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Abstract
In this paper we study hypersurfaces in R* parametrized by lines of curvature with three distinct principal
curvatures and with Laplace invariants mj; = my; = 0, mj;, # 0 for i, j, k distinct fixed indices. We
characterize locally a generic family of such hypersurfaces in terms of the principal curvatures and three
vector valued functions of one variable, this family includes a classe of Dupin hypersurfaces. Moreover, we
show that these vector valued functions are invariant under inversions and homotheties.
Keywords Dupin hypersurfaces, Laplace invariants, lines of curvature

Resumen
En este articulo estudiamos hipersuperficies en R* parametrizadas por lineas de curvatura con tres cur-
vaturas principales distintas y con invariantes de Laplace mj; = my; = 0, mj;, # 0 para indices fijos
1, 7, k distintos. Caracterizamos localmente una familia genérica de tales hipersuperficies en términos de
las curvaturas principales y tres funciones vectoriales de una variable, esta familia incluye una clase de
hipersuperficies de Dupin. Ademas, mostramos que estas funciones vectoriales son invariantes por inver-
siones y dilataciones.

Palabras clave. Hipersuperficies de Dupin, Invariantes de Laplace, Lineas de curvatura

1. Introduction. Dupin surfaces were first studied by Dupin in 1822 and more recently by many
authors [1]-[6], [9]-[14] and [16],[17], which studied several aspects of Dupin hypersurfaces. The class
of Dupin hypersurfaces is invariant under Lie transformations [11]. Therefore, the classification of Dupin
hypersurfaces is considered up to these transformations. The local classification of Dupin surfaces in R?
is well known. Pinkall [12] gave a complete classification up to Lie equivalence for Dupin hypersurfaces
M3 C IR*, with three distinct principal curvatures. Niebergall [10] and more recently Cecil and Jensen [6]
studied proper Dupin hypersurfaces with four distinct principal curvatures and constant Lie curvature (the
cross-ratio of four principal curvatures).

Riveros [15] obtained a local characterization of the Dupin hypersurfaces in R* parametrized by lines
of curvature, with three distinct principal curvatures and m;; # 0, in terms of the principal curvatures and
three vector valued functions in R* which are invariant under inversions and homotheties, in this case the
Laplace invariants m;; = 0, for 1 <14 # j < 3.

In this paper we study generic hypersurfaces in R*, parametrized by lines of curvature, with three
distinct principal curvatures and with Laplace invariants mj; = my; = 0, m;;; 7 0. We obtain a local
characterization of a generic family of such hypersurfaces (Theorem 3.1), in terms of the principal curvature
functions and three vector valued functions of one variable. This family of hypersurfaces includes the Dupin
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hypersurfaces studied by Riveros [15]. The characterization is based on the theory of higher-dimensional
Laplace invariants introduced by Kamran-Tenenblat [7]-[8].

In section 2, we give some properties of hypersurfaces with distinct principal curvatures. In section
3, Theorem 3.1 gives a local characterization of generic hypersurfaces in R* with three distinct principal
curvatures. Moreover, we show that the vector valued functions, which appear in the characterization of
Theorem 3.1 are invariant under inversions and homotheties, but the functions are not invariant under isome-

tries. Therefore, the vector valued functions are not invariant under the full group of Lie transformations of
R%.

2. Preliminaries. Let Q be an open subset of IR" and z = (%1, 22, - ,z,) € Q. Let X : Q C R™ —
R™*1 n > 3, be a hypersurface parametrized by lines of curvature, with distinct principal curvatures
Ai, 1<i<nand N:Q CR" — R™"! be a unit normal vector field of X. Then

<X,iaX,j> = 61]911 ) 1 S Z7] S n,
2.1) Ni=-\X,,

where the subscript ; denotes the derivative with respect to ;. Moreover,

(2.2) Xi-TLX,;-TLX;=0, 1<i#j<n,

, i -
2.3 i, =" 1<i#j<n,
(2.3) AN vy Si#Fjs<n
where Ffj are the Christoffel symbols.
We now consider the higher-dimensional Laplace invariants of the system of equations (2.2) (see [7]-[8]
for the definition of these invariants),

m,; = —Ii +TiT19
2.4 9 T 177 137
24 mige = Ui =TF , k#4,j, 1<k<n.

As a consequence of (2.3) and the un-numbered lemma appearing in [8], we obtain the following identities,
valid for distinct ¢, 5, k, I, 1 <4,5,k, 1 <n:

mijk +myj; = 0,

Mijk ke — MijkMjki — Mk; = 0,

(2.5 Myj ke + MijkMik + Mig;my; = 0,
Mijl — Mijr — Myje = 0,

Myik,; + MijiMisl + MyjpMp; = 0.

From Remark 2.2 in [16], follows that for n > 3, the higher-dimensional Laplace invariants do not change
under inversions in spheres centered at the origin and homotheties.

For hypersurfaces with distinct principal curvatures, the Mdobius curvature is defined, for distinct 4, j, k,
by
Ai — A

ijk _
(2.6) C S

Since all )\; are distinct we conclude that C*/*¥ # 0 and C*/* # 1. M&bius curvatures are invariant under
Mobius transformations.

The following result was obtained in [14], which provides some properties which are satisfied by the
principal curvatures of a hypersurface in JR" ! parametrized by lines of curvature.

LEMMA 1. Let A\, : Q@ C R®™ = R, n > 3, be smooth functions distinct at each point. Consider
Sfunctions myj), defined by (2.3) and (2.4). Then for i, j fixed, 1 < i # j < n, the following properties hold

" Aii
(2.7) [c* mjki],i = Mijkiyi + L\j — )\1} L

y Ao s
o ol == [25]
J 11k

(2.9) [C¥mpi] , = [C7'myu]
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where C*3% is the Mébius curvature and 1 < k # 1 < n are distinct from i and j. The following Lemma
is a application of Theorem 1 in [8].

LEMMA 2. Let X : Q C R® — R**1, n >
with n distinct principal curvatures A\., 1 <
transformation

3, be a hypersurface parametrized by lines of curvature,
r < n. Fori,j,k fixed 1 < i # j # k < n, the

— / Ck”mj;ﬂ-dxk
= e

(2.10) X=VX, where V= NN ,

transforms system (2.2) into

_ Xiy+AX; —myX =
2.11) Xir + (A+myir) X o —mip X
. XLjT + mirj)(:,j + mier,r

X,rl + mier,r + mirlX,l =

cooo

where | and v aresuchthat 1 <r #1#i1# j<n and

(2.12) A= */mjki,idxk
Moreover,
(2.13) Aj=myi —mgj, Ay = —myjrii .

REMARK 1. For subsequent use, we will compute the derivatives of the function V' given by (2.10).
It follows from Lemma 1 that,

Vi=(A+15,)V,

(2.14) V= rgﬁjv,
Vi =TyV,
V=TV,

where A is given by (2.12) and [ is distinct from ¢, j, k.

3. Main results. In this section, we prove our main result which provides a local characterization of
generic hypersurfaces parametrized by lines of curvature in R%, with three distinct principal curvatures. We
remark that in the case of Dupin hypersurfaces parametrized by lines of curvature the Laplace invariants
m;; = 0, for 1 <4 # j < 3 and therefore, this family of hypersurfaces includes the class of Dupin hyper-
surfaces studied by Riveros in [15].

THEOREM 1. Let X : ) C R3 — R*, be a hypersurface parametrized by lines of curvature, with three
distinct principal curvatures \,. For 4, j, k distinct fixed indices, suppose mj; = my; = 0 and my;, # 0
then

(3.1) X =V [B; - B,
where
e/ckjimj“dxk L[ [ QGila:)
(3.2) V= Yy , By = 0. { dez +Gs($8)} , 8 F 1,

G, (x,), r =i, ], k, are vector valued functions of R?, Aj=-—my;, A= —/mjki,idxk and

(3.3) QS:{ el Admiif 5= j,

ef(A—&-'rnjis)d;ci if s=k.
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Moreover, considering

, Aji Ais
3.4 oA+ 22\ M+ M, s= _Zh M4 M, '
(3.4) a <<+M_A) M, @t = MM s A

where M = B; — By, the functions G, (x,) satisfy the following properties in ), for 1 <r #1t < 3:
a) a" #0,
b) {(a",at) =0, r#t,
(a%, o' x a x o)
Viar? lof] [od| ok
Conversely, let ), : 2 C R® = R ,r = 1,2,3 be real functions, distinct at each point. Assume that the
functions m,s and m,; defined by

C) )\r:

)\rt )\st
rts — ’ - : ,].S t §3,
s v e VS W A
/\rt A’I‘tAtT
35 = — : A I N )
(3.5) Myt |:)\t_)\r:|’r ERESWE r#£

satisfy (2.5), and for 4, j, k distinct fixed indices, mj; = my; = 0, and mj, # 0. Then for any vector
valued functions G, (x,) satisfying properties a) b) c), where o is defined by (3.4), the function X : Q C
R3 — R* given by (3.1) describes a hypersurface parametrized by lines of curvature whose principal
curvatures are the functions \,.

Proof: We observe that from (2.5), the conditions m;; = my; = 0, implies that m;;, = my; = 0.
From equation (2.2) we have,
(3.6) X =15 X, T, X,=0, 1<s#r<3.
For fixed distinct indices i, j, k, we consider the transformation
(3.7) X =VX,
as in Lemma 2, where V' is given by (2.10). Then system (3.6) reduces to
B Xﬂ,j + AXJ 77min =0,

(3.8) Xik + (A+myip) X g —mi X =0,

X ik +mi; X j +mip X e =0,
where
(3.9) Aj=—myj, Ap=—Mjki;
It follows from the third and second equations of (2.5) and (3.9) that
(3.10) (A4+mjig) )k = =M.

Using (3.9) and (3.10) in the first two equations of (3.8), we have that

(3.11) X+ AX = W (zy, 1),
(312) X’i + (A + mﬂk)X = Wk(xi, !Ej),

where W7 and W* are functions that do not depend on x; and z, respectively. Since mj;, # 0, from
(3.11) and (3.12) we have

1
mjik

(3.13) X = [(Wh —wi].
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Differentiating (3.13) and using (2.5) we have

G14) X = IRk Wi Wk W),
(myjik) Mjik
_ S , 1
315) X, = SRk _wi) 4 ——wk
mjik Mjik
_ iy , 1 )
(3.16) X = —dkigyk _ywi) - i
Myjik Mgk’
- 1 Miik.i m;; MijEMjik,i ]
X, = wh — J’W’“—J{m it — + — J’]W’“—W-?Jr
im0 (mya)? Y U g (myak)? | ]
(3.17) — Tk gk oy
mjik
o 1 j Myjikyi g Mk | MikjMyjik,i ;
Xig=——W) + ]’WJ+{mZ--+ + 2 j7:|Wk—WJ+
T me T (mg)2 g (myik)? : ]
(3.18) — Tk gk )
mj'ik
_ QM M ) iy ) iy
(3.19) X jy = —ak ik gk i) 4 Dk gy Tk gk
Mjik Mjik Mmjik
The substitution of X and X 4 into (3.11) and (3.12), gives
(3.20) <A - W) [WE — W3]+ [W* = W), = myuW7,
Mjik
Mjik,i

(3.21) <A + myik — > Wk — W)+ [WE - W) = mjuW".

Mk
Using (3.13), (3.15), (3.17) and (3.21 in first equation of system (3.8), we obtain

_ Myik,i
Mjik

(3.22) W’fj + (A ) W’; + myggimgix =0,

Using (3.13), (3.16), (3.18) and (3.20 in second equation of system (3.8), we obtain

Mjik,i

(3.23) Wiy + (A + Mg —
Mjik

) ij + mikimgik =0,
Using (3.15), (3.16) and (3.19) in the third equation of system (3.8) we obtain an identity.
From (2.5) and (3.9) we obtain

Mjik,i

—

jikyi

(3.24) (A - ) = MkjiMjik (A +mjik — ) = Mk Mjik-
mjik ) 4 mjik ) 4,

It follows from (3.2), (3.3) and (3.24) that the solutions of equations (3.22) and (3.23) are given by

jik Gi(@i
(3.25) W*(z;,2) = ”53_" { Qfmji(; ) da; + Gj(xj)]
(3.26) Wi (27, 28) = ”Z;kk V kaji(: ) dos + Gk(xk)]
From (3.20), (3.25) and (3.26) it follows that
(3.27) Gi(zi) = Gi(xy).

The substitution of (3.25), (3.26) and (3.27) in (3.13) gives
X = B; — By,

where we have used (3.2), which substituted into (3.7), implies (3.1).
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Considering o’ and o, s = j, k defined by (3.4), it follows from (2.7), (2.8), (2.13) and (2.4) that

(3.28) X, = Va',r=ijk

)

Differentiating (3.28), we have

(3.29) Xy =Voa" +Va, r=ijk

)T7

It follows from (3.28) that the metric of X ,. is given by
(3.30) grr = (V)| gre =0, 7 £t

A unit vector field normal to X is given by

k

AN

i J
3.41) N:a X ol X«

o] [ad| a*] |at] -

Since X is a hypersurface parametrized by orthogonal curvature lines, with A, as principal curvature we
have, for1 <r #s<3

er N
(N, X rs) =0, )\S:g.
Grr
Hence from (3.29) and (3.31) we obtain for r = 4, j, k,
(a, ot x af x aF x o)

A= Vil [ ok o]
Therefore, we conclude that conditions a), b) and c) are satisfied.

Conversely, let A, be real functions distinct at each point. Assume that the functions m,.s and m.,
defined by (3.5), satisfy (2.5) and suppose G, (z,), 1 < r < 3, are vector valued functions satisfying
properties a), b) and c¢). Defining X by (3.1), it follows from Lemma 1 and properties a) and b), that X is
an immersion, whose coordinates curves are orthogonal. Moreover, the induced metric is given by (3.30)
and a unit normal vector field by (3.31).

Differentiating (3.28) with respect to x;, using Lemma 1, the expressions (2.5), (2.14) and (3.4) we
obtain

Ar Aty
XVMV< LA Y 2 t>,r7ét.

PV WD W Ve

From (3.31), it follows that (X ,, ,N) = 0 . Hence the second fundamental form is diagonal and therefore
the coordinates curves are lines of curvature. Moreover, it follows from (3.29) - (3.31) and from property
¢) that forr =1, 5, k,

(X, NY {0, 0f x ad x ok x al)

= —— = A
Grr Viala’| |a7] |o] |of]
which concludes the proof. O
Now we show that the vector valued functions which appear in Theorem 1 are invariant under inver-
sions and homotheties.

THEOREM 2. Let X : Q C R® — R* be a hypersurface with three distinct principal curvatures A,
parametrized by lines of curvature as in the Theorem 1. Then the vector valued functions G, (x,),1 <r <
3 are invariants under inversions and homotheties.

Proof: a) Assuming without loss of generality that 0 ¢ X (Q2), we consider X=1I 4(X) a hypersurface
parametrized by lines of curvature, obtained by composing X with the inversion defined by I*(X) =

and whose distinct principal curvatures are given by
(X, X)

(3.32) A= (X, X0\ + 2(X,N), r =1,k

Applying the Theorem 1 to X, we have for i, j, k fixed distinct indices

X:V{Bj—ék},
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where
- 1 .G
.= — QSNGZ(xl)d i+ Gslxs)| 5 s#1,
Qs Myjik
/C’kam]kldxk . -
. N —
(3.33) [ LGk
N —

Qs, s#£i are defined by (3.3) and ér(x,.), r =1, j, k are vector valued functions in R*.
Since X and X have the same higher-dimensional Laplace invariants, we obtain

(3.34) A=A, Q.=Q,, s#i.
Substituting (3.32) in (3.33), we have

~ %
3.35 V =
-39 X.X)
On the other hand,
~ X
3.36 X = .
(-30) X, X)

We will show that C;'r(xr) = G.(xy), 7 = 1,7, k. It follows from (3.35) and (3.36) that
(3.37) B; — Bj — (By — By) = 0.

We observe that

B;;, =—-AB; + Ci;(;”), By = —(A+ mj) By + Cir‘L(j;)
This fact follows from the equalities
Qji =AQ; , Qri=(A+myir)Qr.
Therefore differentiating (3.37) with respect to z;, we get
A (B; = B;) + (A+myu) (Bi— By) =0,
From (3.37) and the fact that m;;, # 0, we have
(3.38) By, = By.
Differentiating with respect to x;, we get ék(a:k) =  Gg(zr), hence it follows that

Gi(x;) = G;(x;). Substituting (3.38) in (3.37), we obtain
B; = B;.
and hence G (;) = G;(;), which concludes the proof of a).

b) Let X = aX be a homothety of X. Then X is a hypersurface parametrized by lines of curvature,
with distinct principal curvatures given by

(3.39) X = % r=i,3j,k.

Applying Theorem 1 to X, we have for 4, j, k distinct fixed indices

S

=V [B; — By .
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where
B 1 .G (2 _
Bo= g | [ s o) s,
Qs Myjik
7/C'kjimjkid$k < 8
(3.40) V== where C*¢ = M=
. S ) Uy

Aj— i
A= */mg‘ki,idlﬂk,

Qs, 5# 1 are defined by (3.3) and G,(z,), r =1, j, k are vector valued functions in R*.
Since X and X have the same Laplace invariants. Therefore, it follows that

(3.41) A:A>Qs:sts7éi‘
We will show that G..(z,.) = G,(z,). Substituting (3.39) in (3.40), we have

(3.42) V =aV.
Since
(3.43) X=V[B—B , X=V[B—B.

Substituting (3.41), (3.42) and (3.43) in X = aX we have,
Bj — Bj — (B, — Bg) = 0.
The same argument of item a) proves that Gr(z,.) = G,.(z,.), V r. O
Example 1: Let X : R? — R* be an immersion
X(z1,29,23) = ((a + rcoszy) cosxa, (a + rcoszy) sin g, rsinx, x3),

that describes a hypersurface of Dupin.
The principal curvatures are given by

1
= —=, k= ——TL ),

r a+rcoszy’

From (2.4) we have that the laplace invariants are given by

mi; =0, 1 <i#j <3, m213:*w
a~+ 1rcosxy
From Theorem 1, we get
X =V By — By,
where
2
A=, v OEreOST)T Gy —atreosar.
asin xq
The vectorial functions are given by
a
G = 0, 0, - ) 0 )
1(@1) sinz (a + rcosxy) >
Colas) = acos:vg7 asinx270’0) 7
r r
G3(.’173) = <070707_@> .
T

Example 2: Let Y (1, 25) be a surface parametrized by lines of curvature on the sphere S C R*
defined in €2 = I x R, with two distinct principal curvatures ki, k2 that only depend on z; and satisfying
ki1 #0, ko1 # 0,V z1 € I, I is an open interval. We consider the hypersurface X : Q x J — R*
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parametrized by lines of curvature given by X (z1,22,23) = Y (21, 22) + x3J\7(331, Z2), where N is the

normal vector of the surface Y and J is an open interval such that (zsk; — 1) #0, Vas € J, i = 1,2.
We can show that the normal vector to X is Y and the distinct principal curvatures of X are given by

1 1

(344) kl = =, k;Q = =, ]€3 = 0
1’3]€1 —1 l'gkg —1
By (2.3), we have
k k- 1)k k
(345) Tl oTd T o0 T, F pg @k Ukaa gk
(E3]€1 —1 ($3k2 — 1)(]{)1 — kQ) .’Egkg -1
From (2.4) and (3.45) we have that the laplace invariants are given by
o ki
(3.46) M1z = Ma1 = Moz = M3y = mzz2 =0, miz3 = ——"——,
(Ltgkl — 1)2
ky — 1k ky —k
(3.47) mMa13 = (363 : ~) 2 mgy = .
(.’Egkg — 1)(k1 — kQ) (£C3]€1 — 1)(1’3k2 — 1)
Also,
eI L
x3(ky — ko)
From Theorem 1, we get
X =V By — By,
where
(3.48) Ao fsha mha sk
xgk’g -1 xgkl -1 k‘g — k‘l k‘1 — k‘g
- / k1 di, -
Q="M= ) -t gt
$3k2 —1 kl - k?
The vectorial functions are given by
~ ~ ky — ko) ~ -
Gy(xy) = (-km + 2kaq + “{’““) (21)Y (x1,29) 4 (ko — k1) (1) Y11 (21, 29)
2,1
k
o /~ L g
Ga(x2) = | (k2 — kr)e ko — ki (29)Y (29, z2)

Gs(x3) = (@123 + b1, asxs + ba, azxs + bs),

where

~ e ~ ~ 7f7~k1’£ d:El

k - [ Thdn Gi(x1) (k1 — ko)e 7 F2=F1

((11,(12,(13) = | = 2~ e I k2—k1d ($(1)) / 1( 1)( ! ~2) dxq (l‘?)
k‘l — k‘g k2,1

+ Ga(a)] - N(a,29) - ( / Wm) (29).
2,1

We observed that this class of hypersurfaces has nonconstant Mobius curvature and they are not Dupin.
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4. Conclusions. From the results obtained in this work we can make the following conclusion:

The fact of considering hypersurfaces parametrized by lines of curvature in R* with Laplace invariants
mj; = my; = 0, my # 0 for ¢, j, k distinct fixed, allows us to find the same representation obtained in
[15], therefore, this work generalizes the results obtained in [15], i.e., the hypersurfaces of Dupin studied in
[15] are contained in this class of hypersurfaces.
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