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Universidad Nacional de Trujillo

ISSN: 2411-1783 (Online)
Vol. 06(01): 14 - 18 (2019)

A mathematical model for mosquito infestation .
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Abstract
We propose and analyze a mathematical model in ordinary differential equations to describe the dynamics of
mosquitoes infested by bacteria. The introduction of some bacteria in mosquitoes population aims to diminish
gradually the transmission of vector host-diseases. This is a good strategy of biological control.
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Resumen
Proponemos y analizamos un modelo matemático que describe la dinámica de los mosquitos infestados por bac-
terias. La introducción de ciertas bacterias en la población de mosquitos apunta a disminuir gradualmente la
transmisión de enfermedades de huesped-vector. Esta es una buena estrategia de control biológico.

Palabras clave. Ecuación diferenciales ordinarias, infestación bacterial, número reproductivo básico, Simulación.

1. Introduction. The strategy of introduce bacteria in the mosquitoes population is very important for the
biological control of vector in host-vector diseases. The introduction of bacteria in mosquitoes is called bacterial
infestation, many researchers propose mathematical predictions for biological control of different host-vector dis-
eases.
These kind of differential equation models are described in ([1], [2], [4]) . We refer to the model of infested
population only models, type S-I epidemic models. It is important to think that the development of models of in-
termediate complexity works as a conceptual bridge between simple and complex model as those which implement
demographic and epidemiological structure.

First, in section 2, we propose and analyze simpler S-I infestation model that differ from the others in the fact
that an infested mosquito could produce a susceptible newborn and maintain sufficient simplicity to the model to
be used in practical empirical work. we take into account the density dependence due competition for resources.

2. S-I infestation model. The mathematical model is considered through the infestation of a bacterium that
inhibits the transmission of the virus that characterizes the diseases by indirect transmission. We divide the popula-
tion of mosquitoes in aquatic and adult age and with epidemiological subdivision of infested and not infested will
be taken into account, those populations are described in Table 1.1. The flow diagram of the infestation dynamics
is given in Fig. 2 and the variables are detailed in Table 1.2.
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Variables Meaning
JU mosquitoes of aquatic age not infested by the inhibitory bacteria
SU mosquitoes in adulthood not infested by the inhibitory bacteria
JW mosquitoes of aquatic age infested by the inhibitory bacteria
AW mosquitoes in adulthood infested by the inhibitory bacteria

TABLE 2.1
Meaning of the variables of the system (3.1)

FIGURE 2.1. Flow diagram of the bacterial infestation of mosquitoes

The dynamical system is given by

(3.1)



dJU
dt

= βUAU + (1− ξ)βWAW − ηUJU − µJU −mJUJ ,

dJW
dt

= ξβWAW +
σC(A)AUAW

A
− ηWJW − µJW −mJJW ,

dAU

dt
= ηUJU − αAU −mAAU ,

dAW

dt
= ηWJW − αAW −mAAW .

,

The parameters of the model (3.1) are constant and are detailed in Table 5.

Considerations. It is assumed that aquatic stage mosquitoes reproduce with dinamycs βiAi where βi (i =
U,W ) is the number of newborns produced by an adult mosquito per unit of time, considering that (ξ) is the prob-
ability that a infested mosquito in aquatic stage born from an adult infested mosquito . By natural death aquatic
mosquitoes and adults leave their aquatic states at a rate µJ (or αA) respectively where µ is the per capita mortality
rate of aquatic mosquitoes and α is the per capita death rate of adult mosquitoes.
Aquatic mosquitoes migrate to the adult stage at a rate of ηJ where η is the rate of per capita emigration of aquatic
mosquitoes to the adult stage.

3. Basic Results. In this section, we study some basic results of the solutions of the system (3.1) which will
be very useful to use into the proof of stability and persistence results.

Theorem 3.1. For all J0
U , A

0
U , J

0
W , A0

W > 0, there exists JU , AU , JW , AW : (0,∞) → (0,∞) which solve
the system (3.1) with initial conditions JU = J0

U , AU = A0
U , JW = J0

W , AW = A0
W .
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Parameters Meaning

βU adult mosquito maternal transmission rate without bacteria
βW maternal transmission rate of adult mosquito with bacteria
ηU average time for a mosquito in aquatic stage

without bacteria it becomes an adult mosquito without bacteria
ηW average time for a mosquito in aquatic stage

with bacteria to become an adult mosquito with bacteria
1/µ average life time of the mosquito in aquatic stage
1/α average life time of the adult mosquito
m interspecific competition rate among mosquitoes
ξ probability that a mosquito in aquatic stage with

bacteria born from an adult mosquito with bacteria
TABLE 2.2

Biological meaning of System Parameters (3.1)

Theorem 3.2. All solutions of this system (3.1) are bounded.

The following reproduction rates are defined

RU =

(
βU
α

)(
ηU

ηU + µ

)
,

RW =

(
βW
α

)(
ηW

ηW + µ

)
.

with biological meaning

RU = average number of births of non infested mosquitoes
by a typical not infested mosquito during its life ,

RW = average number of births of mosquitoes per each
typical infested mosquito infested during its life

Proposition 3.3. If RU > 1, then the system (3.1) has a single equilibrium free of infestation, (J∗U , A
∗
U , 0, 0).

Proposition 3.4. IfRW > 1 and ξ = 1, then the system (3.1) has a single point of total infestation equilibrium
(TI), (0, 0, J∗W , A∗W ),

4. Global Stability of the Susceptible Extinction Equilibrium. We derive a criteria in the case that the
susceptible subpopulation eventually win the competition with the infected subpopulation (the most desirable
result).

Theorem 4.1. If RU ≤ 1, RW > 1 and ξ = 1, then the total infestation equilibrium (TI), (0, 0, J∗W , A∗W ), is
global attractor in R4

+ for the system (3.1).
Proof. To show that the TI is a global attractor in R4

+, consider the following Lyapunov function :

V (X) = JU + %UAU , X = (JU , AU , JW , AW ) ,

with %U > 0 will be chosen later.
The derivative of V along a solution of the system (3.1) is

V̇ (X) = (ηU + µ)

(
%U

ηU
ηU + µ

− 1

)
JU + (βU − %Uα)AU −

CJUJW
J

− CAUAW

A
−mVN .

We choose %U =
βU
α

. Then

V̇ (X) = (ηU + µ)(RU − 1)JU −
CJUJW

J
− CAUAW

A
−mVN .
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Since RU ≤ 1, then V̇ (X) ≤ 0 for X ∈ R4
+.

So as to apply Lyapunov-LaSalle′s Invariance Principle, we see that :
By the boundedness of the solutions (Theorem 3.2) of the system (3.1), we obtain that

V̇ (X) ≤ 0 for X ∈ Ωc = R4
+.

In the other hand,

E = {X ∈ R4
+ : V̇ (X) = 0} = {(0, 0, JW , AW )}

is an invariant set, as a consequence of the Principle, the trajectory enters M = E and all solutions tend to E as
t→∞.

To prove the asymptotic behavior of the TI equilibrium of the system (3.1), we need to consider the convergence
theory developed by Thieme for limit equations, described in Appendix B. We have that under the given conditions,
any solution of system (3.1) is attracted to the JUAU -plane, then we can decouple the system into the second two
equations, it means 

J ′W = βWAW +
σC(J)JUJW

J
− (ηW + µ)JW −mJWJ ,

A′W = ηWJW +
υC(A)AUAW

A
− αAW −mAWA ,

(4.1)

for t→∞, the corresponding limit system of the above system 4.1 is given by{
J ′W = βWAW − (ηW + µ)JW −mJW (JW +AW ) ≡ F (JW , AW ) ,
A′W = ηWJW − αAW −mAW (JW +AW ) ≡ G(JW , AW ) .

(4.2)

We define the function ρ : (0,∞)2 → R2 by ρ(JW , AW ) =
1

JWAW
, it follows

∂(ρF )

∂JW
+
∂(ρG)

∂AW
=

∂

(
βW
JW
− (ηW + µ)

A2
− m(JW +AW )

AW

)
∂JW

+

∂

(
− α

JW
+
ηW
AW

− m(JW +AW )

JW

)
∂AW

=

(
−βW
J2
W

− m

AW

)
+

(
− ηW
A2

W

− m

JW

)
< 0

for all (JW , AW ) ∈ (0,∞)2. Then, by the Bendixson-Dulac criterium , there are no periodic orbits in (0,∞)2.
The solutions of system ((3.1)) are bounded and there is at least one equilibrium point, so all equilibria is isolated.
Since its ω-limit is contained in (0,∞)2 and (0,∞)2 is simply connected, we conclude that the ω-limit set is an
equilibrium. Since (J∗W , A∗W ) is the only equilibrium in (0,∞)2, we have that the ω(JW , AW ) = (J∗W , A∗W ) of the
system ((3.1)). As the ω-limit set of a bounded solution of system ((3.1)) is contained in (0,∞)2, we satisfied all the
conditions of Theorem 0.2 (see Appendix B), in consequence, the ω-limit set of system consists of the equilibrium
(J∗W , A∗W ).
In consequence, the SE = (0, 0, J∗W , A∗W ) is a global attractor of the system (3.1).

5. Sensitivity Analysis of RW .
We used LHS and PRCC methods to estimated the sensitivity of RU .

(5.1) RW =

(
βW
α

)(
ηW

ηW + µW

)
We considered the following values for the parameters

βW (0.43, 0.57)
1/µW (0.01, 0.04)
1/α (0.04, 0.07)
ηW (0.108, 0.123)

• We made 11 simulations to obtain more sensitivity parameter (5.1)
• For the graphic, the colors are different tonalities of blue and red. When the tonality of red is more intense

the parameter RW will be more sensitive, is the same with the blue tonality color.
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FIGURE 5.1. Final Simulation

5.1. Simulations.

Interpretation. The more sensitivity parameters are α and β
1) There exists a direct proportional correlation (positive) between RW and β (PRCC ≈ 0.952). It means

when we increase the value of β the value of RW will increase.
2) There exists a indirect proportional correlation (negative) between RW and α (PRCC ≈ −0.978). It

means when we increase the value of α the value of RW will decrease

Parameter PRCC lower bound upper bound p-value
β 0.952 0.946 0.958 0.00
α -0.978 -0.980 -0.975 0.00
η 0.228 0.168 0.286 0.00
µ -0.920 -0.929 -0.909 0.00
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