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Abstract
In this paper, we determine list-chromatic number and characterize chromatically unique of the graph G = Kr

2 +
Ok. We shall prove that ch(G) = r + 1 if 1 ≤ k ≤ 2, G is χ-unique if 1 ≤ k ≤ 3.
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Resumen
En este artı́culo, determinamos el número de lista cromática y caracterizamos cromáticamente el grafo G =
Kr

2 +Ok. Probaremos que ch(G) = r + 1 si 1 ≤ k ≤ 2, G es χ-único si 1 ≤ k ≤ 3.
Palabras clave. Número Cromático, polinomio cromático, grafo único cromaticmente grafo completo r-partido.

1. Introduction. All graphs considered in this paper are finite undirected graphs without loops or multiple
edges. If G is a graph, then V (G) and E(G) (or V and E in short) will denote its vertex-set and its edge-set,
respectively. The set of all neighbours of a subset S ⊆ V (G) is denoted by NG(S) (or N(S) in short). Further, for
W ⊆ V (G) the set W ∩NG(S) is denoted by NW (S). If S = {v}, then N(S) and NW (S) are denoted shortly
by N(v) and NW (v), respectively. For a vertex v ∈ V (G), the degree of v (resp., the degree of v with respect to
W ), denoted by deg(v) (resp., degW (v)), is |NG(v)| (resp., |NW (v)|). The subgraph of G induced by W ⊆ V (G)
is denoted by G[W ]. The empty and complete graphs of order n are denoted by On and Kn, respectively. Unless
otherwise indicated, our graph-theoretic terminology will follow [2].

A graph G = (V,E) is called r-partite graph if V admits a partition into r classes V = V1 ∪ V2 ∪ . . . ∪ Vr
such that the subgraphs of G induced by Vi, i = 1, . . . , r, is empty. An r-partite graph in which every two vertices
from different partition classes are adjacent is called complete r-partite graph and is denoted by K|V1|,|V2|,...,|Vr| .
The complete r-partite graph K|V1|,|V2|,...,|Vr| with |V1| = |V2| = . . . = |Vr| = s is denoted by Kr

s

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union G = G1 ∪G2 has, as
expected, V (G) = V1 ∪V2 and E(G) = E1 ∪E2. Their join defined is denoted G1 +G2 and consists of G1 ∪G2

and all edges joining V1 with V2.
Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. We call G1 and G2 isomorphic, and write G1

∼= G2, if
there exists a mapping f : V1 → V2 with uv ∈ E1 if and only if f(u)f(v) ∈ E2 for all u, v ∈ V1.

Let G = (V,E) be a graph and λ is a positive integer.
A λ-coloring of G is a mapping f : V (G) → {1, 2, . . . , λ} such that f(u) 6= f(v) for any adjacent vertices

u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring is called the chromatic number of G
and is denoted by χ(G). We say that a graph G is n-chromatic if n = χ(G).

Two λ-colorings f and g are considered different if and only if there exists u ∈ V (G) such that f(u) 6= g(u).
Let P (G,λ) (or simply P (G) if there is no danger of confusion) denote the number of distinct λ-colorings of G.
It is well-known that for any graph G, P (G,λ) is a polynomial in λ, called the chromatic polynomial of G. The
notion of chromatic polynomials was first introduced by Birkhoff [4] in 1912 as a quantitative approach to tackle
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the four-color problem. Two graphs G and H are called chromatically equivalent or in short χ-equivalent, and we
write in notation G ∼ H , if P (G,λ) = P (H,λ). A graph G is called chromatically unique or in short χ-unique
if G′ ∼= G (i.e., G′ is isomorphic to G) for any graph G′ such that G′ ∼ G. For examples, all cycles are χ-unique
[10]. The notion of χ-unique graphs was first introduced and studied by Chao and Whitehead [7] in 1978. The
readers can see the surveys [10], [11] and [13] for more informations about χ-unique graphs.

Let (Sv)v∈V be a family of sets. We call a coloring f of G with f(v) ∈ Sv for all v ∈ V is a list coloring from
the lists Sv . The graph G is called λ-list-colorable, or λ-choosable, if for every family (Sv)v∈V with |Sv| = λ for
all v, there is a coloring of G from the lists Sv . The smallest positive integer λ such that G has a λ-choosable is
called the list-chromatic number, or choice number of G and is denoted by ch(G).

In this paper, we shall determine list-chromatic number and characterize chromatically unique for the graph
G = Kr

2 +Ok. Namely, we shall prove that ch(G) = r + 1 if 1 ≤ k ≤ 2 (Section 2), G is χ-unique if 1 ≤ k ≤ 3
(Section 3).

2. List colorings. We need the following lemmas 1–4 to prove our results.
Lemma 1 ([3]). If Kn is a complete graph on n vertices then χ(Kn) = n.
Lemma 2. If G = Kn1,n2,...,nr

is a complete r-partite graph then χ(G) = r.
Proof. It is clear that the complete graph Kr is a subgraph of G = Kn1,n2,...,nr . So χ(G) ≥ r. Let

V (G) = V1 ∪ V2 ∪ . . .∪ Vr is a partition of V (G) such that for every i = 1, . . . , r, |Vi| = ni and the subgraphs of
G induced by Vi, is empty graph. Set mapping

f : V (G)→ {1, 2, . . . , r}

such that f(v) = i if v ∈ Vi for every i = 1, 2, . . . , r. Then f is a r-coloring ofG, ie., χ(G) ≤ r. Thus, χ(G) = r.

Lemma 3 ([9]). If G is a graph then ch(G) ≥ χ(G).

Lemma 4 ([9]). If G1 is a subgraph of G2 then ch(G1) ≤ ch(G2).

We determine list-chromatic number for complete graphs.
Lemma 5. If Kn is a complete graph on n vertices then ch(Kn) = n.
Proof. By Lemma 1 and Lemma 3, ch(Kn) ≥ n. Set V (Kn) = {v1, v2, . . . , vn} and Svi is a list of colors of

Vi such that |Svi | = n for every i = 1, 2, . . . , n. Let f be a coloring of Kn such that

f(v1) ∈ Sv1 , f(v2) ∈ Sv2 \ {f(v1)}, . . . , f(vn) ∈ Svn \ {f(v1), f(v2), . . . , f(vn−1)}.

Then f is a n-choosable for Kn, ie., ch(Kn) ≤ n. Thus, ch(Kn) = n.

Now we determine list-chromatic number for the graph G = Kr
2 .

Theorem 6.
List-chromatic number of G = Kr

2 is

ch(G) = r.

Proof. By Lemma 2 and Lemma 3, we have ch(G) ≥ r. Now we prove ch(G) ≤ r by induction on r. For
r = 1 the assertion holds, so let r > 1 and assume the assertion for smaller values of r.

Let V (G) = V1 ∪ V2 ∪ . . . ∪ Vr is a partition of V (G) such that for every i = 1, . . . , r, |Vi| = 2 and the
subgraphs of G induced by Vi, is empty graph. Set

Vi = {vi1, vi2}

for every i = 1, . . . , r. Let Svij be the lists of colors of vij such that |Svij | = r for every i = 1, 2, . . . , r; j = 1, 2.
Now we consider separately two cases.

Case 1: There exists i ∈ {1, 2, . . . , r} such that Svi1 ∩ Svi2 6= ∅.
Without loss of generality we may assume that Sv11

∩ Sv12 6= ∅ and a ∈ Sv11 ∩ Sv12 . set G′ = G− V1. It is
clear that G′ is a graph Kr−1

2 . Again set

S′vij
⊆ Svij \ {a}

such that |S′vij | = r − 1 for every i = 2, 3, . . . , r; j = 1, 2.
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By the induction hypothesis, there exists (r − 1)-choosable g of G′ with the lists of colors S′vij for every i =
2, 3, . . . , r; j = 1, 2.
Let f be the coloring of G such that

f(vij) = g(vij) for every i = 2, 3, . . . , r; j = 1, 2,
f(v1j) = a for every j = 1, 2.

Then f is a r-choosable for G, ie., ch(G) ≤ r.
Case 2: Svi1 ∩ Svi2 = ∅ for every i = 1, 2, . . . , r.
Let b ∈ Sv11 . Set G′ = G− V1 = Kr−1

2 and

S′vij ⊆ Svij \ {b}

such that |S′vij | = r − 1 for every i = 2, 3, . . . , r; j = 1, 2.
By the induction hypothesis, there exists (r − 1)-choosable g of G′ with the lists of colors S′vij for every i =
2, 3, . . . , r; j = 1, 2. Since |Sv11 ∪ Sv12 | = 2r and |V (G′| = 2(r − 1), it follows that

|(Sv11 ∪ Sv12) \ g(V (G′))| ≥ 2.

We again divide this case into two subcases.
Subcase 2.1: ((Sv11 ∪ Sv12) \ g(V (G′))) ∩ Sv12 6= ∅.
Let c ∈ ((Sv11 ∪ Sv12) \ g(V (G′))) ∩ Sv12 . Let f be the coloring of G such that
f(vij) = g(vij) for every i = 2, 3, . . . , r; j = 1, 2,
f(v11) = b, f(v12) = c.

Then f is a r-choosable for G, ie., ch(G) ≤ r.
Subcase 2.2: ((Sv11 ∪ Sv12) \ g(V (G′))) ∩ Sv12 = ∅.
By |(Sv11∪Sv12)\g(V (G′))| ≥ 2, there exists d ∈ (Sv11∪Sv12)\g(V (G′)), d 6= b. It is clear that b, d ∈ Sv11 .

Since |Sv12 | = r and |g(V (G′))| ≤ 2(r−1), there exists i ∈ {2, 3, . . . , r} such that g(vi1), g(vi2) ∈ Sv12 . Without
loss of generality we may assume that g(v21), g(v22) ∈ Sv12 . Let e ∈ (Sv21 ∪ Sv22) \ g(V (G′)). First assume that
e ∈ Sv21

. If e 6= b then coloring f of G such that
f(vij) = g(vij) for every i = 3, 4, . . . , r; j = 1, 2,
f(v22) = g(v22), f(v21) = e,
f(v11) = b, f(v12) = g(v21).

is a r-choosable for G. If e = b then coloring f of G such that
f(vij) = g(vij) for every i = 3, 4, . . . , r; j = 1, 2,
f(v22) = g(v22), f(v21) = e,
f(v11) = d, f(v12) = g(v21).

is a r-choosable for G. By symmetry, we can show that ch(G) ≤ r if e ∈ Sv22 .
Theorem 7.
If 1 ≤ k ≤ 2 then list-chromatic number of G = Kr

2 +Ok is

ch(G) = r + 1.

Proof. It is not difficult to see thatG = Kr
2 +Ok is a complete (r+1)-partite graph. By Lemma 2 and Lemma

3, we have ch(G) ≥ r + 1. Now we prove ch(G) ≤ r + 1. By 1 ≤ k ≤ 2, it follows that G = Kr
2 + Ok is a

subgraph of Kr+1
2 . By Lemma 4 and Theorem 6, ch(G) ≤ r + 1. Thus, ch(G) = r + 1.

3. Chromatic uniqueness. The results of the following lemmas were proved in [12]. So we omit their proofs
here.

Lemma 8 ([12]). Let G and H be two χ-equivalent graphs. Then
(i) |V (G)| = |V (H)|;
(ii) |E(G)| = |E(H)|;
(iii) χ(G) = χ(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.

We need the following lemmas 9–11 to prove our results.
Lemma 9. Let G = (V1 ∪ V2 ∪ . . . ∪ Vr+1, E) be a (r + 1)-partite graph with |V1| ≥ |V2| ≥ . . . ≥ |Vr+1|

and |V1|+ |V2|+ . . .+ |Vr+1| = 2r + 1. Then

|E| ≤ 2r2.
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|E| = 2r2 if and only if G is a complete (r + 1)-partite graph K|V1|,|V2|,...,|Vr+1| with

|V1| = |V2| = . . . = |Vr| = 2, |Vr+1| = 1.

Proof. We prove lemma by induction on r. For r = 1 the assertion holds, so let r > 1 and assume the assertion
for smaller values of r. If |Vr+1| ≥ 2 then |V1| + |V2| + . . . + |Vr+1| ≥ 2r + 2, a contradiction. So, |Vr+1| = 1.
If |Vr| ≥ 3 then |V1| + |V2| + . . . + |Vr+1| ≥ 3r + 1, a contradiction. Therefore, |Vr| ≤ 2. Now we consider
separately two cases.

Case 1: There exists i ∈ {1, 2, . . . , r} such that |Vi| = 2.
Set G′ = G− Vi. It is clear that G′ is a r-partite graph

(V1 ∪ V2 ∪ . . . ∪ Vi−1 ∪ Vi+1 ∪ . . . ∪ Vr+1, E
′)

.
By the induction hypothesis,

|E′| ≤ 2(r − 1)2.

We have

|E| ≤ |E′|+ |Vi|(|V1|+ . . .+ |Vi−1|+ |Vi+1|+ . . .+ |Vr+1|)
≤ 2(r − 1)2 + 2(2r − 1)

= 2r2.

It is not difficult to see that |E| = 2r2 if and only if G is a complete (r + 1)-partite graph K|V1|,|V2|,...,|Vr+1| with

|V1| = |V2| = . . . = |Vr| = 2, |Vr+1| = 1.

Case 2: |Vi| 6= 2 for every i = 1, 2, . . . , r.
In this case, |V1| ≥ 3. Let h ∈ {1, 2, . . . , r} such that |Vh| = 1 and |Vh−1| ≥ 3. Let G1 = Kp1,p2,...,pr+1

be a complete (r + 1)-partite graph such that ph = |Vh| + 1, ph−1 = |Vh−1| − 1 and pi = |Vi| for every
i ∈ {1, 2, . . . , r} \ {h− 1, h}. By Case 1,

|E(G1)| ≤ 2r2.

We have

|E(G1)| =
∑

1≤i<j≤r+1

pipj

=
∑

i,j∈{1,...,r+1}\{h−1,h}

pipj +
∑

i∈{1,...,r+1}\{h−1,h}

piph−1 +

+
∑

i∈{1,...,r+1}\{h−1,h}

piph + ph−1ph

=
∑

i,j∈{1,...,r+1}\{h−1,h}

|Vi||Vj |+
∑

i∈{1,...,r+1}\{h−1,h}

|Vi|(|Vh−1| − 1) +

+
∑

i∈{1,...,r+1}\{h−1,h}

|Vi|(|Vh|+ 1) + (|Vh−1| − 1)(|Vh|+ 1)

=
∑

1≤i<j≤r+1

|Vi||Vj |+ |Vh−1| − |Vh| − 1

≥ |E|+ 1.

It follows that |E| < 2r2.

By argument similar to Lemma 9, we can prove the lemmas below also are true. We omit their proof here.
Lemma 10. LetG = (V1∪V2∪. . .∪Vr+1, E) be a (r+1)-partite graph with |V1|+|V2|+. . .+|Vr+1| = 2r+2.

Then

|E| ≤ 2r(r + 1).
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|E| = 2r(r + 1) if and only if G is a complete (r + 1)-partite graph K|V1|,|V2|,...,|Vr+1| with

|V1| = |V2| = . . . = |Vr| = |Vr+1| = 2.

Lemma 11. Let G = (V1 ∪ V2 ∪ . . . ∪ Vr+1, E) be a (r + 1)-partite graph with |V1| ≤ |V2| ≤ . . . ≤ |Vr+1|
and |V1|+ |V2|+ . . .+ |Vr+1| = 2r + 3. Then

|E| ≤ 2r(r + 2).

|E| = 2r(r + 2) if and only if G is a complete (r + 1)-partite graph K|V1|,|V2|,...,|Vr+1| with

|V1| = |V2| = . . . = |Vr| = 2, |Vr+1| = 3.

Now we characterize chromatically unique for the graph G = Kr
2 +Ok.

Theorem 12. The graph G = Kr
2 +Ok is χ-unique if 1 ≤ k ≤ 3.

Proof. Suppose that 1 ≤ k ≤ 3. Let G′ = (V ′, E′) is a graph such that G′ ∼ G. Since Lemma 2 and (iii) of
Lemma 8 we have

χ(G′) = χ(G) = r + 1.

Let G′ has a coloring f using r + 1 colors 1, 2, . . . , r + 1. Set

V ′i = {u ∈ V ′ | f(u) = i}.

for every i = 1, 2, . . . , r + 1. It follows that G′ is a (r + 1)-partite graph (V ′1 ∪ V ′2 ∪ . . . ∪ V ′r+1, E
′). By (i) and

(ii) of Lemma 8 we have

|V (G′)| = |V (G)|, |E(G′)| = |E(G)|.

By Lemma 9, Lemma 10 and Lemma 11, it is not difficult to see that G′ ∼= G. Thus G is χ-unique.
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