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Abstract

In this paper, we study the differential geometry of the transversal intersection curve of two surfaces in
Minkowski 3-space, where each pair satisfies the following types spacelike-lightlike, timelike-lightlike and
lightlike-lightlike. Surfaces are generally give by their parametric or implicit equations, then the surface-
surface intersection problem appear commonly as parametric-parametric, parametric-implicit and implicit-
implicit. We derive the Frenet frame, Darboux frame, curvature, torsion, normal curvature and geodesic
curvatures of transversal intersections for all types of intersection problems. We show the intersection curve
may be spacelike (timelike, lightlike or pseudo null) curve. Finally, we show our methods by given several
examples.

Keywords. Minkowski 3-Space; Surface-Surface intersection; Pseudo null curve; Null curve; Null frame; Light-
like surface; Darboux Frame.

Resumen

En este articulo, estudiamos la geometria diferencial de la curva dada por la interseccion transversal de
dos superficies en el espacio tridimensional de Minkowski donde cada par satisface los siguientes tipos de
superficies, tipo espacio - tipo luz, tipo tiempo - tipo luz y tipo luz - tipo luz. Generalmente, las superficies
estdn dadas por sus ecuaciones paramétricas o implicitas, entonces el problema de interseccion superficie-
superficie aparece comunmente como paramétrico-paramétrico, paramétrico-implicito e implicito-implici-
to. Obtenemos el Referencial de Frenet, el Referencial de Darboux, la curvatura, la torsion, la curvatura
normal y las curvaturas geodésicas de las intersecciones transversales para todos los tipos de problemas de
interseccion. Mostramos que la curva de interseccion puede ser una curva similar a una curva tipo espacio
( tipo tiempo, tipo luz o pseudo nula). Finalmente, mostramos nuestros métodos por varios ejemplos.

Palabras clave. Espacio tridimensional de Minkowski; Interseccion Superficie-superficie; Curva pseudo nula;
Curva nula; Referencial nulo; Superficie tipo luz; Referencial de Darboux.

1. Introduction. Lorentz geometry plays an important role in the transition between modern differen-
tial geometry and the mathematical physics of general relativity by giving an invariant treatment of Lorentz
geometry. The fact that relativity theory is expressed in terms of Lorentz geometry is lucky for geometers,
who can thus penetrate surprisingly quickly into cosmology (redshift, expanding universe, and big bang)
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and, a topic no less interesting geometrically, the gravitation of a single star (perihelion precession, bending
of light, and black holes) [19]. There exist four types of curves; spacelike, timelike, pseudo null, and null
curves depending on their causal characters. However, the fact that the induced metric on a null curve to
be degenerate leads to a much more complicated study and also different from the non degenerate case.
In this geometry of null curves difficulties arise because the arc length vanishes, so it is not possible to
normalize the tangent vector in the usual way. A method of proceeding is to introduce a new parameter
called the pseudo-arc which normalizes the derivative of tangent vector. The primary difference between
the lightlike surface and the non-degenerate is that in the first case the normal vector of surface can intersect
the tangent space, in other words, a vector of the tangent space 1, M can not be uniquely decomposed into
a component tangent to 7, M and a component of normal space T, M. As a result, the lightlike geometry
is quite different from Riemannian and semi-Riemannian geometry. From the point of view of physics, null
curves and lightlike surfaces are important because they are models of different types and horizons studied
in relativity theory. The intersection of two surfaces can be spacelike, timelike and null curves.

The geometric properties of curves and surfaces in the classical literature on differential geometry in
Euclidean 3-space R?, can be found in [11]. There is no textbook with a systematic study of curves and
surfaces in Minkowski spaces such as it occurs in the Euclidean spaces. A general reference including many
topics in semi-Riemannian geometry is the classical book [19]. Differential geometry of the intersection
curves in R3 and R* can be found in [14, 26, 23, 1, 15,7, 2, 4, 8, 5, 3].

Some results on differential geometry of the intersection curves for the transversal intersections in
Minkowski 3-space R?, and Minkowski 4-space R, can be found in [6, 22, 16] and [13] respectively.
Aléssio and Guadalupe [6] studied the transversal intersection curve of two parametric spacelike surfaces
in R$ considering parametric-parametric intersection problem. Zafer and Yusuf [22] studied intersection
curve of two parametric timelike surfaces in R$. Karaahmetoglu and Aydemir [16] studied intersection
curve of two parametric spacelike and timelike surfaces in R$. Diildiil and Caligkan [13] compute the
Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given
by their parametric equations in 4-dimensional Minkowski space R{.

Bonnor [10] described the geometry of null curves in a Minkowski space-time and he proved the
fundamental existence and congruence theorems. He introduced the Cartan frame as the most useful one
and he uses this frame to study the behaviors of a null curve. Bejancu [9] gave a method for general study
of the geometry to null curves in Lorentz manifolds and, more generally, in semi-Riemannian manifolds.
Some notations, definitions and reviews of some aspects of the differential geometry in R?, can be found
in [19, 17, 18, 20, 21, 25, 12, 24].

This paper presents algorithms for computing the null frame of a given null or pseudo null curve in
Minkowski 3-space R$. Also, it presents the Darboux frame for a spacelike (timelike or null) curve lies on
a spacelike (timelike or lightlike) surface. Moreover, it presents algorithms for computing all the differential
geometry properties of the transversal intersection curves of two surfaces (spacelike, timelike and lightlike)
in Minkowski 3-space R$. Surfaces are generally given by their parametric or implicit equations, then the
surface—surface intersection problem appears commonly as parametric-parametric, parametric-implicit and
implicit-implicit. We derive the Frenet frame, Darboux frame, curvature, torsion, normal curvature and
geodesic curvatures for transversal intersections for all types of the intersection problems. The intersection
curve may be spacelike (timelike, null or pseudo null) curve. We obtain the transversal intersection case at
a point, when the normal vector fields are linearly independent.

2. Preliminaries. Minkowski 3-space, R} = (R?,(,);) is a three dimensional real vector space
equipped with a Lorentz metric of signature (2, 1). For the two vectors u = (x1, Z2,%3), Vv = (y1,Y2,¥3) €
R3, the metric is given by

(W, v)1 = —z1y1 + 2292 + T3y3.

A vector u # 0 is called spacelike, timelike or lightlike(null), if (u,u); > 0, (u,u); < 0 or (u,u); =0,
respectively. In particular the vector u = 0 is called spacelike. The norm of the vector u is defined by,

1
lall, = [{w, w12 = {/[—2121 + 22wz + 2323].
The vector u is called a unit vector if (u, u); = £1. The vectors u and v are said to be orthogonal (uLlv),
if (u,v); = 0. Similarly, two subsets U and W of R} are said to be orthogonal (U LW), if ulw for any
ueUandw € W.Denote W = Ut = {w € R} : (w,u), = 0,Vu € U}. The vector product of u and
v (in that order) is the unique vector u x; v € R$, where

—€e; €2 e3

ux;v=-vxiu= T1 T2 T3 | = (I3y2 — X2Y3,T3Y1 — T1Y3,T1Y2 — llfzyl),
Y1 Y2 Y3
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where {e,es, ez} is the canonical basis of R, which satisfy e; x; e; = —e3, e; X1 e3 = e; and
€3 X1 e = —eq.
Proposition 1. [/8] Let R = (R3, (,)1), then
o Two null (lightlike) vectors are linearly dependent if and only if they are orthogonal.
e Two timelike vectors are never orthogonal.
e A timelike vector is never orthogonal to a null (lightlike) vector.
Proposition 2. [ /8] For u,v,w € R? we have
e (uxyv,u); =0and (ux;v,v); =0.
o (uxyv,uxyvy = <u,v>? —(u,u), (v,v),.
o Let u be a spacelike vector, v be a null vector, then (u,v), # 0 if and only if u x1 v is spacelike.
Also (u,v), = 0ifand only if u X1 v is null.
e [fu and v are null vectors, then u X1 v is a spacelike vector.
o [fuis a timelike vector, v is a null vector, then u X1 Vv is spacelike vector.
Definition 1. A basis {uy, uz, us} of R} is orthonormal if (u;,u;), = &;;, where

s o= =]
TN 0 if i#g

If u; and uy are non-null vectors, then B = {u;, us,u; X1 us} is a basis of Rif. However, in contrast
to the Euclidean space, the casual character of u; and u, determines if the basis is or is not positively
oriented. Exactly, if u;, usy are spacelike, then u; X1 us is timelike and B is negatively oriented because
det(uy,uz,u; X1 uz) = (u; X1 ug,u; x; uz); < 0. Ifu; and uy have different causal character, then B
is positively oriented.

Given U C R a vector subspace, we consider the induced metric < u,v >y=< u,v >; such that
u,v € U. If the metric in U is positive definite it is called spacelike subspace , if the metric in U has index
1 it is called timelike subspace and if the metric in U is degenerate it is called lightlike subspace .

Proposition 3. [18] Let P C R$ be a vector plane. Denote by N an orthogonal vector with respect
to the Euclidean metric, then P is a spacelike (resp. timelike, lightlike) plane if and only if N is a timelike
(resp. spacelike, lightlike) vector.

3. Differential Geometry of Curves in R3. A regular curve a(s) : I C R — R$ can be locally
spacelike, timelike or null (lightlike), if its velocity vector field (' (s)) is spacelike, timelike or null (light-
like), respectively. In particular, if o/(s) is spacelike and the acceleration vector field (o’ (s)) is null, in this
case the curve is called pseudo null curve. The notations for differentiation of the curve «(s) with respect to

the arc length (s) are o/ (s) = 42 o//(s) = 32537 a(s) = % and o™ (s) = %7 (n > 3). A non-null
curve a(s) is said to be parametrized by arc length parameter s, if (a/(s),a’(s)); = %1. In this case, the
curve is called a unit speed curve. A non-null curve «(s) is a straight-line, if o”’(s) = 0. A null (lightlike)
curve «(s) is said to be pseudo-parametrized by arc length (or distinguished) if «(s) is not a straight-line
and (o' (s),a”(s))1 = 1. A null (lightlike) curve «(s), is a straight-line if (' (s), a”(s))1 = 0.

Definition 2. [/2] The null frame F = {t,n, b} at a point of the null (or pseudo null) curve in R3 is
a positively oriented 3-tuple of vectors satisfying, respectively:
3.1

<t’t>1 = <bab>1 = <tvn>1 = <nvb>1 =0, <II,II>1 = <tab>1 =L txib=nnx;t=t,

b xin=>b, whereb = ﬁ {u — 2<211:1t>>11t} , ueTy )M, (u,n); =0and (u,t), #0,
or
3.2)

(n,n); = (b,b); = (t,n); = (t,b); =0, (t,t); =(n,b); =1, t x;n=n,nx; b=t,

bxit=b, whereb= ~-— {u— fmu), n}, u €Ty )M, (u,n); #0and (u,t), = 0.

(u,n), 2(u,n),;

3.1. Frenet Frame. The Frenet frame {t,n,b} is a basis of R$ whose assign for each point of a
regular curve a(s), whose variation describes the geometry of the curve. In Euclidean space, the Frenet
frame is a positive oriented orthonormal basis, with b = t x; n. However it has some differences in
Minkowski 3-space.
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3.1.1. Spacelike and Timelike Curves. The Frenet frame {t,n,b} of a spacelike (or a timelike)
regular curve with arc length parametrization, «(s) and (o’ (s), a”(s))1 # 0 is given by

_ _ _a’(s) _ __a'(s)xaa”(s)
(3.3) t=d'(s) n= CHLOIR b—t><1n—”a,(

s)xaa(s)ll,

The curvature x(s) and the torsion 7(s), are given as follows

(34 ws) = ()l 7(s) = —eatomilths
The Frenet formulas are given as follows
t/ 0 €2k 0 t
3.5) n | =] —-ex 0 —es37 n |,
b’ 0 €T 0 b

where €; = (t,t)1,e2 = (n,n)1,e5 = (b, b);
Let 3: J C R — R$ be a regular curve parametrlzed by parameter u, with the same trace of the curve

a(s), ie. Bu) = a(s(u / ¢ duT , dS-)>ldT and ;Lz _ 61<d€i(u)’6€2)>1'
Thus,

dg 2 B ds 3. d°B _ qdsd’s &’s
3.6) t:da: du n:da: du? _ dw? d*a _ gz —3qu gt g3t
ds ~— ds’ ds? (@)2 Tds3 (@)3
du du du

3.1.2. Pseudo Null Curves. Let a(s) = (x(s),y(s), 2(s)) be a regular pseudo null with unit speed
curve, such that o/(s), o’ (s), a/"(s) are different from zero for all s, then there exists only one Frenet
frame (null frame) {t,n, b} have the same orientations with {a/(s),a”(s),a’’(s)}, such that (n,n), =
(b,b); = (t,n); = (t,b); =0, (t,t); = (n,b); =1,t x;n=mn,nx; b =t,bx;t=b.This frame
is a pseudo-orthonormal basis in R} and it can be constructed as the following,

Lett = o/(s) = (2/(s),4'(5),2'(s)),n = a"(s) = (z"(s),y"(s),2"(s)) and V = (1, u,v), such that

(t,t); =1, (m,n); =0, (t,n); =0, (V,t); =0, (V,n); #0.

Thus, we have

6 VS
' =uy' +v2, " # uy’" + v

Since n is a null vector, then 2’ # 0, then we can put

(3-8) uy” +vz" = 0.

Solving (3.7) and (3.8) for the u, get

1"
_ 'z — —a’ Yy
u = y/Z//_Z y//, v = y/Z//_zy

Solving (3.7) for =", we obtain

1,1

=+ =2y,

Thus, the vector V is given by

'z _x/y// (y/z// _ z’y”)
V= ( Y A Y ); 0= x!"
Using (3.2), we get
5 (y/z” _ z/y“)
b= — 57 ——((262",22'2", —22"y") + 6 (2> — 1) a"); 6 = T ,

and the null frame is given by

(3.9) t=a/, n=d", b=- (202", 222", —22'y") + & (2> — 1) n],

238”2
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where
5 (y/z// . z’y”)
- 2!
The Frenet formulas are given by
t’ 0 1 0 t
(3.10) n | = 0 -7 0 n
b’ -1 0 7 b

In this case the function 7 is called pseudo-torsion along the curve «(s) which is given by
(3.11) 7(s) = — ("', b), .

Let 3: J C R — R$ be aregular curve parametrized by parameter u, with the same trace of the pseudo

null curve a(s), ie. B(u) = a(s(u)), s(u) = L u ¢ < dfg), d@fj) >1d and %Z - <dfl(u“), d@g‘) >1.
Thus,

dp d?B 4> d38 ds d>: d3.
(3.12) t_doz_@ n_d2a_ du? du;t dgo‘_du — 300 42 n+du§t
' T ds  ds? T ds? ds Todsd ds ’
du (&)’ (4)°

3.1.3. Null curves. Let a(s) be a null curve in R parametrized with pseudo arc length s and o/(s),
a'(s), &'(s) are linearly independent for all s, then there exists only one Frenet frame (null frame),
{n, t,b} have the same orientations with {¢/(s), &’ (s), a"’(s)}, such that, (t,t); = (b,b), = (t,n), =
(n,b); =0, (n,n); = (t,b); = 1,t x; b=mn,n x; t=t, b x; n=b. This frame is a pseudo-
orthonormal basis in R$ and it can be constructed as previous section 3.1.2, then the null frame is given
by

t=a/, n=qa’, b=-3%((20a,22"7',-22"y') + o (/"> = 1) t),

where
(y//Z/ _ Z//y/)
o=
The Frenet formulas are given by
n’ 0 -7 -1 n
t |=]1 0 0 t
b’ T 0 0 b

In this case, the function 7 is called pseudo-torsion along the curve «(s) which is given by

(3.13) 7(s) = — ("', b); .
Let 3: J C R — R? be a regular curve parametrized by parameter u, with the same trace of the null
. &B(1) d?B(r) ds _ /d*B(u) d*B(u)
curve «(s), i.e. B(u) = a(s(u / \/ du2 a2 1d7’ and 0=\ TdE a2 ;
Thus,
ds d*p d%s a8 ds d*s d3s
Giay gt o mEo gt dlo gp o 35gin it
' ds 47 ds? (@)2 Tods® (@)
du du du

Notice that, if j—z = 0 then the curve is a straight-line.

4. Curves on Surfaces in R3. A surface in R is called spacelike, timelike or lightlike, if the induced
metric on the surface is positive definite, has index 1 or degenerate respectively. In other words, the surface
in R:{’ is called spacelike, timelike or lightlike, if the normal vector field on the surface is timelike, spacelike
or lightlike. For more details, see [19].
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4.1. Curves on Parametric Surfaces in R3. Consider an arbitrary parametric spacelike (timelike or
lightlike) surface X (u1,us), the vector

4.1 (=X x X5

0X
(where X, = T (r = 1,2) ) is the normal vector field of the surface X. It is regular if { # 0. The
u

coefficients of the first fundamental form are given by
gij:<Xi7Xj>1; Z,j:1,2 .

Let u, = u,(u), r = 1,2 be functions in the u;uq-plane which defines a regular curve parametrized
by an arbitrary parameter v on the surface X, as follows

(4.2) Y(w) = X (ui(u), uz(u)) = (z1(u), 22(u), 23(w)).

Differentiating (4.2) three times with respect to the parameter u, then projecting the vectors +'(u) and
~"(u), v""(u) onto the normal vector field ¢ of the surface X, we get

4.3) (7" (), ¢)y = (Xa1,¢); (uh)? +2(Xi2, ¢)y whuh + (Xaa, ¢); (uh)?,

(4.4)
(Y"(u),¢)y = (X111, O1(u))? + (X222, )1 (uh)? + 3(X 112, ()1 (u])?ub + 3(X 122, ()uf (uh)?

+3((X11, ¢)y vy + (Xi2, () up)uy + 3((Xi2, ¢)y uf + (Xag, () uj)us,

9°X 93X
here Xij — — > X, = — 0%
where 2 ou;ou;’ ~ Y k du;0ujOuy,

~"'(u) onto X; and X, we obtain

(i,5,k = 1,2). Projecting the vectors v'(u), 7" (u) and

4.5) griuy + giouby = (V' (w), X1)1,  grou] + goouh = (Y (u), Xa)1,

4.6)
griuf + grzul = (v (u), X1)1 — (Xu1, X)), (0))? — 2(Xi2, X1), whuh — (Xag, X)), (uh)?
giauy + gaaufy = (" (u), Xa)1 — (Xu1, Xa); (u7)* — 2(Xug, Xo); wjuh — (Xag, Xo), (uh)?.

4.1.1. Curves on Parametric Spacelike and Timelike Surfaces in R;. The unit normal vector field
N of a parametric spacelike (or a timelike) surface X is given by

¢
N=—-.
€11y

Solving (4.5) and using proposition 2, we get

(' (u) x1 Xa,()1 , Xy x v (w), O

4.7 = =
@ " o T G
Solving (4.6) and using proposition 2, we get
4.8)
! = <’Y”(U) X1 X27<>1 - <X11 X1 X27<>1 (U/1)2 -2 <X12 X1 X27C>1 U/1U/2 - <X22 X1 X2,C>1 (U/z)z
V=
<<7 C>1

—(v"(u) x1 X1, )1+ (Xa1 x1 X1, )y (u))? +2(Xa2 x1 Xy, (), vfub + (Xaz x1 X1, (), (u

/
2

)2

uh =

<Ca<>1
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4.1.2. Curves on Parametric Lightlike Surfaces in R$. The normal vector field ¢ of a parametric
lightlike surface X is given by (4.1). If X is lightlike, X; is spacelike and g12 = 0, then by using the
proposition 2, we obtain

¢=X,,
where {i,j} = {1, 2}. Thus the normal vector field ¢ of a parametric lightlike surface X is given by

Xi if ||X1XXQHIZHXZ‘Hl:O,’L':l,Q,
4.9) (=
X1><X2 if ||X1><X2||1:0.

In this case (4.7) will reduced to one equation or vanish. Since the vector 7/ (u) can be written as,

(4.10) P +cluh =2/, 92l +Puh =y, PBPu) 4+ GBuh =2,

where 7/ (u)= (2',y/, 2"), X1 = (91,92,93) and Xo = (¢!,52,¢?), then we can compute u} and u} by
solving two suitable equations of (4.7) and (4.10). By the same way we can compute «/ and u}.

4.2. Curves on Implicit Surfaces in R}. Consider an arbitrary implicit spacelike (timelike or light-
like) surface

S = {(w1, 2, 23); h(z1,22,23) = 0},
where h(z1, 79, 73) : R} — R is a differential function. The vector field

h
(411) Ch:(_h17h27h3); h'Z: g ) i:172737
i

is orthogonal to any vector of the tangent plane. We assume that the surface is regular, in other words
Cn # 0. Let y(u) is a regular curve on the surface .S, parametrized by an arbitrary parameter « and it is
defined by

(4.12) Y(u) = (z1(u), xa(u), 23(u)),  h(y(u)) =0

Differentiating (4.12) with respect to the parameter u , then projecting the vector 4/ () onto the normal
vector field ¢ of the surface S, we get

(4.13) <<h(u)’ 7/(U)>1 =0

where

Ch(u) = [~hai(y(w)) ha(y(w)) ha(y(w)], 7'(uw) = [z}(u) «h(u) ah(u)].

Differentiation (4.13) with respect to u yields,

(4.14) (Gn)" (W), == (3= (H), ()

1

where

—hi1 —hi2 —his
v'(u) = [2{(u) a5(u) 2f(w)], H'=| ha  ha  hos
hai1  hsa  h33

and * denotes to the multiplication of matrices.
Differentiating (4.14) with respect to u we obtain

am\ "
“.15) (Gulu) 7" (), = =3 (7" * (H")" ") — <v’* (du) ,7'> :
where

V() = o) af) @), (M) = (3 M)

—h1i  —hizs  —hasi
— = H{L 213/1 (u) + Hél 17/2(’&) + Hél :l}é(u) and HZh = hi2; hoo; ha3;
hizi  hozi  hasg
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4.2.1. Curves on Implicit Spacelike and Timelike Surfaces in R3. The unit normal vector field N
of an implicit spacelike (or a timelike) surface S is given by

Ch,

1€l

4.2.2. Curves on Implicit Lightlike Surfaces in R}. The normal vector field ¢ of an implicit lightlike
surface S is given by

¢ = (=h1, ha, h3).

4.3. Darboux Frame.

4.3.1. Darboux Frame of Spacelike, Timelike or Pseudo Null curves on a non lightlike Surfaces.
In this subsection we will study the Darboux frame.

Definition 3. If {t,n, b} is the Frenet frame of the curve «(s) which lies on a spacelike (timelike)
surface S in R3 with unit normal vector field N, then the orthonormal basis {t, U, N}, where

(4.16) U =N x; t,

is called natural frame (Darboux frame) for the curve-surface pair (a(s), S).

Definition 4. [ /2] The basis {t, U, N}, where
<t7t>1 = <U7U>1 = <t7N>1 = <N7U>1 = 07 <N3N>1 = <t7U>1 = 17 tx; U= N, N x;t= t,

V.,V
Ui N =U, where U = 15 {V - ﬁt} LV € Ty M, (V,N), =0and (V,t), #0,

or

(N,N), = (U, U), = (£,N),; = (£, U), =0, (t,t); = (N, U), =1, t x; N=N, N x; U=t,

U x;t=U, where U =

V.,V
. {V - 2<<V7N>>11N} LV ETyM, (V,N), #0and (v,t), =0,

is called null Darboux frame at a point of the null (or pseudo null) curve in timelike surfaces (or lightlike
surfaces), respectively.
Definition 5. [2/] Let S be a non lightlike surface in R} and o.(s) be a curve on S, then the functions

@.17) rg(s) = (t'(s), U(s))y, kn(s) = (t'(s),N(s))y, 7y(s) = (N'(5),U(s));,

are called the geodesic curvature, normal curvature and geodesic torsion of the curve «(s), respectively.
Theorem 1. [2], 24] Let S be a non lightlike surface in R} and o(s) be a curve on the surface S, then
the derivative formulas of the natural frame {t, U, N} , are given by

t/ 0 esky  €3kn t
U | =| —aky 0 —ei7y U |,
N’ —erk, €57, 0 N

where €, = (t,t), ,e5 = (U,U), and €5 = (N,N), .

4.3.2. Darboux Frame of Spacelike or Pseudo Null curves on Lightlike Surfaces. Let S be a
lightlike surface in R$, a(s) : I — S C R? be a unit speed spacelike curve and it lies on the surface S, ¢ be
the normal vector field of the surface .S, and t is the unit tangent vector field of the curve «(s), then there
exists only one Darboux frame (null frame) {t, ¢, U}, such that (¢, (), = (U, U); = (t,¢), = (t,U); =
0, (t,t); = ((,U); =1,t x1 (=¢,(x1 U=t,U x; t = U, and it is a pseudo-orthonormal basis in
R3. This frame satisfies (3.2) and it can be constructed as in section 3.1.2, so it is given by

@18)  t=(zy,2), (=(¢ ), U=— 3252920/ —22/C%) + v (¢ = 1) (],
where

(y/<3 _ Z/<2)
Cl
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Definition 6. Let S be a lightlike surface in R3 and o(s) be a curve on S, then the functions

(4.19) rg(s) = (t'(s), U(s))y, Enls) = (t'(s),C(8))1, Ty(s) = (¢'(5),U(s))y,

are called the geodesic curvature, pseudo normal curvature and pseudo geodesic torsion of the curve «(s),
respectively.

Theorem 2. Let S be a lightlike surface in R$ and o(s) be a curve on S. Then derivative formulas of
the natural frame {t,N, U} are given by

t/ 0 Ky Fn t
N | =| =kn 73 O N
U’ kg 0 -7 U

4.3.3. Darboux Frame of Null Curves on Timelike Surfaces. Let S be a timelike surface in R3,
a:l —-SC ]R:{’ be a distinguished null curve, N be the normal vector field of the surface .S and t is the
tangent vector field of the curve «(s), then there exists only one Darboux frame (null frame) {N, t, U}, such
that <tat>1 = <U3U>1 = <t7N>1 = <NaU>1 = 07 <N7N>1 = <taU>1 = ]-7 t X1 U= N» N X1 t= tv
U x; N = U, this frame is a pseudo-orthonormal basis in R}. Also, this frame satisfies (3.1) which can be
constructed as in section 3.1.3, so it is given by

t=(ay, %), N=(N' N2 N3, U= [(2va/,2N2",—2NY/) +v ((N1)2 - 1) t],
where
N2Z/ _ NSy/
v = #

Theorem 3. Let S be a timelike surface in R3 and o(s) be a curve lies on the surface S. Then derivative
Sformulas of the natural frame {IN,t, U} are given by

N’ 0 74 —kn N
t | =| kn Ky O t |,
U’ -1 0 —Kyg U

where

kg(s) = (t'(s), U(s))y , in(s) = (t'(s), N(5)); , 74(s) = (N'(s), U(5)), ,

which are called the geodesic curvature, normal curvature and geodesic torsion of the curve a(s), respec-
tively.

4.3.4. Darboux Frame of Null Curves on Lightlike Surfaces. If {t,n, b} be the null Frenet frame
of a null curve (s) which lies on a lightlike surface S in R3. In this case the tangent vector field t of the
curve «(s) and the normal vector field ¢ of the surface .S are linearly dependent (N =wt; w € R — {0})
and the Darboux frame is not defined ({t, N, U} where (t,N), =0).

5. Transversal Intersection Curves of Two Surfaces in R3. The intersection curve of two spacelike
surfaces is a spacelike, the intersection curve of two timelike surfaces may be spacelike or timelike, the
intersection curve of two lightlike surfaces may be spacelike or null, the intersection curve of spacelike and
timelike surfaces is spacelike, the intersection curve of spacelike and lightlike surfaces is spacelike, and the
intersection curve of timelike and lightlike surfaces spacelike or null. We obtain the transversal intersection
case, when the normal vectors of the surfaces are linearly independent.

For what follows we suppose a(s) be a transversal intersection curve of two arbitrary surfaces S
and SP and assume that the curve B(u) = «(s(u)) is a regular curve parametrized by a parameter u
with the same trace as the curve a(s). Let ¢ and (¥ denote the normal vector fields of the surfaces
S4and SB, respectively. Also, let N* and N denote the unit normal vector fields of the surfaces S“and
SEB . respectively. Assume that <CA,CB>1 = A <CA,<A>1 = ¢4, <CB,CB>1 = ¢B, <NA,NB>1 =\
(N4 N4) =4 (NB NF) =25
Since (4 x; (P is orthogonal to ¢ and ¢?, so by using proposition 2, we obtain
A eB
A

<CA><1 CBacA X1<B>1: € A

‘:)\Q—EAEB.

The surfaces are intersect transversely if A2 — ¢4e® = 0. In particular, if \ = 0, e = 0 and £ > 0, in
this case the surfaces are intersect transversely at a null curve.
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5.1. The Tangent Vector Field.
o If \2 — c4cB £ 0, then The tangent vector field of the curve 3(u) is given by 3’ (u) = ¢4 x; (B,
so that the unit tangent vector field t of the transversal intersection curve is given by

A%y (B

164 %1 ¢B Il

o If \ =0,e? =0, P = 1, then the tangent vector field of the transversal intersection curve is
null. Moreover, o(s) and ¢ are linearly dependent.
From the foregoing results, we have the following preposition:
Proposition 4. For the transversal intersection curve of two surfaces, we get.
i) The transversal intersection curve of two spacelike or two timelike surfaces is spacelike or timelike
curve if, \ € R — [— 1,1] or A € ] — 1, 1], respectively.
ii) The transversal intersection curve of two lightlike surfaces is spacelike curve.
iii) The transversal intersection curve of a spacelike and a timelike surfaces is spacelike curve.
iv) The transversal intersection curve of a lightlike surface and a spacelike surface is spacelike curve.
v) The transversal intersection curve of a lightlike surface and a timelike surface is spacelike or
lightlike curve if, A\ # 0 or A = 0, respectively.

5.2. The Second Order Derivative Vector Field.
o If \2 — ¢4¢B £ 0, the vector field o/ (s) must lies in the normal plane spanned by ¢4 and ¢Z,
thus we can write,

(5.2) o’ (s) = B¢ + Ba(P,

where 31 and (5 are unknown coefficients that we need to determine. Projecting o’ (s) onto the
normal vector fields of both surfaces and solving them for the unknown coefficients and substitu-
tion into (5.2), we get

(5.1) o (s) =

eBrA — \RE eARE — k2
(5.3) o"(s) = 5 et At <

where &4 <o/’(5), CA> and 5 = (a'(s), §B>1 and obtained by (4.3) or (4.14).

o If \ = 0 el 07 g8 =1, then a(s) is a null curve. If o’/(s) # 0, then o/(s) and ¢* have the
same direction, (a/(s), CA>1 =0, {a/(s),a’(s))1 = 0 and {(o’'(s),a”(s))1 = 1. In this case we
can assume the null frame {NZ ¢4 U}, then the vector o/(s) can write

o' (s) = NB.
The third vector of the null frame U can be constructed as in section 3.1.2, so it is given by

U= Y ((29(1‘4 ON1B(3A _gN1B(24) —|—Q<(NlB)2 _ 1) ¢4,

2(¢14)?
where
CA _ (CIA7<2A7C3A)7 NB — (NlB7N2B’N3B)7 0= N23<321§33<2A

5.3. The Third Order Derivative Vector Field.
o If \2 —e4eB £ 0 and o/(s) is not lightlike, differentiating the vector field o (s) and using (3.5),
we get

o' (s) = —ere2kt + ((€2 — 1)k7 + k' )n — e3k7b,
Since the vectors ¢ and ¢ lie on the normal plane of the unit tangent vector t, then we can write
(5:4) o"(s) = —e1637t + BsC + BaC”,

where (35 and [3g are unknown coefficients that we need to determine. Projecting the vector field
a"(s) onto the normal vector fields of both surfaces, solving for unknown coefficients and substi-
tuting into (5.4) we obtain,
B-A =B AsB SA
" _ 2.2 E7Pn _)‘pn € Pn _)‘pn
(5.5) a'"(s) = —e1e3r°t + CAB )2 ¢+ A 2 ¢”,

where p;} = (o"(s),¢*), , pF = (a’(s),¢?), and obtained by (4.4) or (4.15).
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o If \2 — ¢4cB £ 0 and o/(s) is lightlike, differentiating the vector field o (s) and using (3.10),
we get

(5.6) o (s) = B¢ + BsCP,

where (7 and g are unknown coefficients that we need to determine. Projecting the vector field
o’ (s) onto the normal vector fields of both surfaces, solving for unknown coefficients and substi-
tuting into (5.6) we obtain,

epl — \pit
gAgB _ /\2

B-A _ AfB
(57) O/H(S) _ € Pn Dn, CA =+

EA(C:B — )2

CB

where piy = (o/”(s),¢*),, pE = (a’(s),¢?), and obtained by (4.4) or (4.15).
o If \ =0,e” = 0,28 = 1, then the vector o/”’(s) can be written as

(5.8) o' (s) = BoC™ + BroU,

where 9 and (¢ are unknown coefficients that we need to determine. Projecting the vector field
a'(s) onto the vectors ¢, U and N2, solving for unknown coefficients and substituting in (5.8),
we obtain

(5.9) o (s) = pU¢A + pAU,
where p;} = (a”(s),(*), is obtained by (4.4) or (4.15) and pY = (o' (u), U),.

6. Characterizations of Transversal Intersection curves of two Surfaces in R$. The characteriza-
tions of the transversal intersection curves of two spacelike, two timelike and spacelike-timelike surfaces
can be found in [6], [22] and [16], respectively. In this section, we introduce the characterization of inter-
section curves of two lightlike, lightlike-timelike and lightlike-spacelike surfaces.

Theorem 4. Let o = a(s) be the transversal intersection curve of two lightlike surfaces S* and SB.
The geodesic curvatures of curve are given by

=B ZA
©.1) kg =2, kP =TE

If o' (s) is not lightlike, then the curvature and the torsion are given by

(P2 b)1+P5 (P b))
3 .

) T = %

If &' () is lightlike, then the torsion is given by

_ PRt b PR b)

6.2) 3

Proof: In this case the intersection curve is spacelike. To write the geodesic curvatures as a function of the
normal curvatures, we need to write the vector U4, UP as a linear combination of ¢ A and ¢ B and applied
in the equation (4.19). Thus,

U4 = 2o¢* + yo(P, UB =214 + yi1 (5,

then we have

L= (U™ ¢, =20 (¢4, ¢M), + 90 (¢P.¢Y), yo =1
:> )
0= (U4 UA) = (20)% (¢, ¢*), + 2xoyo (¢, CH), + (0)? (¢B,¢P), 20 =0
1=(UB,(B), = a1 (¢4, ¢B), + 1 (¢B,¢B), 2y =1
—
0= (UB,UB), = (21)2 (¢A,¢*), + 20151 (CB,C4), + (1)? (¢P. (P, v =0
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If o’ (s) is not lightlike the curvature  is obtained using the equation (5.3), k* = (&, @), and the torsion
is obtained using the equations (3.4) and (5.5). If o(s) is lightlike the curvature is not defined and the
torsion is obtained using the equations (3.11) and (5.7). O

Theorem 5. Let @ = afs) be the transversal intersection curve of a lightlike surface S and a
spacelike surface SB. The geodesic curvatures of intersection curve are given by

_ [<P]mn
B

(6.3) oA = <" |IP R B
g g

If &' () is not lightlike, then the curvature and the torsion are given by
(6.4) k2 — w , T=-% (M@A >1+§<C3,b>1)~
If &' (s) is lightlike, then the torsion is given by
7= — ST (A by, — B (B b),.
Proof: In this case the intersection curve is spacelike. To write the geodesic curvatures as a function

of the normal curvatures, we need to write the vector U4, U® as a linear combination of ¢ 4 and ¢ B and
applied in the equations (4.17) and (4.19). Thus,

UA = xOCA + yOCBa
then we have

1= (U4 ¢4), =20 (¢4 ¢4, +u0 (¢P.¢h),

0= (UA, U, = (20) (¢4 ¢, + 2zoyo (¢B, ¢4, + (w0)? (¢B,¢P),,
1= (U4,¢4), = yo Yo =3
- A T7A 2B || ~B||? — 5B||CB||2
a_ Pl a ZIN?
= U= ¢ A
Also, we have
UB = NB X1t

_ NPt xi¢?)
- ¢4 %1 CBl

_<<ByNB>1CA+<<A_’NB>1<B
¢4 %0 ¢Zl

B
(e N NE), A A ) ¢

€A %1 CPl

=PI (N NT), ¢+ g (64.¢7), ¢

_ 1
BRIEES CBH

B
=T, (_ [¢F ][5 ¢ + ’\HgiBH) :

If o’ (s) is not lightlike the curvature  is obtained using the equation (5.3), k* = (o, &), and the torsion
is obtained using the equations (3.4) and (5.5). If o’(s) is lightlike the curvature is not defined and the
torsion is obtained using the equations (3.11) and (5.7). O

Theorem 6. Let o = a(s) be the transversal intersection curve of a lightlike surface S and a timelike
surface SB. If o/ (s) is lightlike, then the torsion is given by

p’r[{<cA7 >1 — Dy <U b>
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If &' (s) is spacelike the geodesic curvatures of intersection curve are given by

A _ P PrRa+2n][c” |~ B _ —lI<P][Fn+Amy
6.5) kg = o2z ) kg = N

If o/ (s) is spacelike and o' (s) is not lightlike, then the curvature and the torsion are given by
—A\2 —-A B
2 = || o g (SRR ) £ B (P b ).
If o/ (s) is spacelike and o' (s) is lightlike, then the torsion of «(s) is given by
6.6) 7= — =B (A by BL(CB b,

Proof: 1f o/ (s) is lightlike by section 4.3.4 Darboux frame is not defined to S and torsion is obtained
using the equations (3.13) and (5.9).

Suppose the intersection curve is spacelike. To write the geodesic curvatures as a function of the normal
curvatures, we need to write the vector U4, UP as a linear combination of ¢ 4 and ¢ B and applied in the
equations (4.17) and (4.19). Thus,

UA = xOCA + yOCBu

then we have

L= (U4 ¢, =20 (¢ ¢h), +u0(¢P.¢),

0= (UA,U"), = (x0) (¢4, ¢, + 2zoyo (¢B, ¢4, + (w0)?* (¢B.¢P),,
yoi%
B ||~B||?

a_ P A g

= BHCBH — U“ = 922 ¢ +/\C.
0T T T e

Also we have
UB :NB X1t

N x4 (¢* x5 ¢F)

I¢Axa CBl

—(¢BNF) (A4 (CANE) (P
¢4 %1 ¢F]

ezl nE ) A (i) ¢

¢4 > Pl

= qersremy (= P[NP NP ¢4+ ey (€4,¢7), ¢P).

B
= T cP] (‘ <5 e%¢ + AHgiBu) :

If o’ (s) is not lightlike the curvature  is obtained using the equation (5.3), k* = (o, @), and the torsion
is obtained using the equations (3.4) and (5.5). If o//(s) is lightlike the curvature is not defined and the
torsion is obtained using the equations (3.11) and (5.7). O

7. Examples. In this section we presentation some examples of transversal intersection curves of
two surfaces and we compute its Frenet frame, Darboux frame, curvature (when exists), torsion, normal
curvature and geodesic curvature in a point fixed.

Example 1. Consider the two implicit lightlike surfaces S* and S® as in the following

(7.1) S84 f(x1,m9,23) =V2r —29 —23—1=0, SB: h(z1, 22, 23) = 22 — 23 — 23 = 0.
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FIGURE 7.1. Transversal intersection of two implicit lightlike surfaces

Using (7.1), we obtain (4 = (—\/5, -1, —1) , (B = (=231, —2w9, —2x3) , therefore ¢ = B = 0,
for any point on the surfaces, thus S* and S® are lightlike surfaces. Considering the intersection point
po = (\/5, %‘;’, %) , (see Figure 1), in this point we have, \ = —2 # 0 (transversal intersection).
Using (4.13), (4.15),(5.1), (5.3), (5.7) and (7.1) at the intersection point pg, we obtain

(7.2) t=ao =(—v3,3v2-1v6,-31v2-1V6), o’ =(v2,1,1), «” =(0,0,0).
Thus, the intersection curve at this point is pseudo null. Using, (3.9), (3.11), (3.12) and (7.2), we obtain
(7.3) n=(v2,11) b=-1(2v2,1-v3,1++3), 71=0.
Using (4.18) and (7.2) we obtain

U4=1(2v2,1-V3,1+V3), UF=1(v2,1,1)

Using (4.19), (6.1) and (6.2), then the geodesic curvature, pseudo normal curvature and pseudo geodesic
torsion are given by

=B A
—A_O —B_2 A_bkn 1 —B_Hn_o —A_O —B_O
Knp =Y, RKp =4 H‘g_T__v Kg_T_a Tg = U, Ty = U

Example 2. Consider the parametric lightlike surface S and the parametric spacelike surface S® as
in the following

(7.4) SA T A(ur,ug) = (Vu? + u2, ug, ug), ug, us € |—5,5[,
-5,5[.

SB . B(v1,v2) = (—vg, — cosh vy cosvg, — coshvy sinwvy), wvy,vs € ]-5,5]
Using (7.4), we obtain (4 = m(\/u% + 2, u1,uz) and (B = —sinh(v;)(cosh vy, — sin vg, cos va),

therefore 4 = 0Y (uy,us) € S%; (u1,u2) # (0,0) and e® = —sinh*(v1) V (v1,v2) € SB; (v1,v2) #
(0,v), thus the surfaces S and S® are lightlike and spacelike, respectively. Considering the intersection
point Py = (5,0, %) € SANSE (see Figure 2), at this point, (u1,uz) = (0, %)y (v1,v2) = (=1.0232, -7F)

22 (n2—
and N2 — e4eB = % = 0 (transversal intersection). Using (4.1), (4.3), (4.4), (4.7), (4.8), (5.1),
(5.3), (5.5), and (7.4), we obtain

t = (0.63662, —1,0.63662), o’ = (—0.258012, —0.405285, —0.894632) ,

(75 o/ = (0.313705,0.898052, 0.313705)

Thus the intersection curve at this point is a spacelike curve. Using (3.3), (3.4), (3.5), (3.6), (6.4) and (7.5),
we obtain

n

a6 (—0.272264, —0.427671, —0.944047) , K = 0.947656,

b = (1.21631, —0.427671, 0.544527) , 7 =0.627667.
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FIGURE 7.2. Transversal intersection of parametric lightlike and spacelike surfaces

Using (4.16), (4.18), (7.5) and (7.6), we obtain
7.7 UA=(1. 2974, -0.63662,0.29736), UP = (-0.43384,—0.6815,0.636 66)

Using (4.17), (4.19), (6.3), (7.5), (7.6) and (7.7), we have the geodesic curvature, normal curvature and
geodesic torsion as in the following

¢ = 1.4674011, ||<B||2 = 2.1532659, A = 1.90281,
B QRA B|| B
RA = 0.63662, A =0, i = <2l n;ixllc <2 _ 705398,
Bl|lzA B
kD = 0669138, 7P =0.129093 pp = Iy 1600,

Example 3. Consider the parametric lightlike surfaces S** and the implicit timelike surfaces S® as in
the following

(78) SA : A(U1,U2) = (u1 COShUQ,ul SinhuQ,ul) SB : f(.',l?l,.’liz,xg) = -1+ X2 +x3 = 0

FIGURE 7.3. Transversal intersection of parametric lightlike and implicit timelike surfaces
Considering the intersection point Py = (1,0,1) € SA N SB (see Figure 3). Using (7.8) at this point,
we obtain CA=%(1,0, 1),¢8=(1,1,1), \=1#0,e% =0and % = B = 1, thus the surfaces S* and
SB are lightlike and timelike, respectively. Using (4.9), (4.10), (4.13), (4.14) and (5.3) we obtain

o (s) =(1,0,1), «"(s) =1(0,0,0),
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then the intersection curve is lightlike curve and it is a straight line.

Example 4. Consider the parametric timelike surface S* and the implicit lightlike surface S as in
the following

(7.9)
SA: Alug, ug) = (% + uv + v, “—22 +uv+v,u), SB: f(x,y,2)= m+arctan(§) =0; y?+22<1

FIGURE 7.4. Transversal intersection of parametric timelile and implicit lightlike

From (7.9), we have (4 = (u + 1,u + 1,0) and (B = (-1, _ﬁ’ yzﬁ) therefore e* = 0, V
(ur,uz) € S84 and e® > 1,V y? + 22 < 1, thus the surface S? is lightlike and the surface S is
timelike. Considering the point Py = (%, 5 —%%) € SAN 8B (see Figure 4), in this point, we have
A =1.59121, 4 = 0, €8 = 1, then the intersection curve is transversal. Using (4.10), (4.14), (5.1), (5.3),
(5.5) and (7.9) we obtain

(7.10) o = (—1.14379,-1.14379,1), o = (4.0765,4.0765,0), o = (43.4607,43.4607,0)

then the intersection curve at this point is a pseudo null curve. Using (3.9), (3.11), (3.12) (6.6) and (7.10)
we obtain
(7.11)
t = (—1.14379,—-1.14379,1), n = (4.0765,4.0765,0), b = (—0.283116,—0.0378078,0.280581),
T = —10.6613.

Using (4.18), (4.19), (6.5) and (7.11) we obtain
Fn =0, kB =363771 7/'=0, 7P =3.83701,

g
A =B RA42x][¢B]|kE ||KB||sE 212053 kB
Ky = 2"()\)2 = =15—== 1.5912? = 4.8684,
—|[¢B||ra+rcB  AxB
Kf — % = l’j\T = kB = 3.63771.

8. Conclusions. From the results obtained in this work we concluded that, we can computing the dif-
ferential geometry properties of the transversal intersection curves of two surfaces, where each pair satisfies
the following types spacelike-lightlike, timelike-lightlike and lightlike-lightlike using the information of
surfaces involved. Moreover, the results obtained ends the study of differential geometry properties of the
transversal intersection curves of two surfaces in Minkowski 3-space, because the cases spacelike-spacelike,
timelike-timelike and timelike-spacelike were studied in [6], [22] and [16] respectively.
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