $K_{|V_1|,|V_2|,\dots,|V_{r+1}|}$ with

$$|V_1| = |V_2| = \ldots = |V_r| = 2, |V_{r+1}| = 1.$$

Case 2: $|V_i| \neq 2$ for every i = 1, 2, ..., r.

In this case, $|V_1| \ge 3$. Let $h \in \{1, 2, ..., r\}$ such that $|V_h| = 1$ and $|V_{h-1}| \ge 3$. Let $G_1 = K_{p_1, p_2, ..., p_{r+1}}$ be a complete (r+1)-partite graph such that $p_h = |V_h| + 1$, $p_{h-1} = |V_{h-1}| - 1$ and $p_i = |V_i|$ for every $i \in \{1, 2, ..., r\} \setminus \{h-1, h\}$. By Case 1,

$$|E(G_1)| \le 2r^2.$$

We have

$$\begin{split} |E(G_1)| &= \sum_{1 \leq i < j \leq r+1} p_i p_j \\ &= \sum_{i,j \in \{1,\dots,r+1\} \backslash \{h-1,h\}} p_i p_j + \sum_{i \in \{1,\dots,r+1\} \backslash \{h-1,h\}} p_i p_{h-1} + \\ &+ \sum_{i \in \{1,\dots,r+1\} \backslash \{h-1,h\}} p_i p_h + p_{h-1} p_h \\ &= \sum_{i,j \in \{1,\dots,r+1\} \backslash \{h-1,h\}} |V_i||V_j| + \sum_{i \in \{1,\dots,r+1\} \backslash \{h-1,h\}} |V_i|(|V_{h-1}|-1) + \\ &+ \sum_{i \in \{1,\dots,r+1\} \backslash \{h-1,h\}} |V_i|(|V_h|+1) + (|V_{h-1}|-1)(|V_h|+1) \\ &= \sum_{1 \leq i < j \leq r+1} |V_i||V_j| + |V_{h-1}| - |V_h| - 1 \\ &\geq |E|+1. \end{split}$$

It follows that $|E| < 2r^2$. \square

By argument similar to Lemma 9, we can prove the lemmas below also are true. We omit their proof here. **Lemma 10.** Let $G = (V_1 \cup V_2 \cup \ldots \cup V_{r+1}, E)$ be a (r+1)-partite graph with $|V_1| + |V_2| + \ldots + |V_{r+1}| = 2r + 2$. Then

$$|E| \le 2r(r+1).$$

|E|=2r(r+1) if and only if G is a complete (r+1)-partite graph $K_{|V_1|,|V_2|,\ldots,|V_{r+1}|}$ with

$$|V_1| = |V_2| = \dots = |V_r| = |V_{r+1}| = 2.$$

Lemma 11. Let $G = (V_1 \cup V_2 \cup \ldots \cup V_{r+1}, E)$ be a (r+1)-partite graph with $|V_1| \le |V_2| \le \ldots \le |V_{r+1}|$ and $|V_1| + |V_2| + \ldots + |V_{r+1}| = 2r + 3$. Then

$$|E| \le 2r(r+2).$$

|E|=2r(r+2) if and only if G is a complete (r+1)-partite graph $K_{|V_1|,|V_2|,\ldots,|V_{r+1}|}$ with

$$|V_1| = |V_2| = \ldots = |V_r| = 2, |V_{r+1}| = 3.$$

Now we characterize chromatically unique for the graph $G = K_2^r + O_k$.

Theorem 12. The graph $G = K_2^r + O_k$ is χ -unique if $1 \le k \le 3$.

Proof. Suppose that $1 \le k \le 3$. Let G' = (V', E') is a graph such that $G' \sim G$. Since Lemma 2 and (iii) of Lemma 8 we have

$$\chi(G') = \chi(G) = r + 1.$$

Let G' has a coloring f using r+1 colors $1, 2, \ldots, r+1$. Set

$$V'_i = \{ u \in V' \mid f(u) = i \}.$$

for every $i=1,2,\ldots,r+1$. It follows that G' is a (r+1)-partite graph $(V_1'\cup V_2'\cup\ldots\cup V_{r+1}',E')$. By (i) and (ii) of Lemma 8 we have

$$|V(G')| = |V(G)|, |E(G')| = |E(G)|.$$

By Lemma 9, Lemma 10 and Lemma 11, it is not difficult to see that $G'\cong G$. Thus G is χ -unique.

REFERENCES

- [1] Behzad, M. Graphs and thei chromatic number, Doctoral Thesis (Michigan State University), 1965.
- [2] Behzad, M. and Chartrand, G.; *Introduction to the theory of graphs*, Allyn and Bacon, Boston 1971.
- [3] Behzad, M., Chartrand G. and Cooper, J.; The coloring numbers of complete graphs, J. London Math. Soc. 42 (1967), 226 228.
- [4] Birkhoff, G. D. A determinant formula for the number of ways of coloring a map, Annals of Math. 14 (2) (1912) 42-46.
- [5] Bondy, J.A. and Murty, U.S.R.; Graph theory with applications, MacMillan, 1976.
- [6] Brandstädt, A., Hammer, P.L., Le, V.B. and Lozin, V.V. Bisplit graphs, Discrete Math. 299 (2005) 11-32.
- [7] Chao, C.Y., Whitehead, Jr.E.G.; On chromatic equivalence of graphs. In: Theory and Applications of Graphs, ed. Y. Alavi and D.R. Lick, Springer Lecture Notes in Math. 642 (1978) 121–131.
- [8] Chvatal, V. and Hammer, P.L.; Aggregation of inequalities in integer programming, Annals Disc. Math. 1 (1977) 145–162.
- [9] Diestel, R.; Graph Theory, Springer Verlag New Your 2000.
- [10] Koh, K.M. and Teo, K.L.; The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259–285.
- [11] Koh, K.M. and Teo, K.L. The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59–78.
- [12] Read,R.C. An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71.
- [13] Ngo Dac Tan and Le Xuan Hung, On colorings of split graphs, Acta Mathematica Vietnammica, Volume 31, Number 3, 2006, pp. 195
- [14] Vizing, V.G. On an estimate of the chromatic class of a p-graph, Discret. Analiz. 3 (1964) 23-30. (In Russian)
- [15] Wilson, R.J. Introduction to graph theory, Longman group ltd, London (1975).