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Abstract
In this paper, we determine list-chromatic number and characterize chromatically unique of the graph G = K} +
Oy. We shall prove that ch(G) =1+ 1if1 < k <2, G is x-unique if 1 <k < 3.
Keywords. Chromatic number, list- chromatic number, chromatic polynomial, chromatically unique graph, complete
r-partite graph.

Resumen
En este articulo, determinamos el niimero de lista cromdtica y caracterizamos cromdticamente el grafo G =
K7 + Og. Probaremos que ch(G) =7+ 1si1 < k <2, G es x-tinico si 1 < k < 3.
Palabras clave. Nimero Cromadtico, polinomio cromdtico, grafo tnico cromaticmente grafo completo r-partido.

1. Introduction. All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph, then V(G) and E(G) (or V and F in short) will denote its vertex-set and its edge-set,
respectively. The set of all neighbours of a subset S C V(G) is denoted by N¢ (S) (or N(.S) in short). Further, for
W C V(G) the set W N Ng(S) is denoted by Ny (S). If S = {v}, then N(S) and Ny (S) are denoted shortly
by N(v) and Nw (v), respectively. For a vertex v € V(G), the degree of v (resp., the degree of v with respect to
W), denoted by deg(v) (resp., degy, (v)), is | Ng (v)| (resp., | Nw (v)]). The subgraph of G induced by W C V(G)
is denoted by G[W]. The empty and complete graphs of order n are denoted by O,, and K, respectively. Unless
otherwise indicated, our graph-theoretic terminology will follow [2].

A graph G = (V, E) is called r-partite graph if V' admits a partition into 7 classes V = V; UV, U ... UV,

such that the subgraphs of G induced by V;, ¢ = 1,...,r, is empty. An r-partite graph in which every two vertices
from different partition classes are adjacent is called complete r-partite graph and is denoted by Ky, | |vs),...,|v,] -
The complete 7-partite graph K|y, | vy|,....|v,| With [Vi| = [V2| = ... = |[V;| = s is denoted by K7

Let G1 = (V4, Ey), Go = (Va, E5) be two graphs such that V3 N Vo = (). Their union G = G7 U G has, as
expected, V(G) = V1 UV, and E(G) = E; U Es. Their join defined is denoted G; + G and consists of G1 U Ga
and all edges joining V7 with V5.

Let Gy = (W1, E1), Go2 = (Va, E5) be two graphs. We call Gy and G2 isomorphic, and write G1 2 G, if
there exists a mapping f : Vi — V5 with uv € E; if and only if f(u)f(v) € Es forall u,v € V;.

Let G = (V, E) be a graph and ) is a positive integer.

A A-coloring of G is a mapping f : V(G) — {1,2,..., A} such that f(u) # f(v) for any adjacent vertices
u,v € V(G). The smallest positive integer A such that G has a A-coloring is called the chromatic number of G
and is denoted by x(G). We say that a graph G is n-chromatic if n = x(G).

Two A-colorings f and g are considered different if and only if there exists u € V(G) such that f(u) # g(u).
Let P(G, ) (or simply P(G) if there is no danger of confusion) denote the number of distinct A-colorings of G.
It is well-known that for any graph G, P(G, \) is a polynomial in A, called the chromatic polynomial of G. The
notion of chromatic polynomials was first introduced by Birkhoff [4] in 1912 as a quantitative approach to tackle
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the four-color problem. Two graphs G and H are called chromatically equivalent or in short x-equivalent, and we
write in notation G ~ H, if P(G,\) = P(H,\). A graph G is called chromatically unique or in short x-unique
if G’ = G (i.e., G’ is isomorphic to G) for any graph G’ such that G’ ~ G. For examples, all cycles are y-unique
[10]. The notion of y-unique graphs was first introduced and studied by Chao and Whitehead [7] in 1978. The
readers can see the surveys [10], [11] and [13] for more informations about x-unique graphs.

Let (S,)vev be a family of sets. We call a coloring f of G with f(v) € S, forall v € V' is a list coloring from
the lists S,,. The graph G is called \-list-colorable, or A-choosable, if for every family (S, ),cv with |.S,| = A for
all v, there is a coloring of G from the lists .S,,. The smallest positive integer A such that G has a A-choosable is
called the list-chromatic number, or choice number of G and is denoted by ch(G).

In this paper, we shall determine list-chromatic number and characterize chromatically unique for the graph
G = K} + Oy. Namely, we shall prove that ch(G) = r + 1if 1 < k < 2 (Section 2), G is x-unique if 1 < k < 3
(Section 3).

2. List colorings. We need the following lemmas 1—4 to prove our results.

Lemma 1 ([3]). If K,, is a complete graph on n vertices then x(K,,) = n.

Lemma 2. If G = K,,, n,, .. n, is a complete r-partite graph then x(G) = r.

Proof. Tt is clear that the complete graph K, is a subgraph of G = K, n,....n.. S0 x(G) > r. Let
V(G) = V1 UV, U. ..UV, is a partition of V(G) such that for every ¢ = 1,...,r, |V;| = n,; and the subgraphs of
G induced by V;, is empty graph. Set mapping

f:V(G) —={1,2,...,7}

such that f(v) = ¢ifv € V; foreveryi = 1,2,...,r. Then f is a r-coloring of G, ie., x(G) < r. Thus, x(G) = r.
a

Lemma 3 ([9]). If G is a graph then ch(G) > x(G).

Lemma 4 ([9]). If G; is a subgraph of G2 then ch(G1) < ch(G2).

We determine list-chromatic number for complete graphs.

Lemma 5. If K, is a complete graph on n vertices then ch(K,) = n.

Proof. By Lemma 1 and Lemma 3, ch(K,,) > n. Set V(K,,) = {v1,v2,...,v,} and S, is a list of colors of
V; such that |S,,| = n for every i = 1,2,...,n. Let f be a coloring of K, such that

f('Ul) € Svuf(UQ) € sz \ {f(vl)}7 o ~7f('Un) € Svn \ {f(vl)vf(v2)7 e -af(vnfl)}'

Then f is a n-choosable for K, ie., ch(K, ) < n. Thus, ch(K,) =n.0

Now we determine list-chromatic number for the graph G = K.
Theorem 6.
List-chromatic number of G = K3 is

ch(G) =r.

Proof. By Lemma 2 and Lemma 3, we have ch(G) > r. Now we prove ch(G) < r by induction on r. For
r = 1 the assertion holds, so let » > 1 and assume the assertion for smaller values of r.

Let V(G) = V; UV, U... UV, is a partition of V(G) such that for every ¢ = 1,...,r, |V;| = 2 and the
subgraphs of G induced by V;, is empty graph. Set
Vi = {vi1, via}
foreveryi=1,...,r. Let.S,,; be the lists of colors of v;; such that | S, | = r foreveryi =1,2,...,7r;j = 1,2.

Now we consider separately two cases.

Case 1: There exists i € {1,2,...,r} such that S,,, NS, # 0.

Without loss of generality we may assume that S,,, N.S,,, # 0 anda € S,,, N S,,,. set G = G — Vi. Itis
clear that G’ is a graph K5~ '. Again set

S’Z},J g S'Uij \{a}

suchthat|S{)ij\ =r—1foreveryi=23,...,r;5=1,2.
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By the induction hypothesis, there exists (r — 1)-choosable g of G’ with the lists of colors 51/)7:7' for every ¢ =
2,3,...,m;5=1,2. '
Let f be the coloring of G such that
f(vij) = g(vij) forevery i =2,3,...,r;j =1,2,
f(v1;) = aforevery j =1,2.
Then f is a r-choosable for G, ie., ch(G) < r.
Case 2: Sy, NSy, = Oforeveryi=1,2,...,r.
Letbc S,,,.SetG' =G —V; = K ' and

S’Z}ij < Svij \ {b}

such that |S,’J7\ =r—1foreveryi=23,...,r;5=1,2.
By the induction hypothesis, there exists (r — 1)-choosable g of G’ with the lists of colors S;ij for every i =
2,3,...,r;5 =1,2. Since |Sy,; U Sy,,| = 2r and |[V(G'| = 2(r — 1), it follows that

V11

|(Suyy U Suy,) \ g(V(G")] > 2.

We again divide this case into two subcases.

Subcase 2.1: ((Sy,; U Sy,) \ g(V(G))) NSy, # 0.

Let ¢ € ((Syy, U Sep,) \ 9g(V(G")))N'S,,,. Let f be the coloring of G such that

f(vij) = g(vij) forevery i =2,3,...,r;j =1,2,

f(vi1) =0, f(vi2) = c.

Then f is a r-choosable for G, ie., ch(G) < r.

Subcase 2.2: ((Sy,, U Suy,) \g(V(G"))) NSy, = 0.

By |(Syy; USu,)\g(V(G))| > 2, there exists d € (Sy,, US,,,)\g(V(G)), d # b. Itis clear thatb,d € S,,,, .
Since |Sy,,| = rand [g(V(G"))| < 2(r—1), there exists ¢ € {2,3,...,r} such that g(v;1), g(vi2) € Sy,,. Without
loss of generality we may assume that g(va1), g(va2) € Sy,- Let e € (Sy,y U Sy,,) \ g(V(G')). First assume that
e € Sy,, - If e # b then coloring f of G such that

f(vij) = g(v;;) forevery i = 3,4,...,r;j =1,2,

f(vaz) = g(v22), f(v21) =,

f(Ull) =b, f(U12) = g(Uzl)-
is a r-choosable for G. If e = b then coloring f of G such that

f(vij) = g(vij) forevery i = 3,4,...,r;j =1,2,

f(v22) = g(va2), f(v21) = e,

flon) =d. f(v12) = g(va1).
is a r-choosable for G. By symmetry, we can show that ch(G) < rife € S,

Theorem 7.

If 1 < k < 2 then list-chromatic number of G = K5 + Oy, is

o

22°

ch(G)=r+1.

Proof. Tt is not difficult to see that G = K} + Oy, is a complete (r + 1)-partite graph. By Lemma 2 and Lemma
3, we have ch(G) > r + 1. Now we prove ch(G) < r+ 1. By 1 < k < 2, it follows that G = K7 + Oy is a
subgraph of K3 '. By Lemma 4 and Theorem 6, ch(G) < r + 1. Thus, ch(G) =r + 1.0

3. Chromatic uniqueness. The results of the following lemmas were proved in [12]. So we omit their proofs
here.

Lemma 8 ([12]). Let G and H be two x-equivalent graphs. Then

() |V(G)| = |V(H)

(ii) |[B(G)| = | E(H)

(iii) x(G) = x(H);

(iv) G is connected if and only if H is connected;

(v) G is 2-connected if and only if H is 2-connected.

s

>

We need the following lemmas 9-11 to prove our results.
Lemma9. Let G = (Vi UVo U ... UV,qq, E) be a (r + 1)-partite graph with |V1| > |Va| > ... > |V,44]
and |V1| + |[Va| + ...+ |Veg1| = 2r + 1. Then

|E| < 2r2.
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|E| = 2r? if and only if G is a complete (r + 1)-partite graph K\vi |, Vol |Vyia | With

Vil = Vol =... = [Vo| = 2,[Vopu| = 1.

Proof. We prove lemma by induction on r. For 7 = 1 the assertion holds, so let 7 > 1 and assume the assertion
for smaller values of r. If |V;..1]| > 2 then |V4| + |Va| + ... + |Viy1| > 21 + 2, a contradiction. So, |V,41| = 1.
If |V,.] > 3 then |Vi| + |Va| + ... + |Vix1]| > 3r + 1, a contradiction. Therefore, |V,.| < 2. Now we consider
separately two cases.

Case 1: There exists i € {1,2,...,r} such that |V;| = 2.

Set G’ = G — V;. Itis clear that G’ is a r-partite graph

(ViuVoU...UV, yUVi U...UV,yq, E)

By the induction hypothesis,
|E'| < 2(r —1)°.
We have

|E| < [E'[+|Vil(IVi] + .+ [Vica| + Viga] + oo 4+ [Viga )
<20r—1)242(2r — 1)
=272,
It is not difficult to see that |E| = 2r? if and only if G is a complete (r + 1)-partite graph K|y, | |v,|,...,|v,,| With
Vil =1Val = ... = V[ =2,[Veiu| = 1.
Case 2: |V;| # 2 foreveryi =1,2,... .
In this case, |Vi| > 3. Let h € {1,2,...,7} such that [V},| = 1 and |V} _1| > 3. Let Gy = Ky, py....posy

be a complete (r + 1)-partite graph such that pp, = |Vi,| + 1, pp—1 = |Vh—1] — 1 and p; = |V;| for every
ie{l,2,...,7}\{h—1,h}. By Case 1,

|E(Gy)| < 2r2.
We have
EG)l= > i

1<i<j<r+1

= Z pipj + Z DiPh—1 +
i,je{l,..,r+1}\{h—1,h} ie{l,...,r+11\{h—1,h}

+ Z DiDh + Ph—1DPh
ie{l,...,r+1}\{h—1,h}

= > VillVs] + > Vil(IVi-1] = 1) +
i,5€{1,...,r+1}\{h—1,h} i€{l,....,r+1}\{h—1,h}

+ > Vil([Va| + 1) + ([Vi—1] = D(|Va] + 1)

i€{1,...,r+ 1\ {h—1,h}

= > |VillVil 4+ Vil = [Val - 1
1<i<j<r41

> |E|+1.
It follows that |E| < 2r2. 0

By argument similar to Lemma 9, we can prove the lemmas below also are true. We omit their proof here.
Lemma 10. Ler G = (ViUVLU. . .UV, 41, E) be a (r+1)-partite graph with |V1|+|Va|+. . .+|Veg1| = 2r+2.
Then

|E| <2r(r+1).
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|E| = 2r(r + 1) if and only if G is a complete (r + 1)-partite graph K\v,| |v,|.....|v,,,| With

Vil = Vel = ... = Vo] = [Voqa| = 2.

Lemma 11. Let G = (Vi U Vo U ... U V,qq, E) be a (r + 1)-partite graph with |V1| < |Va| < ... < |Vi44]
and [Vi| +|Val 4+ ...+ [Vig1| = 2r + 3. Then

|E| < 2r(r+2).
|E| = 2r(r + 2) ifand only if G is a complete (r + 1)-partite graph K|v, | |vs|....,|v, .| With

Vil = [Val = ... = Vi] = 2,[Vysa| = 3.

Now we characterize chromatically unique for the graph G = K35 + Oy.

Theorem 12. The graph G = K + Oy is x-unique if 1 < k < 3.

Proof. Suppose that 1 < k < 3. Let G’ = (V', E’) is a graph such that G’ ~ G. Since Lemma 2 and (iii) of
Lemma 8 we have

X(@) = X(@) =7 +1.

Let G’ has a coloring f using r + 1 colors 1,2,...,r + 1. Set

V= {ueV'| fu)=i}.

forevery i = 1,2,...,r + 1. It follows that G’ is a (r + 1)-partite graph (V/ UV U ... UV/ |, E’). By (i) and
(ii) of Lemma 8 we have

V(G = V(G IE(G)] = |E(G)].

By Lemma 9, Lemma 10 and Lemma 11, it is not difficult to see that G’ = G. Thus G is x-unique.
a0
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